用户名: 密码: 验证码:
高压—工频电加热原位裂解油页岩理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是目前世界亟待解决的问题,天然石油不可再生,我国原油对外依存度逐年增加,资源严重匮乏,对于油页岩资源的开发利用重新回到了人们的视野。吉林省属于资源短缺大省,但是其油页岩资源丰富,在我国油页岩储量居首位。目前对油页岩资源的开发利用还处于地下开挖,地表干馏的状态,可供地表开挖干馏的部分油页岩越来越少,且地表干馏环境污染严重等缺陷制约着其发展。原位裂解油页岩技术可以克服地表干馏法的多数缺陷,但是技术并不成熟,还处于试验阶段。吉林省油页岩资源含油率低,储层薄,埋深较深,目前的原位开采技术并不适用于吉林省的油页岩资源的开采,因此针对吉林省油页岩资源创新提出了高压-工频电加热原位裂解油页岩技术,为油页岩原位开采技术提供了新的思路。
     通过阅读大量文献,进行初步的基础试验,在理论与试验的基础上,中俄学者提出高压击穿-工频加热的裂解方法。本文利用所设计的高压-工频发生器、室内试验反应釜进行了不同距离、不同电压、不同电流等因素影响下的试验。由于试验过程中温度的不易测量且很难控制,利用基础试验得出的规律对高压-工频电加热原位裂解试验的结果进行反推来判断试验过程中的平均温度,进一步验证该技术的机理。
     首先对100-700℃7个温度节点下保温两个小时的块状油页岩样品进行热重分析,工业分析,对其产物进行气相色谱分析。试验所得的热失重峰值相对于原样的热重分析其失重峰值有滞后现象,是因为在块状样品随着环境温度的升高,热量从样品表面传递到样品的内部的过程,因此失重峰值温度向后偏移。在室内试验与原位开采的过程中都应该考虑到内部传热的过程,将温度控制在500℃左右。通过加热试验后其产物与残渣分别进行了大量的检测,得出油页岩样品的平均温度随温度的升高产物与残渣成分的变化规律,当平均温度在500℃-600℃时,产气量达到最大值,气体量的峰值随着温度的升高逐渐前移,是因为高温使得大分子的烃类物质断裂生成小分子的烃类,更有利于气体产物提纯。
     以固体击穿理论、等离子体理论、传热学理论为基础,对高压-工频电加热原位裂解技术的可行性进行论证,并同时与ICP原位转化工艺对比,针对吉林省油页岩资源的特点,高压-工频电加热原位裂解技术的加热通道垂直于层理,相同厚度的油页岩层具有更大的有效加热面积。对油页岩原位裂解过程中的热量传递规律建立物理模型,并进行仿真模拟。由于随着温度的升高油页岩材料的大部分物理性质都会随之变化,因此在模拟的过程中将导热系数、介电常数、比热等参数随温度的变化考虑其中,建立了非稳态模型。对室内油页岩裂解试验进行了模拟,根据模拟结果判断油页岩矿层达到裂解温度的区域与时间,通过后期的室内试验进行验证,为原位开采提供数据基础。
     建立了油页岩高压-工频电加热原位裂解实验平台,高压-工频发生器可通过电流或者电压对油页岩进行击穿;室内反应釜为试验提供了安全可靠的空间,并满足温度和压力的校核。试验平台可以更直观和方便的观察油页岩的裂解过程,并可进行重复试验,为原位开采提供试验基础和借鉴意义。并进行了高压-工频电加热原位裂解技术的室内试验,经过对油页岩样品的击穿与加热,成功产生页岩油和可燃气体,验证高压-工频电加热原位裂解油页岩技术的可行性,并且该技术方法使能量积聚在油页岩内部,即能量损失小;进行高压-工频电加热原位裂解油页岩的室内试验,根据试验数据拟合出在相同试验条件下,相同性质的油页岩击穿时间与电流/电压及距离的函数关系,为原位试验提供参考;通过对是产物进行热重分析、X衍射分析、元素分析,可得高压-工频电加热原位裂解油页岩的试验表明以电极作为加热体,其附近的油页岩发生了剧烈的裂解反应,根据油页岩裂解规律可反推其平均温度达到600℃以上,内圈的温度达到了860℃以上。
     高压-工频电加热原位裂解油页岩技术可以成功产生油气,理论与试验上都验证了这种技术原理的可行性,其产油气速度快,能量损失小,无地表环境污染,是一种很有前景的油页岩原位裂解技术。
Energy is the serious problem to be solved for the world. The crude oil is non-renewable, that makes the resource shortage even more, and the crude oil externaldependenceof our countryincreases every year. The development and utilization ofoil shale has come back to people’s vision, and has become an important bargainingchip at the High Oil Price Times. Jilin province seriously lacks of energy, but it isvery rich of oil shale resources, its reserves in the first place of China. Thedevelopment and utilization of oil shale are still in the stage of undergroundexcavation and ground retorting. And the oil shale available for excavating andretorting is dwindling. The serious environmental pollution restricts thedevelopment of retorting. While the in-situ conversion technology could overcomethe most shortcomings of retorting, it is not mature enough, still in the experimentalstage. The oil shale of Jilin province has low oil content, thin reservoir and bigburied depth, so that there is no in-situ conversion technique applicable for theexploration of the oil shale of Jilin province. Therefore, high voltage-powerfrequency electrical heating method has been innovated for Jilin oil shale resources,and which also provide a new thinking for in-situ oil shale pyrolysis process.
     The high voltage-power frequency electrical heating method of oil shalepyrolysis is put forward on the basis of theory and experiment. High voltage-powerfrequency generator and reactor have been designed and manufactured, and theexperiments are done at different factors such as distance, voltage and current in thispaper. The average temperature in the experiment is judged by the inversion of theexperiment results from the law summarized by basic experiment, just because thetemperature is too difficult to test.
     The7oil shale samples are tested by thermogravimetric analysis (TGA),industrial analysis and gas chromatographyanalysis,after keeping the samples atdifferent temperature each for two hours. The weight lost peak from theexperiment has a lag relative to the TGA peak, it is because the temperature of theoil shale block increases with the environment temperature, and the heat need timeto transfer from the surface to the inside so that the peak temperature migratesbackward. The heat transfer process should be considered in both experiment andin-situ mining, and the pyrolysis temperature should be controlled at about500℃. The variation ofingredients on product and residues is concluded through testing.When the average temperature is at500℃-600℃,gas production reaches itsmaximum, and the peak moves forward gradually as the temperature rises. That isbecause the high temperature makes the macromolecular hydrocarbon fracture intosmall molecule, which is more conducive for gaseous product purification.
     The feasibility of high voltage-power frequency electrical heating in-situpyrolysis method is demonstrated on solid breakdown theory, plasma theory andheattransfer theory. Compared with the In-situ Conversion Process, the heatingchannel of high voltage-power frequency electrical heating in-situ pyrolysis methodis perpendicular to oil shale bedding, and has larger effective heating area at samethickness, and more suitable for the in-situ mining of Jilin oil shale resources. Thephysical model is established to analogue simulate the heat transfer law in the in-situ pyrolysis process.Most physical property of oil shale will change as thetemperature increases, and these variation as thermal conductivity, dielectricconstant, specific heat and other parameters are considered in the simulation to builda non-steadystate model. The simulation of experiment is done to adjust the areaand time of the oil shale reaching pyrolysis temperature, and verified by the lateexperiment, providing data base for in-situ mining.
     The test platform is built for high voltage-power frequency electrical heatingin-situ pyrolysis method, the high voltage-power frequency generator is used tobreak down the oil shale by controlling the current or voltage; the experiment reactorhas met the temperature and pressure check that is used to provide a safe and reliabletest space. The pyrolysis process could be more intuitive and convenient observedand the experiments can be repeated over the test platform, which providing anexperimental basis and reference for in-situ mining of oil shale. The experimentsare done to produce the shale oil and fuel gas through the breaking down and heating,which proves that the method is available for in-situ mining of oil shale. And thistechnique make the energy accumulated in the oil shale, the energy loss is small.The function of the breaking down current/voltage, time and distance is matched atthe same experiment condition, same oil shale property according to the experimentdata, providing the reference for in-situ experiment. Through the thermalgravimetric analysis, X diffraction analysis, elemental analysis of the product, whatcan be concluded is the electrodes are the heating part, the oil shale near the electrodes pyrolysis violently. The average temperature reaches more than600℃,the internal temperature reaches860℃which are estimated according to the law ofoil shale pyrolysis.
     The high voltage-power frequency electrical heating method of oil shalepyrolysis can successfully produce the shale oil and fuel gas, whose feasibility isverified by the theory and experiment. This method is a promising in-situ pyrolysistechnique for oil shale, for its fast production of shale oil and gas, small energy lossand no environmental pollution.
引文
[1]X.M. Jiang, X.X. Han, Z.G. Cui. Progress and recent utilization trends incombustion of Chinese oil shale[J]. Progress in Energy and CombustionScience.2007.33:552–579.
    [2]陈晓菲,高武军,赵杰等.中国油页岩开发利用现状及发展前景[J].洁净煤技术.2010.6:29-31.
    [3]张海龙.东北北部区油页岩资源评价及评价方法研究[D].长春:吉林大学,2008.
    [4]刘招君,杨虎林,董清水等.中国油页岩[M].北京:石油工业出版社.2009.
    [5]Oluwadayo O. Sonibare. Dorrit E. Jacob. Mineral and trace elementcomposition of the Lokpanta oil shales in the Lower Benue Trough,Nigeria[J]. Fuel.2011.90:2843-2849.
    [6]徐峰.油页岩热解及燃烧反应的化学动力学研究[M].吉林:东北电力大学.2007.
    [7]刘招君,董清水,叶松青.中国油页岩资源现状[J].吉林大学学报(地球科学版).2006.36(6):869-876.
    [8]Sunhua Deng, Zhijun Wang, Qiang Gu. Extracting hydrocarbons from Huadianoil shale by sub-critical water[J]. Fuel Processing Technology.2011.92:1062-1067.
    [9]Omar S. Al-Ayed, M. Matouq, Z. Anbar. Oil shale pyrolysis kinetics andvariable activation energy principle[J]. Applied Energy.2010.87:1269-1272.
    [10]Sha Wang, Xiumin Jiang, Xiangxin Han. Investigation of Chinese oil shaleresources comprehensive utilization performance[J]. Energy.2012.42:224-232.
    [11]钱家麟,尹亮,王剑秋,李术元.油页岩—石油的补充能源[M].北京:中国石化出版社,2011:12-13.
    [12] Veiderma M. Estonian oil shale-resources and usage[J].Oil Shale,2003,20(3):295-303.
    [13]孙平昌.松辽盆地东南部上白垩统含油页岩有机质富集环境动力学[M].长春:吉林大学.2013.
    [14]曹祖宾,张宗平,韩冬云,李丹东.油页岩干馏工艺与工程[M].北京:中国石化出版社.2011.
    [15]侯祥麟.中国页岩油工业[M].北京:石油工业出版社.1984.
    [16] Kok M. V.. Oil shale resources in Turkey [J]. Oil shale.2006,23(3):209-210.
    [17] Dyni J.R. Geology and resources of some world oil shale deposits[J]. Oilshale,2003,20(3):193-252.
    [18]李术元,钱家麟.世界油页岩开发利用现状及预测[J].中外能源.2011.16:8-18.
    [19]许容.我国油页岩开发利用政策研究[M].北京:中国地质大学.2013.
    [20]Mengting Niu, Sha Wang, Xiangxin HanYield and characteristics of shale oilfrom the retorting of oil shale and fine oil-shale ash mixtures[J]. AppliedEnergy.2013.111:234-239.
    [21]霍威.抚顺式和桦甸式油页岩干馏工艺的比较[J].科技情报开发与经济.2012.22(10):122-124.
    [22] Miao Zhenyong. Wu Guoguang. Li Ping.Investigation into co-pyrolysischaracteristics of oil shale and coal[J]. International Journal of MiningScience and Technology.2012.22:245-249.
    [23]张秋民等.几种典型的油页岩干馏技术[J].吉林大学学报(地球科学版).2006.36(6):1019-1026.
    [24]T. PIHU, A. KONIST, D. NESHUMAYEV. SHORT-TERM TESTS ONFIRING OIL SHALE FUEL APPLYING LOW-TEMPERATURE VORTEXTECHNOLOGY[J].2012.28(1):3-17.
    [25]X.M. Jiang, X.X. Han. Z.G. Cui. New technology for the comprehensiveutilization of Chinese oil shale resources[J].Energy.2007.32:772-777.
    [26]冯雪威,陈晨,陈大勇.油页岩原位开采技术研究新进展[J].中国矿业.2011.20(6):84-87.
    [27]钱家麟,王剑秋,李术元.世界油页岩开发利用动态[J]中外能源,2008.13(1):11-15.
    [28]方朝合,郑德温,刘德勋.油页岩原位开采技术发展方向及趋势[J].能源技术与管理.2009.2:78-80.
    [29] James W Bunger, Peter M Crawford, Harry R Johnson. Is oil shaleAmerica’sanswer to peak-oil challenge [J]. Oil&Gas Journal,2004.8:16-24.
    [30]国际壳牌研究有限公司.传导加热地下油页岩以赋予其渗透性并随后采油:荷兰,E21B43/28,87100890[P].1988.08.31.
    [31] Noel M. Melton, Theodore S. Cross. Fracturing Oil Shale With Electricity[J].Journal of Petroleum Technology.1968,20(01):37-41.
    [32]雷群,王红岩,赵群,等.国内外非常规油气资源勘探开发现状及建议[J].天然气工业,2008.28(12):7-10.
    [33]刘德勋,王红岩,郑德温.世界油页岩原位开采技术进展[J].天然气工业.2009.29(5):1-5.
    [34]王盛鹏,刘德勋,王红岩.原位开采油页岩电加热技术现状及发展方向[J].天然气工业.2011.31(2):114-118.
    [35] X.X. Han, X.M. Jiang. Z.G. Cui. Studies of the effect of retorting factors onthe yield of shale oil for a new comprehensive utilization technology of oilshale[J]. Applied Energy.2009.86:2381-2385.
    [36]Youhong Sun, Fengtian Bai, Baochang Liu. Characterization of the oil shaleproducts derived via topochemical reaction method[J]. Fuel.2014.115:338-346.
    [37]罗弘.管式炉的节能改造[J].石油化工设备技术.1996,17(3):17-21.
    [38]崔丽杰,李欣,李松庚,林伟刚.霍林河褐煤及其热解焦油管式炉热解试验研究[J].煤炭科学技术.2012,40(10):124-128.
    [39]何敬斌.蓄热式循环瓦斯管式加热炉研发及热工特性分析[D].沈阳:东北大学.2011:21-28.
    [40]M.F. Martins, S. Salvador, J.-F. Thovert. Co-current combustion of oilshale-Part2: Structure of the combustion front[J]. Fuel.2010.89:133-143.
    [41] Shabbar Syed, Rana Qudaih, Ilham Talab. Kinetics of pyrolysis andcombustion of oil shale sample from thermogravimetric data[J]. Fuel.2011.90:1631-1637.
    [42] Pankaj Tiwari, Milind Deo. Compositional and kinetic analysis of oil shalepyrolysis using TGA–MS.Fuel.2012.94:333-341.
    [43]杨帆.油页岩的热转化利用[D].西安:西北大学.2009:28-47.
    [44]孙佰仲.油页岩及半焦混合燃烧特性理论与试验研究[D].保定:华北电力大学.2009:32-42.
    [45]蒲建业.桦甸油页岩、半焦差热及燃烧特性试验研究[D].吉林:东北电力大学.2006:16-21.
    [46]Jie Zhang, Ling-Wen Kong. Jing-Ru Bai.Pyrolysis Characteristics of Oil Shaleof Six Density Sections[J]. Energy Procedia.2012.17:196-201.
    [47]裴宝琳.油页岩低温热解的实验研究[D].太原:太原理工大学.2013:10-27.
    [48]李术元,钱家麟,王剑秋等.块状油页岩热解过程的研究[J].1990.6(4):86-93.
    [49]Kristin N. Alstadt, Dinesh R. Katti, Kalpana S. Katti. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale[J].Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy.2012.89:105-113.
    [50]Oluwadayo O. Sonibare. O.A. Ehinola. R. Egashira.Thermal and geochemicalcharacterization of Lokpanta oil shales, Nigeria[J]. Energy Conversion andManagement.2005.46:2335–2344.
    [51]李强.油页岩原位热裂解温度场数值模拟及实验研究[D].长春:吉林大学.2012.
    [52]Nasir Ahmad. Paul T. Williams. Influence of particle grain size on the yieldand composition of products from the pyrolysis of oil shales[J]. Journal ofAnalytical and Applied Pyrolysis.1998.46:31-49.
    [53]Mohammad Al-Harahsheh. Omar Al-Ayed. John Robinson. Effect ofdemineralization and heating rate on the pyrolysis kinetics of Jordanian oilshales[J]. Fuel Processing Technology.2011.92:1805-1811.
    [54]茹鑫.油页岩热解过程分子模拟及实验研究[D].长春:吉林大学.2013.
    [55]肇永辉.抚顺炉油页岩干馏新工艺的开发研究[D].长春:吉林大学.2012:14-22.
    [56]崔志刚.油页岩及其半焦流化床燃烧N2O生成机理研究[D].上海:上海交通大学.2010.
    [57]XUAN-CHEN YAN, CHEN CHEN, XIN-PENG LIU. PHYSICAL ANDMECHANICAL PARAMETERS OF BOREHOLE HYDRAULIC MININGOF NONG’AN OILSHALE[J]. Oil shale.2012.29(3):237-247.
    [58]邹永文.桦甸油页岩及其半焦基础特性研究[D].吉林:东北电力大学.2010:36-44.
    [59]薛华庆,王红岩,郑德温,方朝合.油页岩工业分析与元素分析各项指标间的相互关系[J].化工科技,2010,18(1):6-9.
    [60]王延芬,陆绍信,朱亚杰.我国油页岩热性质的研究[J].华东石油学院学报.1986.1:121-129.
    [61]姜庆贤.桦甸油页岩理化特性研究[D].吉林:东北电力大学.2006:12-27.
    [62]韩放,李焕忠,李念源.抚顺油页岩开发利用条件分析[J].吉林大学学报(地球科学版).2006,36(6):915-922.
    [63]邓孙华.近临界水对块状油页岩中有机质的提取研究[D].长春:吉林大学.2013.
    [64]Nasir Ahmad, Paul T. Williams. Influence of particle grain size on the yieldand composition of products from the pyrolysis of oil shales[J]. Journal ofAnalytical and Applied Pyrolysis.1998.46:31-49.
    [65]Noelia Franco, Wolfgang Kalkreuth, Maria do Carmo Ruaro Peralba.Geochemical characterization of solid residues, bitumen and expelled oilbased on steam pyrolysis experiments from Irati oil shale, Brazil: Apreliminary study[J]. Fuel.2010.89:1863-1871.
    [66]J. Alexandra Hakala. William Stanchina. Yee Soong.Influence of frequency,grade, moisture and temperature on Green River oil shale dielectric propertiesand electromagnetic heating processes[J]. Fuel Processing Technology.2011.92:1-12.
    [67]田志海.超高压固体复合绝缘材料的电击穿研究[J].高电压技术.1995.21(1):29-31.
    [68]安萍.非均匀电场中气固混合两相体击穿特性实验研究[M].武汉:华中科技大学.2004:8-17.
    [69] Whitehead S. Di electric Breakdown of Solids [M]. Oxofrd: Clarendon Press,1953.
    [70] O’Dwyer J. J. The Theory of Electrical Conduction and Breakdown in SolidDi electrics[M], Oxofrd: Clarendon Press,1973.
    [71]朱鹤孙,丁洪志.绝缘固体电介质击穿理论研究进展[J].自然科学发展.1998.8(3):262-269.
    [72]周泽存.高电压技术[M].北京:中国电力出版社.2007:66-84.
    [73]刘力伟.环氧树脂/蒙脱土纳米复合材料电导与击穿性能研究[M].哈尔滨:哈尔滨理工大学.2012:6-10.
    [74]菅井秀郎,大江一行.等离子体电子工程学[M].北京:科学出版社.2005:83-103.
    [75]徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社.1981:23-30.
    [76]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社.1996:87-121
    [77]孙目珍.电介质物理基础[M].广州:华南理工大学出版社.2002:180-188.
    [78]陈熙.热等离子体的传热与流动[M].北京:科学出版社.2009:22-59.
    [79]刘万东.等离子体物理导论[M].北京:中国科学技术大学教材.2002:1-30.
    [80]郑坚.等离子体物理理论[M].合肥:中国科学技术大学教材.2009:1-8.
    [81]周远翔,王宁华,王云杉.固体电介质空间电荷研究进展[J].电工技术学报.2008.23(9):16-25.
    [82]赵静,冯增朝,杨栋,康志勤. CT实验条件下油页岩内部孔裂隙分布特征[J].辽宁工程技术大学学报(自然科学版),2013,32(8):1044-1049.
    [83]王秋雯.吉林桦甸油页岩热物理和电物理性质试验研究[D].吉林大学,2011:18-24.
    [84]J. Alexandra Hakala, William Stanchina, Yee Soong. Influence of frequency,grade, moisture and temperature on Green River oil shale dielectric propertiesand electromagnetic heating processes[J]. Fuel Processing Technology.2011.92:1-12.
    [85]杨栋,康志勤,赵静,赵阳升.油页岩高温CT实验研究[J].太原理工大学学报,2011,42(3):255-257.
    [86]康志勤.油页岩热解特性及原位注热开采油气的模拟研究[D].太原理工大学,2008:15-25.
    [87] Saeed Moaveni. Finite Element Analysis——Theory and Application withANSYS [M].北京:电子工业出版社.2008:295-330.
    [88]宋剑锋.详解ANSYS有限元分析[M].北京:中国铁道出版社.2012:1-20.
    [89]秦宇. ANSYS11.0基础与实例教程[M].北京:化学工业出版社.2009:1-28.
    [90]李兵,宫鹏涵. ANSYS14有限元分析自学手册[M].北京:人民邮电出版社.2013:6-21.
    [91]周长城,胡仁喜,熊文波. ANSYS11.0基础与典型范例[M].北京:电子工业出版社.2007:5-16.
    [92]张洪才. ANSYS14.0理论解析与工程应用实例[M].北京:机械工业出版社.2013:433-451.
    [93]曹玉璋.传热学[M].北京:航空航天大学出版社.2001:6-51,189-192.
    [94]李术元,钱家麟,王剑秋,朱亚杰.块状油页岩热解过程的研究[J].石油学报,1990,6(4):86-93.
    [95]X. M. Jiang, X. X. Han,Z. G. Cui. Mechanism and Mathematical Model ofHuandian oil shale pyrolysis [J]. Journal of Thermal Analysis andCalorimetry.2006.86:457-462.
    [96]薛晋霞.油页岩物理力学特性实验及其原位开采非稳态热传导数学模型研究[D].太原:太原理工大学.2007:21-44.
    [97]万志军,赵阳升,康建荣.高温岩体地热开发的技术经济评价[J].新能源及工艺,2004(4),30-34.
    [98]王健.油页岩原位开采温度场的数值模拟[M].长春:吉林大学.2011.
    [99] Yang Yang, Sun Youhong, Li Qiang. Experiment and Simulation of Oil ShalePyrolysis[J].INTERNATIONAL JOURNAL OF EARTH SCIENCES ANDENGINEERING.2013.6.1311-1317.
    [100](国家标准GB150.1-150.4-2010《固定式压力容器》
    [101]《压力容器安全技术监察规程》JB4732-1995《钢制压力容器——分析设计标准》)
    [102]王为国,寿比南,杨国义. JB4732-1995《钢制压力容器——分析设计标准》中内压回转壳体厚度计算公式的简单修正[J].化工设备与管道,2006,43(1):1-3,7.
    [103]郭志峰,郭丽敏,肖文刚,王浩.受内压符合材料压力容器应力状态数值模拟[C].玻璃钢学会第十五届全国玻璃钢/复合材料学术年会论文集,2003.
    [104]张自斌.压力容器强度分析与安全评定[D].兰州:兰州理工大学.2012:9-28.
    [105]杨莉,秦泗吉.压力容器优化设计的有限元法[J].设计与研究,2001,30(2):29-30.
    [106]侯庆华.圆平盖的应力分析及补强计算[J].油气田地面工程,2009,28(8):43-44.
    [107]杨照国,帐页.承压容器接管允许载荷计算[C].中国动力工程学会透平专业委员会学术研讨论文集,2011.
    [108]杨阳,孙友宏,李强.高压-工频电加热原位裂解油页岩的试验研究[J].探矿工程(岩土钻掘工程)2013,40(330):244-246.
    [109] Yang Yang, Liu Shichang, Sun Youhong. Research on experiment of in-situpyrolysis of oil shale and production analysis[J].Journal of Chemical andPharmaceutical Research.2013.5.763-767.
    [110]郭树才,耿立文.集中油页岩热重法热解动力学的研究[J].燃料化学学报.1986.14(3):211-217.
    [111]秦匡宗,张秀义,劳永新.干酪根的X射线衍射研究[J].沉积学报.1987.5(1):26-36.
    [112]王冬梅.桦甸油页岩残渣制备白炭黑及改性研究[M].大连:大连理工大学.2009:4-25.
    [113]孙斌.油页岩矿物质分解特性研究[M].吉林:东北电力大学.2013:17-32.
    [114] Ravindra Kumar, Veena Bansal, R.M. Badhe. Characterization of Indianorigin oil shale using advanced analytical techniques [J]. Fuel.2013.113:610-616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700