用户名: 密码: 验证码:
晶圆升降机构关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路(IC)是电子信息产业发展的核心,IC制造装备是IC产业的最主要支撑。IC制造过程各种工艺前都需要进行晶圆的传输、定位和姿态调整。晶圆升降机构就是晶圆自动传输系统重要组成部分之一。其速度、重复定位精度将直接或间接影响IC的生产效率和制造质量。研究高精度、高速度、高稳定性的新型晶圆升降机构可以提高生产效率和制造质量,为IC制造提供有力保障。
     本文在分析晶圆升降机构的国内外发展概况和研究现状的基础上,结合国内外现有技术,主要对晶圆升降机构进行了结构全新设计;关键部件结构参数进行了性能分析优化;完成了控制系统的设计调试;机构关键的性能参数进行了实验研究。具体内容包括:
     1.从晶圆升降机构机理角度,分析了其功能与流程,提出了新型机构总体方案,完成了驱动系统、检测系统、真空吸附装置、空气静压装置具体结构设计,为了减小交接晶圆过程冲击力影响,机械结构上增加了簧片缓冲和防转装置。
     2.在机构设计基础上讨论其结构对性能的影响。从分析晶圆参数出发,对真空吸管位置和缓冲簧片尺寸进行了参数优化;运动部件和晶圆建立整体模型仿真分析;对空气静压装置进行了静力特性和振动模态分析,从仿真分析方面验证了结构设计满足性能要求。
     3.设计晶圆升降机构控制系统,确定了伺服系统和真空吸附系统的总体方案。完成了伺服系统构建以及真空吸附控制系统设计,通过调节伺服系统PID参数,改善系统性能,实现晶圆精确定位。
     4.依据激光测量位移原理建立了晶圆升降机构激光测量实验平台,进行了机构性能特性实验包括运动范围、最大速度、最大加速度实验,完成了关键位置的重复定位精度实验和分辨能力实验。
     实验表明,文中新型的300mm晶圆升降机构,可以实现行程18mm,最大速度81.38mm/s,最大加速度为7.91m/s2,重复定位精度为4.9um和分辨能力为1um,满足晶圆升降机构实际性能需求。
Integrated circuit (IC) is the core of the development of electronic information industry. IC manufacturing equipment is the most important support of the IC industry. Before IC manufacturing processes, wafers need to be transferred, positioned and aligned. Their speed, repeative positioning accuracy could affect the efficiency and manufacturing quality of the IC production directly or indirectly. Thus, new wafer lifting mechanism researches about high precision, high speed, high stability would promote manufacturing quality and efficiency improvement, and further positively influence IC manufacturing process as a whole.
     Based on studies about the domestic and international background of wafer lifting mechanism and technology development, this paper initially provides a new design of the wafer lifting mechanism, especially in structure, then discusses the analysis and optimization of key components and parameters of the structure, and further verfies the design and debugging of control system, and finally showes experimentally researches about key performance parameters of the whole system. Main contents as following:
     1. From the mechanism perspective, the functions and process flow are analysed, and then the overall structurally mechnism is designed, specificly including the drive system, detection system, vacuum clampling device, aerostatic bearings device. Furthermore, in order to weaken the impact during wafer transfer,a buffer device and an anti-rotation devicef are designed.
     2. According to the structure design, the performance of this system is descussed. On the basis of the analysis of wafer parameters, the size of the vacuum straw and the buffer parameter are optimized, then the simulation model of moving parts including the wafer to overall are established. Moreover, through the simulation analysis of statics and vibration modal of aerostatic bearings device, the structure designs are verified to performance specification.
     3. The control system of wafer lifting mechanism is designed, include the servo system and vacuum system. Through the construction and adjustment of the PID parameters and the optimization of system performance, precise positioning of the wafer is achieved.
     4. According to the principle of laser displacement measurement, experimental platform for laser measurement is established. And mechnasim performance is then examed on this platform, including movement stroke, maximum speed, and maximum acceleration. Finally, the experiments about repositioning accuracy and distinguishability are implemented successfully.
     Experiments indicates that the new lifting mechanism for 300mm wafer stated in this paper has achieved the required performance specifications, including minimum stroke(18mm), maximum speed (81.38mm/s), maximum acceleration (7.91m/s2), repositioning accuracy (4.9um) and resolution capability (1um).
引文
1汪劲松,朱煜.我国“十五”期间IC制造装备的发展战略研究.机器人技术与应用.2002(2):5~9
    2冯晓伟,赵艳秋.未来五年是中国IC产业大发展时期.中国电子报.2010,10(5):20~23
    3 Quirk M,Serda J[著],韩郑生等[译].半导体制造技术.北京:电子工业出版社.2004:25~42
    4张厥宗.硅单品抛光片的加工技术.北京:化学工业出版社.2005:56~75
    5周旗刚. 300mm硅片技术发展现状与趋势.电子工业专用设备.2005,34(10):16
    6 Anna Kochan . Clean Room Robot Become Cleaner and More Reliable. Industrial Robot.Meas. Sci. Technol.1998,25(1):27~29
    7杨晓蝉.全球各大硅片公司积极投资300mm硅片.现代材料动态.2005,7:18
    8朱贻玮.展望未来5年中国IC产业.电子工业专用设备.2006,35(3): 8~9
    9刘广荣.三巨头瞄准450 mmIC制造升级并非坦途.半导体信息.2008, 9( 2): 23~25
    10 Fusaro D.Teach your robots well.Control Design Magazine.2003,10:26~29.
    11丛明,于旭,徐晓飞.硅片传输机器人的发展及研究现状.机器人技术与应用.2007.4:18~23
    12甘文彩.硅片传输机器人关键技术研究.天津大学硕士学位论文.2009:12~32
    13 Craig J. J.Introduction to Robotics.Addison-Wesley.1989:12~24
    14 Raghavan M, Roth B.A general solution for the inverse kinematics of all series chains.Proc of the 18th CISM-IFTOMM RoManSy'90 Cracow.1990:21~28
    15 Binh Bui,Roger N.Anderson.Quartz pin lift for single wafer chemical vapor deposition process chamber.United States Patent.2001,2:32~50
    16 James V Tietz,Benjamin Bierman,Lift pin and support pin apparatus for a processing chamber.1999,9:21~31
    17郑椰琴,齐芋枫.硅片机械手.实用新型专利.2010.1:1~10
    18叶云岳.直线电机原理与应用.北京:机械工业出版社.2000.6:2~5
    19杨大伟.直线电机应用概况及发展动态.电子机械工程综述与动态.1998,(5):3~20
    20陈德池.传感器及其应用.北京:中国铁道出版社.1993:12~15
    21昌学年,姚毅,闫玲.位移传感器的发展及研究.计量与测试技术.2009,(36):9~10
    22王化祥,张淑英.传感器原理及应用.天津:天津大学出版社.2007:20~22
    23牟瑞平.硅片传输机械手的改进及其定位精度分析.大连理工大学硕士学位论文.2007:26~36
    24张世忠.晶圆预对准系统的研究.哈尔滨工业大学硕士学位论文.2008:20~25
    25 J. W. Powell . Design of aerostatic bearings . Machinery Publishing in Brighton.1970:15~30
    26闻荣伟.一种基于复合节流的气浮直线运动基准设计方法.哈尔滨工业大学硕士学位论文.2008:30~35
    27 Courant,R..Variational Method for Solutions of Problems of Equilibrium and Vibrations.Bull.Am.Math.Soc.1943,(49):1~23
    28 Clough,R.W..The Finite Element Method in Plane Stress Analysis.Proc.2nd ASME Conference on Electronic Computation.1960,(9):41~44
    29李兵.注塑机械手的参数化设计及动力学分析.中国海洋大学硕士学位论文.2009:50~55
    30武江传.ANSYS在结构分析中的应用.连云港化工高等专科学校学报.2002,8(8) 29~31
    31任重.ANSYS实用分析教程.北京:北京大学出版社.2003,1:12~22
    32 Tadeusz Stolarski . Engineering analysis with ANSYS software . Elsevier Butterworth-Heinemann.2007,1:20~55
    33 Erdogan Madenci,Ibrahim Guven.The Finite Element Method and Applications in Engineering Using ANSYS.Springer.2005,10:32~35
    34张传思.硅片传输机器人手臂的拓扑优化设计.大连理工大学硕士学位论文.2007:32~35
    35赵伟,殷国富,陈航.基于SolidWorks和ANSYS的机器人手臂性能分析与优化设计.机器人技术.2009,12:48~50
    36 Murray Bullis.Semiconductor Equipment and Material International Standards 0200 SEMI.E76-0299.1998:30~35
    37 Michael Quirk,Julian S.Semiconductor Manufacturing Technology.Prentice Hall.2000,11:42~45
    38曹玉梅.大尺寸晶圆传输机器人末端执行器接触特性分析与设计.哈尔滨工业大学硕士学位论文.2010:22~25
    39 A.Fisher,G.Kissinger.Load Indueed Stresses and Plastic Deformation in 450mmSilicon Wafers.Ameriean Institute of physics.2007,91(11):111911.1-111911.3
    40胡海岩.面向21世纪的中国振动工程研究-中国科陇第30次“青年科学家论坛”报告文集.北京:航天工业出版社.1999:2~5
    41敖荣庆,袁坤.伺服系统.航空工业出版社.2006:22~25
    42王选择,杨练根,谢铁邦.音圈电机与电感组合传感器的系统辨识与数字控制.中国机械工程.2004,(2):33~36.
    43王选择,谢峰,曾孟雄.光针式位移传感器聚焦伺服控制系统的设计.自动化与仪器仪表.2002,(6) :44~48.
    44张士军.硅片传输机器人的研制.大连理工大学硕士学位论文.2005:12~22
    45 Kiam Heong Ang,Chong G.,Yun Li.PID control system analysis, design, and technology.Control Systems Technology.2005,7:559~576
    46 Bennet.S.Development of the PID controller Systems.IEEE.1993,12:58~62
    47 Tang, K.S.,Kim Fungman,Guan Rongchen,Kwong, S.An optimal fuzzy PID controller.Industrial Electronics IEEE Transactions.2001,8:757 ~765
    48 P.Cominos,N.Munro.PID controllers: recent tuning methods and design to specification.Robotics & Control Systems.2002,1:46~53
    49 G.P. Liu,S. Daley.Optimal-tuning PID control for industrial systems.Control Engineering Practice. 2001, 9(11):1185~1194
    50 Visioli, A . Optimal tuning of PID controllers for integral and unstable processes.Control Theory and Applications.2001,3:180~184
    51董景新,赵长德.控制工程基础.北京:清华大学出版社,1990:62~76
    52李庆祥,王东生,李玉和.现代精密仪器设计.北京:清华大学出版社,2006.6:22~38
    53任偲.第八讲评价机电一体化系统.制造技术与机床.2002,(12): 66~69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700