用户名: 密码: 验证码:
鲐鱼和蓝点鲅的摄食、生长和生态转换效率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1 鲐鱼(Scomber japonicus)摄食、生长和生态转换效率的研究
     1.1 应用胃含物法测定鲐鱼的摄食、生长和生态转换效率
     本研究于2001到2002年间用现场和室内胃含物法,对鲐鱼进行了摄食、生长和生态转换效率等生态能量学参数的测定。结果表明:
     1.1.1在实验条件恒定时,两种方法鲐鱼的最大摄食量和生长呈波浪式变化,其波距比较恒定,约为14d,但波高起伏较大。体重则呈波浪式上升趋势,且与摄食水平相对应,当最大摄食量上升时,体重增长量即特定生长率也增大,反之则降低。
     1.1.2现场和室内模拟条件下的鲐鱼胃排空曲线均可用指数模型加以描述,由该公式可分别求得现场和室内模拟条件下的胃排空率分别为R_t=0.1868 gW.W./100g·h和R_t=0.1233gW.W./100g·h,室内模拟条件下的胃是现场法的近2/3。
     1.1.3现场和室内模拟条件下测定的鲐鱼日摄食量分别为C_d=15.60±2.55gW.W./100g.d或69.84±11.42kJ/100g.d和C_d=6.88±4.09gW.W./100g·d或30.83±18.33kJ/100g·d,室内模拟条件下的日摄食量只有现场法的近1/2。
     1.1.4现场和室内模拟条件下测定的相对平均日生长量分别为G_d=3.72gW.W./100g·d或30.00kJ/100g.d和G_d=2.43gW.W./100g·d或19.59kJ/100g·d,室内模拟条件下的鲐鱼的生长速率小于现场测定结果。
     1.1.5现场和室内测定的鲐鱼生态转换效率分别为Eg=23.85%W.W或42.96%kJ和Eg=35.31%W.W.或63.54%kJ,室内胃含物法测定的鲐鱼生态转换效率要高于现场胃含物法;
     1.2不同生理、生态因素对摄食、生长和生态转换效率的的影响
     应用室内称重实验法测定和比较了鲐鱼的个体和群体在不同饵料和温度条件下的摄食、生长和生态转换效率。结果表明:
    
     鲍鱼和蓝点跋的摄食、生长和生态转换效率的研究
    1.2* 不同饵料的影响实验中,R摄食量和特定生长率按照摄食玉筋鱼、摄食枪乌贼、鹰
    爪糙对虾的的顺序依次减小。摄食这三种饵料,鲍鱼的生态转换效率基本一致,差异不显
    著。
    不同饵料条件下的生态转换效率:
     玉筋鱼:Eg=13.96士2*4%WW或ZI *3士4*8%K.J.
     鹰爪糙对虾:Eg=11.39士1.35%WW或23.94上2.83%K.J.
     日本枪乌贼:Eg—10.98士2*5%WW或23.28士4.34%K.J.
    l二二 各参数项均存在显著性差异。鲍鱼的生长和日摄食量均随温度上升而显著增大;但
    其生态转换效率变化规律则不同,10.saC时生态转换效率最大,至17厂℃时显著降低,但
    当温度继续升至25.9℃时,生态转换效率又有所升高:由于在25.9℃实验中使用的始鱼体
    重显著V。其它温度实验。
    不同温度条件下的生态转换效率:
     25.9士0.8”C:Eg==20.23士2刀3%WW或引.35士5.31%K.J.
     17.7士2.4OC:Eg=15.86士5刁7%WW或24.57士8*1%K.J.
     10.5士1*OC:Eg-33*7士7*1%WW或引.23士10.87%K.J.
    l二.3集群行为的影响实验中,个体的特定生长率、日摄食量和日生长量均比群体小很多,
    约为后者的 1/2,而生态转换效率却基本一致。
     群体实验:Eg=15.86士5.17%WW或24.57土8*1%K.J.
     个体实验:Eg=14.64士0.41%WW或17 *3士0.49%K.J.
    2蓝点御Scombe。mo。s niphoniHS)摄食、生长和生态转换效率的研究
     本研究于2002年用现场胃含物法测定了蓝点跋大小两个群体的的摄食、生长和生态
    转换效率,结果表明:
    二.1 在实验条件恒定时,蓝点跋的最大日摄食量也不是常数值,大、小个体的蓝点跋的最
    大R摄食量均随时问呈不规则波浪式变化,其波距比较恒定,约为12个1捌,但波高起伏
    较大:体重则呈波浪式卜升趋势,且与摄食水平相对应,当最大摄食量上升时,体重增长
    量即特定生长率也增大,反之则降低。
     2
    
     始鱼和蓝点锁的摄食、生长和生态转换效率的研究
    2.二蓝点跋胃排空曲线均可用指数模型加以描述,由该公式可分别求得大、小个体的胃排
    空率分别为 R;-0*8 gw.W丫 *和 R;-0二lgw w/100g卜,大个体蓝点蛾的胃排空率
    大于小个体。
    2.3小个体蓝点跋的平均日摄食量为*一9.0615.18gWW/1009·d或40.56i23.19kJ/100g·d,
    大个体蓝点跋为 C。-7.38t3.84gWW/100g*或 30*4ti7.19kJ/100g*,刁个体蓝点跋日摄食
    比大个体蓝点账稍大。
    2.4小个体蓝点跋的相对平均日生长量为 Gd一 3.23gWW /100g*或 16.53kJ/100g刁,大个
    体蓝点跋为 G。-1.7lgw.W /100g*或 8.24kJ/100g*,小个体蓝点跋的相对日生长量明显
    高于大个体蓝点贱。
    2.5对蓝点跋的生态转换效率而言,小个体蓝点跋为 Eg-36刀3%WW或 41.18%kJ,大个
    体蓝点跋为 Eg-22.12%WW或 23.81%kJ 小个体蓝点跋的生态转换效率要远远大于大
    个体蓝点跋。
    3结语
     从本研究结果来看,始鱼和蓝点跋的摄食和生长规律都很好地印证了崔奕波门 989)
    关于鱼类摄食与生?
1 The feeding , growth and ecological conversion efficiency research on Scombe japonicus:
    The ecological energetic parameters of a typical marine pelagic fish, Chub mackerel ( Scomber japonicus), were determined by two methods, in situ and in lab, such as food consumption, growth and ecological conversion efficiency, from 2001 to 2002. It is found that the data are greatly different between in situ and in lab
    1.1.1 Under constant experiment conditions, the fish's maximum daily food consumption and daily growth changed as irregular wave motion. The wave distance is constant and about 14d, but the wave height's change is bigger.
    1.1.2. Instantaneous gastric evacuation rate are:in situ Rt= 0.1868 gW. W./100g h; in lab Rt or 0.1233 gW. W./100g h. The latter is about 2/3 of the former.
    1.1.3 The daily food consumption
    in situ Cd=15.60±2.55gW.W./100g·d or 69.84±11.42kJ/ 100g·d in lab Cd=6.88±4.09gW.W./100g·d or 30.83±18.33kJ/100g·d The data in lab ismarkedly smaller than that of in situ.
    1.1.4 According to weight growth linear formula, The growth rate in lab is smaller than that of in lab. The daily growth are:
    in situ Gd = 3.72gW.W. /100g ·d or 30.00kJ/100g ·d; in lab Gd = 2.43gW.W. /100g·d or 19.59 kJ/100g·d.
    1.1.5 Both ecological conversion efficiency are high. In situ Eg = 23.85% W.W.W or 42.96% kJ
    In lab Eg = 35.31% W.W.Wor 63.54% kJ.
    1.2 Ecological conversion efficiency research in lab on small colony and individual.
    Experiment of different food :
    
    
    Feed Sand launce Eg = 12.50 ±2.04%W.W or 26.28± 4.28%K.J.
    Feed Prawn Eg= 12.20± 1.35%W.W or 25.66±2.83%K.J.
    Feed Cuttlefish Eg =10.98±6.05%W.W or 23.28± 12.82%K.J.
    Experiment of different temperture :
    25.9±0.8℃ Eg=20.23±2.03%W.Wor31.35±5.31%K.J.
    17.7±2.4℃ Eg=15.86±5.17%W.Wor24.57±8.01%K.J.
    10.5± 1.0℃ Eg = 33.07±7.01%W.W or 51.23± 10.87%KJ.
    Experiment of social behavior:
    Colony 17.7±2.4℃: Eg=15.86±5.17%W.W or 24.57±8.01%K.J.
    Individual 18.1±0.8℃: Eg= 14.64 ± 0.41 %W.W or 17.63±0.49%K.J.
    1.2.1 In food experiment, the specific growth rate is similar between the two experiments,feeding Sand launce and feeding cuttlefish, that of feeding prawn is smaller. The three kinds of ecological conversion efficiency are similar.
    1.2.2 In temperture experiment , the specific growth rate at 25.9℃ is higher than theother two. Its ecological conversion is a little higher than that at 17.7℃.The specific growth rate at 10.5 ℃ is about 1/2 of that at 17.7℃, But the ration is about 1/5 .
    1.2.3 Individual The specific growth rate , ration, growth of individual is much less than those of colony, is about 1/2 of the latter, but their ecological conversion efficiencies are similar.
    2 Bioenergitics research on Scomberomorus niphonius:
    We carried out research on two colonies of Spotted mackerel (Scomberomorus niphonius) (big fish and small fish) of its ecological energetic parameters by two methods, in situ and in lab, such as food consumption, growth and ecological conversion efficiency, in 2002. 2.1 Under constant experiment conditions, the fish's maximum daily food consumption and
    daily growth changed as irregular wave motion. The wave distance of both colonies are
    constant and about 14d, the wave height's change is bigger.
    
    
    2.2 Instantaneous gastric evacuation rate are: small ones Rt= 0.21 gW. W./100g h;big ones Rt = 0.28 gW. W./100g h, they are similar.
    2.3 The daily food consumption
    Small ones Cd=9.06±5.18gW.W./100g·d or 40.56±23.19kJ/100g·d
    Big ones Cd=7.38±3.84gW.W./100g·d or 30.04±17.19kJ/100g·d
    The daily food consumption of small ones is a little bigger than that of big ones. 2 .4 The daily growth are:
    Small ones Gd = 3.23gW.W. /100g ·d or 16.53kJ/100g ·d Big ones Gd = 1.71gW.W./100g·d or 8.24kJ/100g·d The daily growth of small ones is much bigger than that of bigger ones. 2.5 The ecological
引文
[1] 崔奕波.1989.鱼类生物能量学的理论与方法.水生生物学报,113(4):369-383
    [2] 崔奕波、J.R.吴登.真(鱼岁)(Phoxinus Phoxinus(L.))的能量收支各组分与摄食量、体重及温度的关系[J].水生生物学报,1990.14(3):193-204
    [3] 崔奕波、陈少莲、王少梅.温度对草鱼能量收支的影响[J].海洋与湖沼,1995.26(2):169-174
    [4] 邓景耀、盂田湘、任胜民等.1988.渤海鱼类种类组成及数量分布.海洋水产研究,9:10-89
    [5] 郭学武、唐启升等,1999。斑鰶的摄食与生态转换效率。海洋水产研究,20(2):17-23
    [6] 金显仕、唐启升.1998.渤海渔业资源结构、数量分布及其变化.中国水产科学,5(3):18-24
    [7] 李军、杨纪明、庞鸿艳.5种海鱼的生态生长效率研究[J].海洋科学,1995.3:52-54
    [8] 梁行茂.1998世代黄渤海鲅鱼资源的初步研究.齐鲁渔业,1999.16(2):33-34
    [9] 孙耀、张波、陈超等,黑鲷的生长和生态转换效率及其主要影响因素[J].海洋水产研究,1999.20(2):7~11
    [10] 孙耀、张波、陈超等.真鲷的生长和生态转换效率及其主要影响因素[J].上海水产大学学报,2000.9(3):204~208
    [11] 董双林等,1994.pH值和Ca~(2+)浓度对日本沼对虾生长和能量收支的影响.水产学报.(18):118—123.
    [12] 孙耀、张波、郭学武等.温度对真鲷能量收支的影响[J].海洋水产研究,1999.20(2):54~59
    [13] 孙耀、张波、郭学武等.温度对黑鲷(Sparus macrocephalus)能量收支的影响[J].2001.21(2):186~190
    [14] 唐启升、孟田湘.渤海生态环境和生物资源分布图集[M].1997.青岛出版社,青岛
    [15] 唐启升、苏纪兰等.中国海洋生态系统动力学研究,Ⅰ关键科学问题与研究发展战略[M].北京:科学山版社.2000,1-252
    [16] 谢小军、孙儒勇.南方鲇的排粪量及消化率同日粮水平、体重和温度的关系[J].海洋与湖沼,1993.24(6):627-631.
    [17] 岩田滕哉,陈少莲,刘肖芳,1986。鲢和鳙的氮平衡研究Ⅰ.在高温季节(夏季)氮平衡几个参数的测定。水生生物学报。10(4):297-310.
    [18] 杨纪明、郭如新.石鲽和皱唇鲨生态生长效率的研究[J].水产学报,1987.9(3):251-253
    
    
    [19] 杨纪明等,1998. 一个海洋食物链能流的初步研究.水产学报.9(3) :251-253.
    [20] 张波.2001,鱼类的胃排空率机及其影响因素.生态学报.21(4) :666-670
    [21] 真(?) Phoxinus phoxinus (L.)的能量收支各组分与摄食量、体重及温度的关系[J].水生生物学报, 1990. 14(3) :193-204
    [22] Allen, J.R.M. and Wootton, R.J.. 1982. The effect of ration and temperature on growth of the three-spined stickleback, Gasterostens aculeatus(L.) [J]. J. Fish. Biol., 20: 409-422
    [23] Allen, J. R. M. & Wootton, R.J, 1983. Rate of food cosumption in a population of threespine stick-lebacks, Gasterosteus aculeatus, estimated from the faecal production. Envion. Biol.Fish., 8: 157-162.
    [24] Allen, J. R. M. & Wootton, R. J. 1984. Temporal patterns in diet and rate of food consumption of the three-spined stickcleback (Gasterosteus aculeatus L.)in Llyn Frongoch,an upland Welsh lake. Freshwat.Biol., 14:335-346.
    [25] Bajkov, A.,D. 1935. How to estimate the daily food consumption of fish under natural conditions. Trans. Am. Fish. Soc., 65: 288-289.
    [26] Boisclair D, Sirois P. 1993. Testing assumptions of fish bioenergetics models by direct estimation of growth, consumption, and activity rates[J]. Trans. Amer. Fish. Soc. 122: 784-796.
    [27] Brafield, A. E., 1985. Laboratory studies of energy budgets. In Fish Energetics: New Perspeectives (P. Tytler & P. Calow, eds), pp. 257-281. London, Croom Helm.
    [28] Brett, J. R., 1979. Environmental, factors and growth. In Fish Physiology. Vol. Ⅷ (W. S. Hoar, D. J. Randall & J. R. Brett, eds), pp,, 599-675. London, Academic Press.
    [29] Brett, J. R. & Groves, T. D. D., 1979. Physiological energetics. In Fish Physiology. Vol. Ⅷ (W.S.Hoar, D. J. Randall & J. R. Brett, eds), pp. 279-352. London, Academic Press.
    [30] Brett, J. R. & Zala, L. A, 1975. Daily pattern of nitrogen excretion and oxygen consumption, of sockeye salmon (Oncorhynchus nerka), under controlled conditions. J. Fish. Res. Bd, Can, 32:2479-2486.
    [31] Brett, J. R. Shelbourn, J. E. & Shoop, C. T., 1969. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka in relation to temperature and ration size. J. Fish. Res. Bd Can. 26:2363-2394.
    [32] Brown, M. E., 1946. The growth of brown trout (Salmo, trutta Linn.). Ⅱ, The growth of two-year-old trout at a constant temperature of 11. 5℃. J. Exp. Biol, 22: 130-144.
    
    
    [33] Brett, J.R., Shelbourn, J.E. and Shoop, C.T.. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, m relation to temperature and ration size[J]. J. Fish. Res. Bd Caz., 1971. 26:2363-2394.
    [34] Boisclair D, Leggett W C.1993. An in situ experimental evaluation of the Elliot and Persson and the Eggers models for estimating fish daily ration. Can. J. Fish. Aquat. Sci.,45:138-145
    [35] Brett J R, Groves T D D. 1979. Physiological energetics. In Fish Physiology. Vol. Ⅷ [M]. New York: Academic Press, 279-352
    [36] Buckel ,J.A., Conover,D.O. Gastric evacuation rate of piscivorous Young-of-the-Year bluefish. Trans. Am. Fish. Soc.. 1996, 125(4) :591-599.
    [37] Cui, Y, 1987. Bioenergetics and growth of a teleost Phoxinus Phoxinus (Cyprinidae). Ph. D. thesis, University of Wales, Aberystwyth.
    [38] Cui, Y, & Wootton, R. J, 1988a. Pattern of energy allocation in the minnow, Phoxinus Phoxinus (L.)(Pisces: Cyprinidae). Funct. Ecol., 2:57-62.
    [39] Cui, Y. & Wootton, R. J., 1988b. The metabolic rate of the minnow, Phoxinus phoxinus (L.) (Pisces: Cypriaidae), in relation to ration, body size and temperature. Funct. Ecol. 2: 157-162.
    [40] Cui, Y. & Wootton, R. J., 1988c. Effects of ration, temperature and body size on the body composition, energy content and condition of the minnow,. J. Fish Biol, 32: 749-764.
    [41] Cui, Y. & Wootton, R. J., 1988d. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus (L.) : the effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion, J.Fish Biol,33: 431-443.
    [42] Cui, Y. & Wootton, R. J.1988e. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus (L.): the effect of ration and temperature on, growth rate and efficiency. J. Fish Biol. 33: 765-773.
    [43] Cui, Y. & Wootton, R. J. 1989. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus (L.): development and testing of a growth model. J. Fish Biol, 34: 47-64.
    [44] Cui, Y, S. Liu, S. Wang et al.. 1992. Growth and energy budget of young grass carp, Cteno-pharyngodon idella Val., fed plant and animal diets[J]. J. Fish. Biol., 41: 231-238
    [45] ui, Y. and Liu J., 1990. Comparison of energy budget among six teleosts, Ⅲ. growth rate and energy budget[J]. Comp. Biochem. Physiol., 97A: 381-384
    [46] De Silva, S. S. & Balbontin, F. 1974. Laboratory studies on food, intake, growth and food conversion of
    
    young herring, Clupea harengus (L.). J. Fish Biol, 6:645-458.
    [47] Dos Santos ,J., Jobling,M. Gastric emptying in cod Gadus morhua L.: effects of food particle size and dietary energy coOntent. J. Fish Biol. . 1988,33(4) :511-516.
    [48] Dos Santos,J., Jobling,M. 1991, Factors affecting gastric evacuation in cod Gadus morhua L., fed single-meals of natural prey. J. Fish Biol.. 38(5) :697-714.
    [49] DurbinE. G., A. G. Durbin, R.W. Langton et al.. 1983. Stomach contents of silver hake, Merluccius bilinearis, and Atlantic cod, Gadus morhua, and estimation of their daily ration. Fish. Bull., 81:437-454
    [50] Eggers D. M.. 1977. Factors in interpretion data obtained by diel sampling of fish stomachs. J. Fish. Res. Board Can. 34: 290-294.
    [51] Elliott J. M.. 1972. Rate of gastric evacuation in brown trout, Salmo trutta L.. Fresh. Biol., 2: 1-18
    [52] Elliott J. M., & L. Persson. 1978. the estimation of daily rates of food consumption for fish. J. of Ani. Eco. 47:977-991.
    [53] Elliott, J. M, 1976a. Body composition of brown trout (Salmo trutta L.) in relation to temperature and ration size. J. Anim. Ecol, 45: 273-289.
    [54] Elliott,J.M., 1976b. Energy losses in the waste products of brown trout (Salmo trutta L.). J. Anita.Ecol, 45: 561-580.
    [55] Elliott, J. M., 1976c. The energetics of feeding, metabolism and growth of brown trout (Salmo trutta L.)in relation to body weight, water temperature and ration size. J. Anim. Ecol, 45: 923-948.
    [56] Elliott.J.M., 1979. Energetics of freshwater teleosts. In Fish Phenology: Anabolic adaptiveness in Teleosts. Symp. Zool. Soc; Lond. 44(P. J.Miller, ed.), pp. 29-61. Academic Press, London.
    [57] Elliott, J. M. & Davison, W., 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia, 19:195-201.
    [58] Elliott, J.M. & Persson, L.,1978. The estimation of daily rates of food consumption for fish. ,J. Anim. Ecol.47:977-991.
    [59] Elliott J M, Persson L. 1978. The estimation of daily rates of food consumption for fish[J]. J. Anim. Ecol. 47: 977-993
    [60] Fange, R. & Grove, D., 1979. Digestion In Fish Physiology Vol.-Ⅷ (W. S.,Hoar, D. J. Randall & J. R. Brett, eds), pp. 162-260. Academic Press, New York.
    
    
    [61] From, J. & Rasmussen, G., 1984. A growth model, gastric evalcuation, and body composition in rainbowtrout, Salmo gairdneri Richardson, 1836. Dana, 3: 61-39.
    [62] Flowerdew,M., Grove,D.J. Some observations of the effects of body weight, temperature, meal size and quality on gastric emptying time in turbout, Scophthalmus maximus(L.) using radiography. J. Fish Biol.. 1979,14(2) :229-238.
    [63] Garrow , J. S. & Hawes, S. F., 1972. The role of amino acid oxidation in causing specific dynamic action in man. Br. J. Nutr., 27:211-219.
    [64] Gordon, M. S., Ng, W.W.-S. & Yip, A. Y.-W., 1978. Aspects of the physiology of terrestrial life in amphibious fishes. IIL The Chinese mudskipper Periophthalmus cantonensis. J. Exp. Biol., 72: 57-75.
    [65] Goyke A P & Brandt S B. 1993, Special method of salmonine growth rates in lake Ontario. Trans. Am. Fish. Soc.122(5) 870-883.
    [66] Hansen M J et al.1993. Applications of bioenergitics models to fish ecology and management: where do we go from here. Am. Fish. Soc. 122(5) : 1019-1030.
    [67] Hayward,R. S., Bushmann,M.E. Gastric evacuation rates for juvenile largemouth bass. Trans. Am. Fish. Soc.. 1994,123(1) :88-93.
    [68] Henken, A. hi., Klcingeld, D. W, & Tijssen, P. A. T., 1985. The effect of feeding level on apparent digestibility of dietary dry matter, crude protein and gross energy in the African catfish Clarias gariepinus (Burchell, 1822) . Aquaculture, 51:1-17.
    [69] Hershery,A.E., MacDonald,M.E. Diet and digestion rates of slimy sculpin, Cottus cogntus, in an Alaskan Arctic lake. Can. J. Fish. Aquat. Sci.. 1985,42(3) :483-487.
    [70] Hopkins T.E. & R.J. Larson. 1990. Gastric evcuation of three food types in the black and yellow rockfish, Sebastes chrysomelas (Jordan and gilbert). J. Fish. Biol., 36: 673-682
    [71] Jobling,M. 1980,Gastric evacuation in plaice, Pleuronectes platessa L.: effects of dietary energy level and food consumption. J. Fish Biol.. 17(1) :187-196.
    [72] Jobling, M., 1981a. The influence of feeding on the metabolic rate of fish: a short review. J.Fish. Biol.,18: 385-400.
    [73] Jobling, M. 1987,Influences of food particle size and dietary energy content on patterns of gastric evacuation in fish: test of a physiological modei of gastric emptying. J.Fish Biol., 30(3) :299-314.
    [74] Jobling, M., 1981b. Mathematical models of gastric emptying and the estimation of daily rates of food
    
    consumption for fish. J. Fish Biol, 19:245-257.
    [75] Jobling, M., 1983. Growth studies with fish-overcoming the problem of size variation. J. Fish. Biol,22: 153-157.
    [76] Jobling, M. & Wansvik, A. 1983. Effect of social interaction on growth rates :and conversion efficiency of Arctic charr, Salvellnus alpinus L.,J. Fish Biol; 22: 577-584.
    [77] Jobling.M. Mythical models of gastric emptying and implication for food consumption studies. Environ. Biol. Fish.. 1986,16:35-50.
    [78] Kitchell, J. F. & Crowder, L. B., 1987. Predator-prey interactions in Lake Michigan: model predictions and recent dynamics. Environ,Biol,Fish, 16: 205-211.
    [79] LaBar G W. 1993. Use of bioenergitics models to predict the effect of increase lake trout predation on Rainbow Smelt following sea lamprey control. Trans. Am. Fish. Soc.,122(5) :942-950.
    [80] Lamber,T.C. Gastric emptying time and assimilation efficiency in Atlantic mackerel (Scomber scombrus). Can. J. Zool., 1985,63:817-820.
    [81] Lucas M C et al. 1993. Use of Physiological telemetry as a method of eatimating metabolism of fish in the natural enviroment. Trans. Am. Fish. Soc.. 122(5) :822-833.
    [82] MacDonald,J.S., Waiwood,K.G., Green,R.H. Rates of digestion of different prey in Atlantic cod(Gadus morhua), ocean pout (Macrozoarces americanus), winter flounder (Pseudopleuronectes americanus) and American plaice (Hippoglossoides platessoides). Can. J. Fish. Aquat. Sci.. 1982,39(5) :651-659.
    [83] Mackereth, F. S. H.,Heron. J & Talling,J. F., 1978. Water analysis: some revised methods for limnologists. Sci. Publ. Freshwat. Biol. Ass., 36:1-120.
    [84] Macpherson,E., Lleonart,J., Sanchez,P. Gastric emptying in Scyliorhinus canicula(L.): a comparison of surface-dependent and non-surface dependent models. J. Fish Biol.. 1989,35(1) :37-48.
    [85] Madon S.P. 1993,Bioenergtics modei for larval and juvenile walleyes:an in situ approach with experiment ponds .Trans .Amer. Fish. Soc. 122:797-813
    [86] Metcalfe, N. B., 1986. Intraspecific variation in competitive ability and food intake in salmonids: consequences for energy budgets and growth rates. J. Fish Biol., 28: 525-531.
    [87] Mills,E.L., Ready,R.C., Jahncke,M., et al. A gastric evacuation model for young perch, Perca flavescens. Can. J. Fish. Aquat. Sci.. 1984,41(3) :513-518.
    [88] Ney J J. 1993. Bioenergetics modeling today: growing pains on the cutting edge[J]. Trans. Amer. Fish.
    
    Soc. 122:736-748
    [89] Niimi, A. J. & Beamish; F. W. H., 1974. Bioenergetics and growth of largemouth bass (Micropterus salmoides) in relation to body weight and temperature. Can. J. Zool. 52: 447-456.
    [90] Norske, T. A. & Spieler, R. E, 1984. Circadian feeding time affects growth of fish, Trans. Am. Fish. Soc, 113:540-544.
    [91] Olson, R. J. & Boggs, C. H, 1986. Apex predation by yellow tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bloenergetics, and cesium concentration. Can. J. Fish. Aquat. Sci, 43: 1760-1775.
    [92] Pandlan, T. J. & Vivekanandan, E., 1985. Energetics of feeding and digestion. In Fish Energetics : New Perspectives (P.Tytler & P. Calow, eds), pp. 99-124. Croom Helm, London.
    [93] Persson,L. 1981,The effects of temperature and meal size on rate of gastric evacuation in perch, Perca fluviatilis, fed on fish larvae. Freshwat. Biol. 11:131-138.
    [94] Persson,L. Rate of food evacuation in roach (Rutilus rutilus) in relation to temperature, and the application of evacuation rate estimates for studies on the rate food consumption. Fresh. Biol., 1982,12:203-210.
    [95] Rosch,R. Effect of experimental conditions on the stomach evacuation of Coregonus lavaretus L. J. Fish Biol.. 1987,30(5) :521-532.
    [96] Smith R L, Paul A J, Paul J M. Aspects of energetics of adult walleye Pollock, Therragra chalcogramma (Pallas), from Alaska[J]. J. Fish Biol., 1988. 33(3) : 445-454
    [97] Smagula, C. M. & Adelman, I. R., 1982. Day-to-day variation in food consumption by largemouth bass. Trans.Am. Fish. Soc, Ⅲ: 543-548.
    [98] Smith, H. W., 1929. The excretion of ammonia and urea by the gills of fish.J. Biol. Chem. 81: 727-742.
    [99] Smith, R. R., Rumsey, G. L. & Scott, M. L., 1978. Net energy, maintenance requirements of salmonids as measured by direct calorimetry: effect of body size and environmental temperature. J. Nutr,108:1017-1024.
    [100] Swenson,W.A., Smith,L.L. Gastric digestion, food consumption and food conversion efficiency in walleye, Stizostedion vitreum vitreum. J. Fish. Res. Bd Can.. 1973,30(8) : 1327-1336.
    [101] Tytler, P. and Calow Editer. 1985. Fish energetics: new perspectives[M]. Baltimore: John Hopkins University Press edge.Trans.Amer.Fish.Soc. 122:736-748
    
    
    [102] Warren, C. E. & Davis, G..E, 1967. Laboratory studies on the feeding, bioenergetics and growth of fish In The Biological Basis of Freshwater Fish Production(S,. D. Gerking, ed.), pp. 175-214. Blackwell Scientific Publication: Oxford.
    [103] Windell,J.T.,Kitchell,J.F., Norris,D.O. 1966,Temperature and rate of gastric evacuation by rainbow trout, Salmo gairdneri. Trans. Am. Fish. Soc.. 105(6) :712-717.
    [104] Windell, J. T., Foltz, J. W. & Sarokon, J. A. 1978. Methods of fecal collection and nutrient leaching in digestibility studies, Progr. Fish-Culz,40: 51-55.
    [105] Wilson, P. H. & Osbourn, D. F, 1960; Compensatory growth after undernutrition in mammals and birds Biol Rev. Cambr. Phil. Soc, 35:324-363.
    [106] Winberg, G. G., 1956. Rate of metabolism and food requirements of fishes. Fish. Res. Bd Can. Transl. Series, No. 194, 1960.
    [107] Wootton, R. J., 1984. A Functional Biology of Sticklebacks. Croom Helm, London.
    [108] Wootton, E. J., Allen, g. R. M. &: Cole, S. J., 1980a. Energetics of the annual reproductive cycle in female Sticklebacks, Gasterosteus aculeatus L. J., Fish Biol.,17: 387-394.
    [109] Wootton, R. J., Alien, J. R. M. & Cole, S. J., 1980b. Effect of body weight and temperature on the maximum daily food consumption of Gasterosteus aculeatus L. and Phoxinus Phoxinus (L.): selecting an appropriate model.J. Fish Biol., 17: 695-705.
    [110] Xie, X.. 1993. Pattern of energy allocation in the southern catfish, Silurrus meridionalis[J]. J. Fish. Biol., 42(2) : 197-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700