用户名: 密码: 验证码:
光纤Bragg光栅测量理论及其在动力工程中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对动力需求的提高,大型动力设备的应用越来越多,保障其运行的安全性和经济性首当其冲,因此动力设备的在线和间歇健康状态监测成为一个重要而必不可少的组成部分。同时,其监测所得数据为设备设计和优化运行提供可参考的依据。对于动力设备健康安全运行,需要先进的测量和监测手段,以保证及时维护和整治,避免重大事故发生。
     针对动力设备安全监测、经济运行,本文采用光纤Bragg光栅(Fiber Bragggrating,FBG)智能传感元件,研究其传感理论和特性,实验研究FBG温度和应变传感特性,并制作出FBG振动模态传感器、FBG相对湿度传感器、FBG折射率传感器、FBG液体浓度传感器、FBG气体浓度传感器以及解调和测试系统。为动力设备振动特性、腐蚀特性、噪音特性、温度和应力、泄漏、烟气成分、浓度和湿度等参数的监测提供有效手段。
     首先,本文研究了FBG的传感理论和特性,采用传输矩阵法对FBG反射光谱进行理论计算,充分认识和了解其温度和应变传感机理。计算结果表明折射率和光栅长度对FBG反射光谱影响很大。实验测试了FBG的温度和应变传感特性,其温度和应变灵敏度分别为10.2 pm╱℃和0.9742 pm/με。研究了多种FBG波长解调方法,包括光谱仪直接测量、基于波分复用器的边缘滤波法和可调谐窄带激光法等。
     其次,本文采用FBG对悬臂梁模态频率进行测量,对悬臂梁振动特性进行分析。同时采用模态分析系统(CRAS)对悬臂梁的振动特性进行测量,有限元软件(ANSYS)对悬臂梁的振动特性进行理论计算。三种方法的结果相同,证实基于FBG的测量方法可靠。然后利用FBG来测量汽轮机叶片在有无约束时的模态频率,结果表明FBG的测量方法可靠,从而引导FBG测量技术在动力工程中振动特性测量的应用开展。
     然后,本文采用FBG结合聚酰亚胺湿敏材料进行相对湿度测量。湿敏材料涂覆在FBG表面,湿敏材料把相对湿度的变化转化为应变的变化,作用于FBG,导致FBG特征波长发生变化,实现相对湿度传感。对湿敏材料、FBG湿度传感头、测试系统以及传感头的响应特性进行研究。实验结果表明当湿敏材料厚度为8μm时,湿度和温度灵敏度分别为-0.266 mV/%RH和-24.91 mV/℃,响应时间仅为5s,为开展烟气湿度、氢气湿度、煤炭湿度等的测量打下基础。
     再次,本文利用FBG和倏逝场吸收原理测量折射率。通过腐蚀变薄FBG所在的光纤包层,使得光纤纤芯传输光的倏逝场暴露于环境中,外界环境折射率变化引起FBG有效折射率变化,导致光栅的反射波长发生漂移,从而通过检测波长漂移实现折射率传感。当包层厚度为17μm时,折射率灵敏度为3.40 V/RIU。利用制作的变薄FBG折射率传感器应用于测量几种具有代表意义的化学物质(酸、醇、糖类)浓度,其浓度测量范围为0至饱和浓度,而且应用于纳米流体浓度测量。采用U型结构FBG来实现对折射率的增敏,相比直的变薄FBG,其灵敏度提高了25%。
     另外,针对微结构和微流体测量技术,本文研究了微结构FBG,实现对折射率和浓度测量。对微结构FBG的反射光谱进行数值模拟,结果表明微结构长度、深度、位置对反射光谱影响很大,其结果为微结构设计提供参考依据。采用包覆法和三层溶液法制作微结构,研究制作方法与工艺,开展折射率传感等实验研究。当微结构在光栅中间位置,长度为800μm,包层直径为14μm时,折射率测量范围为1.33~1.457,随着折射率增大,透射峰峰值所在的波长随之增大,折射率灵敏度为0.79 nm/RIU。对于目前波长解调分辨率为1 pm,传感器的折射率最小分辨率可达1.2×10~(-3)。采用包覆法制作双微结构FBG,可实现温度和折射率(浓度)同时测量。
     最后,本文利用FBG的可调谐滤波特性来进行气体浓度测量。结合气体吸收理论,搭建了基于FBG的气体浓度测试系统,分别对CO和C_2H_2气体浓度测量进行了实验研究,获得气体吸收特性,光谱吸收峰特征。实验结果表明CO和C_2H_2气体—最大吸收峰值波长分别为1546.6nm和1531.52nm。结合FBG可调谐范围宽和易复用的优势,可以实现同时对多种气体识别以及气体浓度进行测量。
     根据上述的研究,本文寄予把FBG测量技术引入到动力工程研究领域,为动力设备安全监测和经济运行提供一种新的测试手段。
With the increasing demand of the power, power equipments are applied more and more widely, and thus the first is to guarantee the security and economical efficiency during the operating process. To realize the purpose, health status monitoring of power equipments on-line or intermittent is a very important component. Obviously, the acquiring data by monitoring can be useful to the optimum design and operation as a reference. As for the security of service of power equipments, advanced measuring method and measurement device are imperative to guarantee the maintenance and overhaul of power equipments timely, and thus avoid the hazardous accidents.
     Aim to the security monitoring and optimum operation, fiber Bragg grating (FBG) smart sensing component is utilized. In this paper, sensing mechanism and characteristics of the FBG were studied in detail. Temperature and strain sensing response have been measured. Many types of sensors and interrogation and test system based on the FBG were fabricated, including vibration modal, relative humidity, refractive index, liquid and gas concentration sensors and systems etc., which were realized to monitor vibration, etching, noise characteristics, temperature and stress, leakage, fuel gas components, concentration and moisture parameters etc. of power equipments.
     First, sensing theory and characteristics of the FBG were studied in detail. The reflectance spectrum of the FBG can be computed on the basis of the transmission matrix method, and the temperature and strain sensing mechanism were recognized fully. The theoretical results demonstrated that the reflectance spectrum is affected by modulation depth of the refractive index and grating length. The temperature and strain sensitivity of the FBG is 10.2 pm/℃and 0.9742 pm/με, respectively. Many interrogation methods for Bragg wavelength were investigated, such as optical spectrum analyzer, edge filtering method based on wavelength division multiplexing (WDM) and tunable narrow band laser scanning method and so forth.
     Second, modal frequencies of the cantilever by using FBG sensing unit were measured, and vibration characteristics of the cantilever was analyzed. Another measuring method based on modal analysis system CRAS was used to measure the modal frequencies of the cantilever, and finite element software ANSYS also was used to compute the theoretical modal of the cantilever. The results based on three types of methods demonstrated FBG measuring method for the modal frequencies measurement are feasible. Therefore, modal frequencies of the turbine blade with and without constraint condition were measured by using FBG. The experimental results illustrated that measuring method based on the FBG is reliable. Thus, this investigation is beneficial to carry out application of measuring the vibration modal characteristics in the power engineering field.
     Third, FBG relative humidity sensor was studied by the combination of the FBG with polyimide moisture sensitive material. Moisture sensitive material is coated uniformly on the fiber cladding of the FBG, which can transform the change of relative humidity into response of the strain. The volume expansion and shrinkage of the polyimide moisture sensitive material after water absorption and desorption have direct effects on the FBG and result in the shift of the Bragg wavelength. Moisture sensitive material, FBG relative humidity sensing head, test system and responding characteristics of the sensing head were studied. Experimental results showed that the applicable low-cost relative humidity sensor has a linear, reproducible and reversible response over a wide RH range from 11% to 98%. The thickness a of the thermoplastic polyimide coating considered as a moisture sensitive polymer material are 8μm, the relative humidity and temperature sensitivity of the sensor is -0.266 mV/%RH and -24.91 mV/℃, and the response time is approximately 5 s, which build solid foundation for measuring the fuel gas moisture, hydrogen moisture, coal moisture, etc..
     Fourth, according to evanescent field absorption theory, FBG can be used to measure the refractive index. By etching the fiber cladding of the FBG, the evanescent field of the transmission light in the fiber core is exposed into the surrounding medium. The change of surrounding refractive index result in the change of effective refractive index of the FBG, and thus the Bragg wavelength shifts. By detecting the shift of the Bragg wavelength, surrounding refractive index can be obtained. As the thickness of the residual fiber cladding is 17μm, refractive index sensitivity is 3.40 V/RIU. Thinned-FBG evanescent field refractive index sensor was used to measure the concentration of the four representative chemical solutions (acid, sugar, alcohol) with the wide range from the zero to saturated concentration. Furthermore, the sensor also was applied to measure the concentration of nanofuild. In order to improve the refractive index sensitivity, U-shaped FBG was employed. The result showed that, compared with the straight uniform thinned FBG, refractive index sensitivity approximately increases by 25%.
     Sixth, aim to measuring technique for the microstructure and microfuild, this paper studied the thinned and microstructure FBG (ThMs-FBG), which can be used to measure the temperature and refractive index. The numerical simulation for the reflectance spectrum of the ThMs-FBG was calculated, the phase shift down-peak could be observed from the reflectance spectrum. Many factors influencing the reflectance spectrum were considered in detail for simulation, including the etched depth, length and position. The simulation results would be considered as a reference. Coating and sandwich-solution etching methods were utilized to realize the microstructure of the ThMs-FBG, and the fabricating method and technology and refractive index sensing characteristics were studied by the experiments. Under the condition that the length and cladding diameter of the ThMs-FBG microstructure were 800μm and 14μm, respectively, and the position of the microstructure of the ThMs-FBG in the middle of grating region, down-peak wavelength of the ThMs-FBG increased with the increment of the surrounding refractive index, the refractive index sensitivity of the ThMs-FBG was 0.79 nm/RIU with the wide range of 1.33-1.457, and a high resolution of 1.2×10~(-3)was obtained if the detecting resolution of the Bragg wavelength is 1pm. Two microstructure FBG fabricated by the coating method can be realized to measure the temperature and refractive index simultaneously.
     Last, FBG can be used to measure the gas concentration due to its tunable filtering characteristics. According to the gas absorption attenuation theory, test system for gas concentration measurement was set up. CO and C_2H_2 gas concentrations were investigated experimentally, and absorption characteristics and absorption spectrum peak were obtained. The experimental results demonstrated that peak wavelength of CO and C_2H_2 gas absorption spectrum is 1546.6 nm and 1531.52 nm, respectively. Because the FBG possesses advantage of wide tunable wavelength and easy multiplexing, many kinds of gases can be testified and gas concentration was measurement.
     According to the above investigation, this paper hopes that FBG measuring technique as a prospective sensing one can be induced to monitor the security of power equipments and obtain the optimum operation in power engineering field.
引文
[1]刘向阳,我国新能源发展现状及巨大投资机遇.电力设备,2006;7(2):101-103.
    [2]S.Tetsuo,Y.Shouichi,S.Masahiro,New energy solutions.Fuji Electric Joumal,2002;75(11):615-620.
    [3]王晓枫,屈红英,浅议动力车间设备管理.装备制造技术,2007;3:53-54.
    [4]岑可法,周昊,池作和等,大型电站锅炉安全及优化运行技术,北京:中国电力出版社,2003.
    [5]秦岭,杨卫娟,周志军等,四角切圆锅炉变工况低NOx优化运行研究.电站系统工程,2006;22(4):7-8.
    [6]刘福国,电站锅炉入炉煤元素分析和发热量的软测量实时监测技术.中国电机工程学报,2005;25(6):139-145.
    [7]吴东垠,盛宏至,魏小林等,燃煤锅炉制粉系统的优化运行试验.中国电机工程学报,2004;24(12):218-221.
    [8]杨卫娟,周俊虎,刘建忠等,锅炉各受热面吹灰作用的对比研究.动力工程,2004;2(6):780-784.
    [9]李勇,曹丽华,赵金峰等,考虑更多因素的凝汽器最佳真空确定方法.中国电机工程学报,2006;26(4):71-75.
    [10]何忠强,朴明海,王继英,循环水系统优化运行的探讨.黑龙江电力,2006;28(6):466-468.
    [11]闫桂焕,顾昌,郑李坤,300MW机组循环水系统优化运行的研究.汽轮机技术,2002;44(6):345-347.
    [12]倪维斗,黄以腾,汽轮机转子优化运行的热应力在线实时监控系统.动力工程,1997;17(2):1-6.
    [13]李保民,动力设备运行的安全与防范.山西机械,2003;增刊,85-86.
    [14]Z.Korendo,M.Florkowski,Thermography based diagnostics of power equipment.Power Engineering Journal,2002;15(1):33-42.
    [15]苏鹏声,王欢,电力系统设备状态监测与故障诊断技术分析.电力系统自动化, 2003;27(1):61-65.
    [16]Ou Jian,Sun Caixin,Bi Weimin,et al.,A steam turbine-generator vibration fault diagnosis method based on rough set.Lab.of High Voltage Eng.& Electr.New Technol.of Minist.of Educ.,Chongqing Univ.,China,2002;3:1532-1534.
    [17]http://www.51 ehs.com/Article/ShowArticle.asp?ArticleID=37692.
    [18]丁轲轲,杨晋萍,冯江涛等,自动测量技术.北京:中国电力出版社,2004;169-170.
    [19]http://post.baidu.com/f?kz=143210327.
    [20]http://www.cnpower.org/Article/qj/200609/740.html.
    [21]王荻,朱洪波,”851”叶片断裂事故分析及预防.热力发电,2003;1:69-72.
    [22]赵晓晖,50MW抽汽冷凝式汽轮机叶片断裂原因分析.能源研究与信息,2002;18(2):93-96.
    [23]齐文,空压机叶片断裂事故的解决.通用机械,2004;5:64-66.
    [24]高卫宁,湿度传感技术应用实例.电子元件与材料,2001;20(3):31-33.
    [25]蔡颐年,王乃宁,湿蒸汽两相流.西安:西安交通大学出版社,1985;175-233.
    [26]蔡小舒,汪丽莉,欧阳新等.低压汽轮机内湿蒸汽两相流测量.上海汽轮机,2002:1:23-29.
    [27]M.Song,S.B.Lee,S.S.Choi,et al.,Simultaneous Measurement of Temperature and Strain Using Two Fiber Bragg Gratings Embedded in a Glass Tube.Optical fiber technology,1997;3(2):194-196.
    [28]G.H.Chen,L.Y.Liu,H.Z.Jia,et al.,Simultaneous pressure and temperature measurement using Hi-Bi fiber Bragg gratings.Optics Comrnunications,2003;228(1-3):99-105.
    [29]X.Y.Dong,Y.Q.Liu,Z.G.Liu,et al.,Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor.Optics Communications,2001;192(3-6):213-217.
    [30]M.Laylor,S.Calvert,T.Taylor,et al.,Fiber optic grating moisture and humidity sensors.Processing of SPIE,2002;4694:210-217.
    [31]K.S.Chiang,R.Kancheti,V.Rastogi,Temperature-compensated Fiber Bragg Grating Based Magnetostrictive Sensor for DC and AC Currents. Optical engineering, 2003; 42(7): 1906-1909.
    [32] T. Shoichi, A. Hiroshi, N. Hiroaki, A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique. Sensors and Actuators A: Physical, 2004; 116: 66-74.
    [33] K. Peters, P. Pattis, J. Botsis, et al, Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields. Optics and Lasers in Engineering, 2000; 33(2): 07-119.
    [34] H.L. Ho, W. Jin, C.C. Chan, et al, A fiber Bragg grating sensor for static and dynamic measurands. Sensor and Actuator A: Physical, 2002; 96(1): 21-24.
    [35] A.D. Kersey, M.A. Davis, H.J. Patrick, et al., Fiber grating sensors. Journal of Lightwave Technology, 1997; 15(8): 1442-1463.
    [36] T. Erdogan, Fiber Grating Spectra. Journal of Lightwave Technology, 1997; 15(8): 1277-1294.
    [37] A.D. Kersey, M.A. Davis, T.A Berkoff., et al., Progress toward the development of practical fiber Bragg grating instrumentation systems. Processing of SPIE, 1996; 2839: 40-63.
    [38] Y. J. Rao, Recent progress in applications of in-fibre Bragg grating sensors. Optics and Lasers in Engineering, 1999; 31: 22-25.
    [39] N.M. Theune, M. Muller, H. Hertsch, et al., Investigation of stator coil and lead temperatures on high voltage inside large power generators via use of fiber Bragg grating. Proceedings of IEEE sensors, 2002; 1(2): 1603-1607.
    [40] A. Shimada, K.i Urabe, Y. Kikushima,et al., Detection of missing fastener based on vibration mode analysis using fiber Bragg grating (FBG) sensors. Proceedings of SPIE, 2003; 5056:312-318.
    [41] R. Maaskant, T. Alavie, R. MMeasures, et al., Fiber-optic Bragg grating sensors for bridge monitoring. Cement and Concrete Composites, 1997; 19(1): 21-33.
    [42] K. O. Hill, Y. Fujii, D. C. Johnson, et al., Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, 1978; 32(10): 647-649.
    [43] B. S. Kawasaki, K. O. Hill, D. C. Johnson, et al., Narrow-band Bragg reflectors in optical fibers. Optics Letters, 1978; 3(2): 66-68.
    [44] G.Meltz, W.W. Morey, W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, 1989; 14(15): 823-825.
    [45] T. Ohno, K. Sato, S. Fukushima, et al., Application of DBR mode-locked lasers in millimeter-wave fiber radio system. Journal of Lightwave Technology, 2000; 18(1): 44-49.
    [46] H. Bissessur, C. Graver, O. Le Gouezigou, et al., WDM operation of a hybrid emitter integrating a wide-bandwidth on-chip mirror. Journal of Selected Topics in Quantum Electronics, 1999; 5(3): 476-479.
    [47] I. Perez, H.L. Cui, Eric Udd, Acoustic Emission Detection Using Fiber Bragg Gratings. Proceeding of SPIE, 2001;
    [48] J. Botsis, L. Humbert, F. Colpo, et al., Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials. Optics and Lasers in Engineering, 2005; 43: 491-510.
    [49] K. Peters, M. Sruder, J. Botsis, et al., Embedded optical fiber Bragg grating sensor in a nonuniform strain field: Measurements and simulations. Experimental Mechanics, 2001;41(1):19-28.
    [50] D. H. Kim, J. H. Han, I. Lee, Application of fiber optic sensor and piezoelectric actuator to flutter suppression. Journal of Aircraft, 2004; 41(2): 409.
    [51] N. Takeda, T. Mizutani, K. Hayashi, et al., Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks. Smart Structures and Materials, Proceedings of SPIE, 2003; 5056: 304-311.
    [52] D. R. Hjelme, L. Bjerkan, S. Neegard, et al., Application of Bragg grating sensors in the characterization of scaled marine vehicle models. Applied Optics, 1997; 36(1): 328-336.
    [53] L. Ren, H. N. Li, L. Sun, et al., Application of FBG Sensors to Ground Heat Pump System. Proceedings of the Ninth Biennial ASCE Aerospace Division, 2004; 554-558.
    [54] A. Othonos, Fiber Bragg gratings. Review of Scientific Instruments, 1997; 68(12): 4309-4341.
    [55]K.O.Hill,B.Malo,F.Bilodeau,D.C.Johnson,J Albert,Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase.Applied Physics Letters,1993;62(10):1035-1037
    [56]I.Riant,Fiber Bragg gratings for optical telecommunications.Optical telecommunications/Les telecommunications optiques,2003;4:41-49.
    [57]J.Mandal,Y.H.Shen,S.Pal,et al.,Bragg grating tuned fiber laser system for measurement of wider range temperature and strain.Optics Communications,2005;244:111-121.
    [58]A.Othonos,Fiber Bragg grating laser sensor.Optical Engineering,1993;32(11):2841-2846.
    [59]J.I.Hashimoto,T.Takagi,T.Kato,et al.,Fiber-Bragg-Grating External Cavity Semiconductor Laser(FGL) Module for DWDM Transmission.Journal of Lightwave Technology,2003;21(9):2002-2009.
    [60]G Laffont,P Ferdinand,Tilted short-period fibre-Bragg-grating induced coupling to cladding modes for accurate refractometry.Measurement Science and Technology,2001;12:765-770.
    [61]Y.Kim,J.van Zyl,J.C.Shi,A Soil Moisture Algorithm Using Tilted Bragg Approximation.Geoscience and Remote Sensing Symposium,2003;1402-1404.
    [62]B.Liu,R.Su,K.M.Zhou,et al.,800nm FBG sensing interrogation system based on tilted FBG.Optoelectronics Letters,2007;3(1):0062-0064.
    [63]C.Jauregui,J.M.Lopez-Higuera,A.Quintela,Interrogation of interferometric sensors with a tilted fiber Bragg grating.Optics Express,2004;12(23):5646-5654.
    [64]X.Y.Dong,B.O.Guan,S.Z.Yuan,et al.,Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength.Optics Communications,2002;202:91-95.
    [65]T.Komukai,M.Nakazawa,Fabrication of non-linearly chirped fiber Bragg gratings for higher-order dispersion compensation.Optics Communications,1998;154:5-8.
    [66]邹柳娟,周志敏,唐良晶,邹道文,Chirped Bragg光纤光栅色散补偿研究.华中理工大学学报,1998;26(7):97-99
    [67]E.N.Tsoy,C.M.de Sterke,Propagation of nonlinear pulses in chirped fiber gratings. Physical Review E, 2000; 62(2): 2882-2890.
    [68] Y. Okabe, R. Tsuji, N. Takeda, Application of chirped fiber Bragg grating sensors for identification of crack locations in composites. Composites: Part A, 2004; 35:59-65.
    [69] P. C. Won, J.S. Leng, Y.C. Lai, et al., Distributed temperature sensing using a chirped fibre Bragg grating. Measurement Science and Technology, 2004; 15: 1501-1505.
    [70] M. Pisco, A. Iadicicco, S. Campopianob, et al., Micro-structured chirped fiber Bragg gratings: Towards new spatial encoded fiber optic sensors. Proceeding of SPIE, 2007; 6619: 66192T-1-4.
    [71] D.H. Zhao, X.W. Shu, Y.C. Lai, et al., Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop. Sensors Journal, 2003; 3(6): 734-738.
    [72] M. Konstantaki, S. Pissadakis, S. Pispas, et al., Optical fiber long-period grating humidity sensor with poly(ethylene oxide) cobalt chloride coating. Applied optics, 2006; 45(19): 4567-4571.
    [73] Y.J. Kim, U.C. Paek, B.H. Lee, Measurement of refractive-index variation with temperature by use of long-period fiber gratings. Optics Letters, 2002; 27(15): 1297-1299.
    [74] K. P. Chen, P. R. Herman, J. Zhang, Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation. Optics Letters, 2001; 26(11): 771-773.
    [75] C.L. Zhao, M.S. Demokan, W. Jin, et al., A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber. Optics Communications, 2007; 276: 242-245.
    [76] H. J. Patrick, G. M. Williams, A. D. Kersey, et al., Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination. Photonics technology letters, 1996; 8(9): 1223-1225.
    [77] GM. Rego, H.M. Salgado, J.L. Santos, Interrogation of a Fiber Bragg Grating Using a Mechanically Induced Long-Period Fiber Grating. Sensors Journal, 2006; 6(6): 1592-1595.
    [78] D. Janner, G. Galzerano, G. D. Valle, et al., Slow light in periodic superstructure Bragg gratings. Physical Review E, 2005; 72: 056605-1-8.
    [79] C. Martijn de Sterke, Superstructure gratings in the tight-binding approximation. Physical Review E, 1998; 57(3): 3502-3509.
    [80] N. G. Raphael Broderick, C. Martijn de Sterke, Theory of grating superstructures. 1997; 55(3): 3634-3646.
    [81] H. P. Gauggel, H. Artmann, C. Geng, et al., Wide-Range tunability of GalnP-AlGaInP DFB lasers with superstructure Gratings. Photonics technology letters, 1997; 9(1): 14-16.
    [82] D.N. Wang, M.F. Lim, Tunable dual-wavelength optical short-pulse generation by use of a fiber Bragg grating and a tunable optical filter in a self-seeding scheme. Applied Optics, 2004; 43(20): 4106-4109.
    [83] A. Othonos, X. Lee, R.M. Measures, Superimposed multiple Bragg gratings. Electronics Letters, 1994; 30(23): 1972-1974.
     [84] J.K. Tugnait, W.L. Luo, On channel estimation using superimposed training and first-order statistics. Acoustics, Speech, and Signal Processing, 2003; 4: 624-627.
    [85] A. Arigiris, M. Konstantaki, A. Ikiades, et al., Fabrication of high-reflectivity superimposed multiple-fiber Bragg gratings with unequal wavelength spacing. Optics Letters, 2002; 27(15): 1306-1308.
    [86] Y. J. Tsofe, B. A. Malomed, Quasisymmetric and asymmetric gap solitons in linearly coupled Bragg gratings with a phase shift. Physical Review E, 2007; 75: 056603-1-10.
    [87] W. Li, W. John, Y. Lit, Phase-shifted Bragg grating filters with symmetrical structures. Journal of Lightwave Technology, 1997; 15(8): 1405-1410.
    [88] R. Zengerle, O. Leminger, Phase-shifted Bragg-grating filters with improved transmission characteristics. Journal of Lightwave Technology, 1995; 13(12): 2354-2358.
    [89] G. P. Agrawal, S. Radic, Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. Photonics technology letters, 1994; 6(8); 995-997.
    [90] N.K. Berger, B. Levit, B. Fischer, et al., Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Optics Express, 2007; 15(2): 371-381.
    [91] A. Melloni, M. Chinello, M. Martinelli, All-Optical Switching in Phase-Shifted Fiber Bragg Grating. Photonics technology letters, 12(1): 42-44.
    [92]M.J.Guy,J.R.Taylor,R.Kashyap,Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter.Electronics Letters,1995;31(22):1924-1925.
    [93]赵春柳,冯德军,丁镭等,Moire光纤光栅的原理及应用.光通信技术,2000;4:280-284.
    [94]L.Zhang,K.Sugden,I.Bennion,et al.,Wide-stopband chirped fibre moire grating transmission filters.Electronics Letters,1995;31(6):477-479.
    [95]S.Legoubin,E.Fertein,M.Douay,et al.,Formation of moire grating in core of germanosilicate fibre bytransverse holographic double exposure method.Electronics Letters,1991;27(21):1945-1947.
    [96]D.C.J.Reid,C.M.Ragdale,I.Bennion,et al.,Phase-shifted Moire grating fibre resonators.Electronics Letters,1990;26(1):10-12.
    [97]H.P.Ho,K.C.Lo,Y.Y.Hung,Quantitative phase demodulation from a free-running Michelson interferometer by using a novel quadrature moire grating with misalignment error compensation.Optical Engineering,2006;45(7):075601-1-7.
    [98]X.H.Fang,M.K.Islam,P.L.Chu,et al.,Gigabit soliton generation by means of Moire grating and Figure-8 fibre laser.Optics Communications,2007;272(2):461-466.
    [99]R.Kashuap,A Swanton,D.J.Armes,Simple technique for apodising chirped and unchirped fibre Bragg gratings.Electronics Letters,1996;32(13):1226-1228.
    [100]J.Albert,K.O.Hill,B.Malo,et al.,Apodisation of the spectral response of fibre Bragg gratings using a phase mask with variable diffraction efficiency.Electronics Letters,1995;31(3):222-223.
    [101]B.Malo,S.Theriault,D.C.Johnson,et al,Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask.Electronics Letters,1995;31(3):223-225.
    [102]K.Sugden,L.Zhang,J.A.R.Williams,et al.,Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings.Journal of Lightwave Technology,1997;15(8):1424-1432
    [103]T.Fessant,Gaussian-like tapered grating quarter wave-shifted DFB semiconductor lasers for high-power single-mode operation.Applied Physics B:Lasers and Optics,1998;67:769-772.
    [104]X.H.Jia,Z.M.Wu,G.Q.Xia,Analysis of bistable steady characteristics and dynamic stability of linearly tapered nonlinear Bragg gratings.Optics Express,2004;12(13):2945-2953.
    [105]李智红,董孝义,赵东晖等,一种新型的Tapered光纤光栅.光学学报,1999;19(4):540-543.
    [106]S.Miyanaga,T.Asakura,Intensity profile of outgoing beams from uniform and linearly tapered grating couplers.Applied Optics,1981;20(4):688-695.
    [107]C.Bariain,I.R.Matias,F.J.Arregui,et al.,Optical fiber humidity sensor based on a tapered fiber coated with agarose gel.Sensors and Actuators B:Chemical,2000;69:127-131.
    [108]T.Allsopa,F.Floreania,K.P.Jedrzejewskib,et al.,Tapered fibre LPG device as a sensing element for refractive index.Proceeding of SPIE,2005;5855:443-446.
    [109]W.H.Du,X.M.Tao,H.Y.Tam,Temperature Independent Strain Measurement with a Fiber Grating Tapered Cavity Sensor.Photonics technology letters,1999;11(5):596-598.
    [110]T.P.Valkering,Slow Light Via a Tapered Grating:Transfer Matrix Approach.Optical and Quantum Electronics,2006;38(1-3):83-96.
    [111]S.S.Lee,H.D.Chae,Photonic microwave true-time delay using tapered fiber Bragg gratings.Microwave Photonics International Topical Meeting,2005;237-240.
    [112]W.W.Morey,G.Meltz,J.D.Love,et al,Mode-coupling characteristics of UV-written Bragg gratings indepressed-cladding fibre.Electronics Letters,1994;30(9):730-732.
    [113]V.Mizrahi,S.LaRochelle,G.I.Stegeman,et al.,Physics of photosensitive-grating formation in optical fibers.Physical Review A,1991;43:433-438.
    [114]M.Fokine,W.Margulis,Large increase in photosensitivity through massive hydroxyl formation.Optics Letters,2000;25,(5):302-304.
    [115]张东生,姜莉,开桂云等,取样光纤光栅的理论分析及其写入技术.南开大学学报(自然科学版),2006;39(1):79-83.
    [116]关寿华,于清旭,宋世德等,长周期光纤光栅写入技术的研究.沈阳工业大学学报,2005;27(15):526-529.
    [117]许鸥,鲁韶华,董小伟,重叠写入啁啾光纤光栅型滤波器的研究进展.2007; 44(3):63-68.
    [118]朱涛,饶云江,莫秋菊,高频CO2激光脉冲写入的超长周期光纤光栅.光子学报,2005;34(11):1697-1700.
    [119]李景义,饶云江,牛永昌等.高频CO2激光脉冲写入的相移长周期光纤光栅.光子学报,2005;34(1):38-40.
    [120]李光晓,准分子激光器写入的光纤布喇格光栅.光电子技术与信息,2000;13(2):39-42.
    [121]宁提纲,文冀萍,赵玉成等,光纤光栅写入的最新进展.光通信技术,1999;23(4):282-287.
    [122]A.Asseh,H.Storoy,B.E.Sahlgren,et al.,A writing technique for long fiber Bragg gratings with complex reflectivity profiles.Journal of Lightwave Technology,1997;15(8):1419-1423.
    [123]Y.J.Rao,T.Zhu,Z.L.Ran,et al.,Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication.Optics Communications,2004;229(1-6):209-221.
    [124]D.D.Davis,T.K.Gaylord,E.N.Glytsis,et al.,CO2 laser-induced long-period fibre gratings:spectral characteristics,cladding modes and polarisation independence.Electronics Letters,1998;34(14):1416-1417.
    [125]Q.Zhang et al,Tuning Bragg wavelength by writing gratings on prestrained fibers,Photonics Technology Letters,1994;6:839-842.
    [126]R.Kashyap,Assessment of tuning the wavelength of chirp and unchirp fiber Bragg grating with simple phase mask.Electronics Letters,1998;34:2025-2027.
    [127]C.Martinez,P.Ferdinand,Phase-shifted fibre Bragg grating photo-writing using UV phaseplate in modified Lloyd mirror configuration.Electronics Letters,1998;34(17):1687-1688.
    [128]B.Malo,et al.,Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification technique.Electronics Letters,1993;29:1668-1669.
    [129]R.Kashyap,J.R.Armitage,W.R.Wyatt,et al.,All-fiber narrow band reflection grating at 1500nm.Electronics Letters,1990;26:730-732.
    [130] K. O. Hill, et al., Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physical Letters, 1993; 62: 1035-1037.
    [131] D. Z. Anderson, et al., Production of in-fiber gratings using a diffractive optical element, Electronics Letters, 29 (1993): 566-568.
    [132] S. Mihailov and M. Gower, Recording of efficient high-order Bragg reflectors in optical fibers by mask image projection and single pulse exposure with an excimer laser. Electronics Letters, 1994; 30:707-709.
    [133] H.J. Patrick, C.G. Askins, R.W. McElhanon, E.J. Friebele, Amplitude mask patterned on an excimer laser mirror for highintensity writing of long period fibre gratings. Electronics Letters, 1997; 33(13): 1167-1168.
    [134] K.C. Byron, K. Sugden, et al., Fabrication of chirped Bragg grating in photosensitive fibre. Electronics Letters, 1993; 29: 1659.
    [135] H. G. Limberger, et al., Photosensitivity and Self-organization in Optical Fiber and Waveguides, Proceeding of SPIE, 1993; 2044: 272.
    [136] P.J. Lemaire, R.M. Atkins, et al., High pressure H2 Loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers. Electronics Letters, 1993; 29:1191.
    [137] E.M. Dianov, K.M. Golant, V.M. Mashinskv, et al., Highly photosensitive nitrogen doped germanosilicate fibre forindex grating writing. Electronics Letters, 1997; 33(15): 1334-1336.
    [138] G.E. Kohnke, D.W. Nightingale, P.G. Wigley, et al., Photosensitization of optical fiber by UV exposure of hydrogenloaded fiber. Optical Fiber Communication Conference, 1999; Supplement.
    [139] D. Ramecourt, P. Niay, P. Bernage, et al., Growth of strength of Bragg gratings written in H2 loaded telecommunication fibre during CW UV post-exposure. Electronics Letters, 1999; 35(4): 329-331.
    [140] K.O. Hill, G. Meltz, Fiber Bragg Grating Technology Fundamentals and Overview. Journal of Lightwave Technology, 1997; 15(8): 1263-1274.
    [141] 林枫,蔡海文,夏志平等,光纤光栅滤波的瓦斯传感系统的研究.中国激光, 2005;32(4):549-552.
    [142]黄锐,蔡海文,瞿荣辉等,一种同时测量温度和应变的光纤光栅传感器.2005;32(2):232-235.
    [143]胡勇勤,光纤光栅传感器的解调方法的研究.自动化与仪器仪表,2005;5:10-13.
    [144]张霞,黄永清,任晓敏,光纤光栅双折射效应的实验研究.光子学报,2005;34(2):241-243.
    [145]陈长勇,乔学光,贾振安等,光纤光栅复用调揩滤波检测系统的研究.激光杂志,2005;26(1):48-49.
    [146]张向东,李育林,彭文达等,布拉格光纤光栅及其在火箭状态监测中的应用探讨.激光杂志,2003;24(3):76-78.
    [147]姜德生,郭会勇,黄俊等,一种准分布式光纤光栅漏油传感器.光学与光电技术,2004;2(1):15-20.
    [148]姜德生,郭会勇,周向阳等,一种有保护装置的光纤光栅漏油报警传感器.传感器技术,2004;23(4):59-61.
    [149]王玉田,刘瑾,杨海马,光纤光栅调制式光纤甲烷气体传感器的研究.传感技术学报,2003;3:324-327.
    [150]李景义,饶云江,牛永昌等,基于新型长周期光纤光栅的低成本应变传感系统.光子学报,2005;34(3):431-433.
    [151]周红,乔学光,王宏亮等,基于C形弹性管的光纤光栅压力位移传感测.西安电子科技大学学报(自然科学版),2005;32(1):142-145.
    [152]秦曦,方宏,延凤平等,基于光纤光栅的新型车辆载重自动检测方法的研究.北京交通大学学报,2005;29(2):69-72.
    [153]傅海威,傅君眉,乔学光等,基于平面膜片温度压强同时测量的光纤光栅传感器.西安电子科技大学学报(自然科学版),2005;32(1):151-155.
    [154]X.P.Zhang,Sh.L.Houa,Study of characteristics of fiber Bragg grating with uniaxial crystal material cladding.Optics Communications,2003;219:193-198.
    [155]N.Hirayama,Y.Sano,Fiber Bragg grating temperature sensor for practical use,ISA Transactions,2000;39:169-173.
    [156] Y.L. Lo, B.R. Chue, S.H. Xu, Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating. Optics Communications, 2004; 230: 287-295.
    [157] R. Suresh, S.C. Tjin, N.Q. Ngo, Shear force sensing by strain transformation using non-rectilinearly embedded fiber Bragg grating. Sensors and Actuators A: Physical, 2004; 116: 107-118.
    [158] C. F. Valdivielso, I.R. Matias, F.J. Arregui, Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material. Sensors and Actuators A: Physical, 2002; 101: 107-116.
    [159] H.W. Lee, H.J. Park, J.H. Lee, et al., Accuracy improvement in peak positioning of spectrally distorted fiber Bragg grating sensors by Gaussian curve fitting. Applied Optics, 2007; 46(12): 2205-2208.
    [160] C. Ambrosino, G. Diodati, A. Laudati, et al., Active vibration control using fiber Bragg grating sensors and piezoelectric actuators in co-located configuration. Proceedings of SPIE, 2007; 6619: 661940-1-4.
    [161] P. G. vant Hof, L.K. Cheng, J.H.G Scholtes, et al., Dynamic pressure measurement of shock waves in explosives by means of a fiber Bragg grating sensor. Proceeding of SPIE, 2007; 6279: 62791Y-1-7.
    [162] S. Rapp, L.H. Kang, U.C. Mueller, et al., Dynamic shape estimation by modal approach using fiber Bragg grating strain sensors. Proceeding of SPIE, 2007; 6529: 65293E-1-11.
    [163] Y. Okabe, S. Yashiro, T. Kosaka, et al., Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors. Smart Materials and Structures, 2000; 9: 832-838.
    [164] Y. Okabe, J. Kuwahara, K. Natori, et al., Evaluation of debonding progress in composite bonded structures using ultrasonic waves received in fiber Bragg grating sensors. Smart Materials and. Structures, 2007; 16: 1370-1378.
    [165] T. A. Berkoff, A. D. Kersey, Experimental Demonstration of a Fiber Bragg grating accelerometer. Photonics Technology Letters, 1996; 8(12): 1677-1679.
    
    [166] A. Cusano, P. Capoluongo, S. Campopiano, et al., Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors. Sensors Journal, 2006; 6(1): 67-77.
    [167] Y. Sano, T. Yoshino, Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors. Journal of Lightwave Technology, 2003; 21(1): 132-139.
    [168] L. Mohanty, L.M. Koh, S.C. Tjin, Fiber Bragg grating microphone system. Applied Physics Letters, 2006; 89: 161109-1-3.
    [169] V. P. Wnuk, A. Mendez, S. Ferguson, et al., Process for mounting and packaging of fiber Bragg grating strain sensors for use in harsh environment applications. Smart Structures Conference, Proceeding of SPIE, 20055758-6: 1-8.
    [170] L. A. Ferreira, J. L. Santos, F. Farahi, Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings. Photonics Technology Letters, 1997; 9(4): 487-489.
    [171] D. Leduc, X. Chapeleau, C. Lupi, et al., Experimental synthesis of fibre Bragg gratings index profiles: comparison of two inverse scattering algorithms Measurement Science and Technology, 2007; 18: 12-18.
    [172] H. Kumazaki, Y. Yamada, H. Nakamura, et al., Tunable wavelength filter using a Bragg grating fiber thinned by plasma etching. Photonics Technology Letters, 2001; 13(11): 1206-1208.
    [173] Y.L. Lo, Using in-fiber Bragg-grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures. Optical Engineering, 1998; 37(8) 2272-2276.
    [174] S. Toroghi, H. Latifi, M. Afshari, et al., A new structure of fiber Bragg grating with increased sensitivity to pressure and decreased sensitivity to temperature. Proceeding of SPIE, 2006; 6162: 61620Q-1-7.
    [175] C. Ambrosino, P. Capoluongo, S. Campopiano, et a., Fiber Bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor. Sensors Journal, 2007; 7(2): 228-229.
    [176] P. Boland, G.Sethuraman, A. Mendez, et al., Fiber Bragg grating multi-chemical sensor. Proceeding of SPIE, 2006; 6371: 637109-1-11.
    [177] M. J. Bartow, S.G. Calvert, P. V. Bayly, Fiber Bragg grating sensors for dynamic machining applications.Proceedings of SPIE,2003;1-11.
    [178]S.Helsby,C.Corbari,M.Ibsen,et al.,Fiber Bragg gratings for atom chips.Physical Review A,2007;75:013618-1-7.
    [179]R.SlavIk,J.tyrok,J.Homola,Fiber optic surface plasmon resonance sensor with a Bragg grating.Proceedings of SPIE,2000;4016:154-158.
    [180]S.Kojima,A.Hongo,S.Komatsuzaki,et al.,High-speed optical wavelength interrogator using a PLC-type optical filter for fiber Bragg grating sensors.Proceedings of SPIE,2004;5384:241-250.
    [181]V.P.Duraev,A.A.Marmalyuk,A.V.Petrovskiy,Tunable laser diodes for the 1250-1650 nm spectral range,Spectrochimica Acta Part A,66(2007) 846-848.
    [182]L.J.Cashdollar,K.P.Chen,Fiber Bragg Grating Flow Sensors Powered by In-Fiber Light.Sensors Journal,2005;5(6):1327-1331.
    [183]C.Jewart,B.McMillen,S.K.Cho,et al.,X-probe flow sensor using self-powered active fiber Bragg gratings.Sensors and Actuators A:Physical,2006;127:63-68.
    [184]Y.J.Chiang,L.Wang,W.F.Liu,et al.,Temperature-insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme.Optics Communication,2001;197:327-330.
    [185]http:/ic.arc.nasa.gov/ic/projects/photonics/OS/Proposed/Bragg/bragg.htlm.
    [186]http:/ic.arc.nasa.gov/ic/projects/photonics/OS/Proposed/HealthSensors/health.html.
    [187]http:/nesb.larc.nasa.gov.NNWG/vol8.2/TASKS/MSFC/msfc.htlm.
    [188]M.Trutzel,D.Betz,M.Holz,et al,Investigation of fiber optic Bragg grating sensors for applications in the aviation industry.Proceeding of SPIE 1999;3746:624-627.
    [189]陈熙源,王曦峤,光纤Bragg光栅传感器在智能船舶结构中的应用.船舶工程,2006;28(2):29-32.
    [190]G.Wang,Digital demodulation and signal processing applied to fiber Bragg grating strain sensor arrays in Monitoring Transient loading effects on ship hulls.Proceeding of the Optical Fiber Sensors,1997;612-615.
    [191]K.Pran,G.B.Havsgard,R.Palmstrom,et al.,Sea-test of a 27 channel fibre Bragg grating strain sensor system on an air cushion catamaran.Proceeding of SPIE,1999;3746:145-148.
    [192] M. Todd, Fiber optic sensing technology for structural monitoring applications [EB/OL]. http://www. shconnet.com.cn.
    [193] B.C., J. Kiddy, T. Salter, et al. Fiber optic structural health monitoring system: rough sea trials testing of the RVtriton [EB/OL].http://ieeexplore.ieee.org.
    [194] C.J. Juan, W.M. Eric, N.C. Kyoo, et al., Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 2005; 23(6):2081-2087.
    [195] S. T. Vohra, et al., Sixteen channel WDM fiber Bragg grating dynamic strain sensing system for composite panel slamming tests. Proceeding of the Optical Fiber Sensors Conference, 1997: 662-665.
    [196] A. E. Jensen, G.B. Havsgard, K. Pran, et al., Wet deck slamming experiments with a FRP sandwich panel using a network of 16 fibre optic Bragg grating strain sensors. Composites Part B: Engineering, 2000; 31(3): 187-198.
    [197] D. R. Hjelme, L. Bjerkan, S. Neegard, et al., Application of Bragg grating sensors in the characterization of scaled marine vehicle models. Applied Optics, 1997; 36(1): 328-336.
    [198] H. C. H. Li, I. Herszberg, A. P. Mouritz, Sensitivity of embedded fibre Bragg grating sensors to disbonds in Bonded composite ship joints. Complicated structures, 2004; 66(1): 239-248.
    [199] A.I. Gusarov, F. Berghmans, O. Deparis, et al., High total dose radiation effects on temperature sensing fiber Bragg gratings. Photonics Technology Letters, 1999; 11 (9): 1159-1161.
    [200] A.F. Fernandez, B. Brichard, P. Borgermans, et al., Fibre Bragg grating temperature sensors for harsh nuclear environments. Optical Fiber Sensors Conference Technical Digest, 2002; 1:63-66.
    [201] A.F. Fernandez, A. Gusarov, B Brichard, et al., Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor. Measurement Science and Technology, 2004; 15:1506-1511.
    [202] A.I. Gusarov, F. Berghmans, A.F. Fernandez, et al., Behavior of fibre Bragg gratings under high total dose gammaradiation. Radiation and Its Effects on Components and Systems, 1999; RADECS 99: 461-465.
    [203]T.Kakuta,H.Yamagishi,T Iwamura,et al.,Development of new nuclear instrumentation based on optical sensing-Irradiation effects on fiber.Proceeding of SPIE,2000;4185:816-819.
    [204]Y.B.Lin,K.C.Chang,J.C.Chern,et al.,Packaging methods of fiber-Bragg grating sensors in civil structure applications.Sensors Journal,2005;5(3):419-424.
    [205]P.Ferdinand,S.Magne,V.D.Marty,et al.,Applications of Bragg grating sensors in Europe.12th Int.Conf.on Optical Fiber Sensors,1997;14-19.
    [206]J.I.Koh,H.J.Bang,C.G.Kim,et al.,Simultaneous measurement of strain and damage signal of composite structures using a fiber Bragg grating sensor.Smart Materials and Structures,2005;14:658-663.
    [207]D.C.Betz,G.Thursby,B.Culshaw,et al.,Acousto-ultrasonic sensing using fiber Bragg gratings.Smart Materials and Structures,2003;12:122-128.
    [208]B.Cowie,T.Allsop,J.Williams,et al.,An optical fiber Bragg grating tactile sensor.Proceedings of SPIE,2007;6585:65850Ⅰ-1-8.
    [209]M.Studer,K.Peters,J.Botsis,Method for determination of crack bridging parameters using long optical fiber Bragg grating sensors.Composites:Part B,2003 34:347-359.
    [210]C.C.Chang,A.D.Kersey,Development of Fiber Bragg Grating Sensor Based Load Transducers.12th International Conference on Optical Fiber Sensors,1997;174-177.
    [211]P.Ferdinand,O.Ferragu,J.L.Lechien,et al.,Mine operating accurate stability control with optical fibersensing and Bragg grating technology:the European BRITE/EURAM STABILOSproject,Journal of Lightwave Technology,1995;13(7):1303-1313.
    [212]宁靖,吕公河,吴学兵等,布拉格光栅检波器在地震勘探中的应用前景.勘探地球物理进展,2004;27(6):440-443.
    [213]Y.Zhang,S.G.Li,Z.F.Yin,et al.,Fiber-Bragg-grating-based seismic geophone for oil/gas prospecting.Optical Engineering,2006;45(8):084404-1-4.
    [214]R.W.Bogue,World's first permanent in-well fibre Bragg grating sensors perform seismic surveys.Sensor Review,2003;23(3):209-210.
    [215]A.L.C.Triques,M.F.S.Jrt,D.M.Gonzalez,et al.,Fiber Bragg grating sensing for indirect evaluation of corrosion in oil and gas facilities.Proceedings of SPIE,2004;5502:283-286.
    [216]Z.J.Wang,Y.Zhou,X.W.Wang,et al.,Fluctuating temperature measurements on a heated cylinder placed in a cylinder near-wake,Journal of Heat Transfer,2004,126,62-69.
    [217]Z.J.Wang,Y.Zhou,X.W.Wang,et al.,A fiber-optic Bragg grating sensor for simultaneous static and dynamic temperature measurement on a heated cylinder in cross-flow,International Journal of Heat and Mass Transfer,2003,46,2983-2992.
    [218]A.D.Kersey,T.A.Berkoff,W.W.Morey.Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection.Optics Letters,1993;18(1):72-74.
    [219]P.M.Nellen,P.Mauron,A.Frank,et al.,Reliability of fiber Bragg grating based sensors for downhole applications.Sensors and Actuators A:Physical,2003;103(3):364-376.
    [220]R.S.Weis,B.L.Bachim,B.M.Beadle,et al.,Optical fiber telemetry systems for measurement while drilling applications.Optical Engineering,2000;39(6):1591-1596.
    [221]B.Sutapun,M.T.Azar,A.Kazemi,Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing.Sensors and Actuators B:Chemical,1999;60:27-34.
    [222]V.V.Spirin,M.G.Shlyagin,S.V.Miridonov,et al.,Fiber Bragg grating sensor for petroleum hydrocarbon leak detection.Optics and Lasers in Engineering,2000;32:497-503.
    [223]董杏元,李江芬,光纤光栅碳氢化合物泄漏传感系统的研发.中央民族大学学报(自然科学版),2004;13(1):219-23.
    [224]J.Cong,X.M.Zhang,K.S.Chen,et al.,Fiber optic Bragg grating sensor based on hydrogels for measuring salinity.Sensors and Actuators B:Chemical,2002;87:487-490.
    [225]G Meltz,W.W.Morey,J.R.Dunphy,Fiber Bragg Grating Chemical Sensor,Proceeding of SPIE,1991;1587:350-361.
    [226]A.Asseh,S.Sandgren,H.Ahlfeldt,et al.,Fiber Optical Bragg Grating Refractometer. Fiber and Integrated Optics, 1998; 17(1): 51-62.
    [227] D.W. Huang, W.F. Liu, C.W. Wu, et al., Reflectivity-Tunable Fiber Bragg Grating Reflectors. Photonics Technology Letters, 2000; 12(2): 176-178.
    [228] A. Iadicicco, S. Campopiano, A. Cutolo, et al., Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings. Sensors and Actuators B: Chemical, 2006 120:231-237.
    [229] A.N. Chryssis, S.S. Saini, S.M. Lee, et al., Detecting Hybridization of DNA by Highly Sensitive Evanescent Field Etched Core Fiber Bragg Grating Sensors. Journal of Selected Topics in Quantum Electronics, 2005; 11(4): 864-892.
    [230] T.L. Yeo, T. Sun, K.T.V. Grattan, et al., Polymer-Coated Fiber Bragg Grating for Relative Humidity Sensing. Sensors Journal, 2005; 5(5): 1082-1089.
    [231] N. Takahashi, K. tetsumura, S. Takahashi, Underwater acoustic sensor using optical fiber Bragg grating as detecting element. Journal of Applied Physics, 1999; 38: 3233-3236.
    [232] D.A.Jackson, Fibre Bragg gratings and fibre interferometers for medical applications. Quantum Electronics Conference, Digest, 2000; 1.
    [233] Y.J. Rao, D.J. Webb, D.A. Jackson, et al., Optical in-fiber Bragg grating sensor systems for medical applications. Journal of Biomedical Optics, 1998; 3(1):38—44.
    [234] J.M. Park, S.I. Lee, O.Y. Kwon, et al., Comparison of nondestructive microfailure evaluation of fiber-optic Bragg grating and acoustic emission piezoelectric sensors using fragmentation test. Composites: Part A, 2003; 34: 203-216.
    [235] J.R. Lee, H. Tsuda, A novel fiber Bragg grating acoustic emission sensor head for mechanical tests. Scripta Materialia, 2005; 53: 1181-1186.
    [236] B. Allan, D.A. Horsley, J.R. Zayas, Development of an embedded high performance MEMS-based fiber Bragg grating interrogation system for wind turbine applications. 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006; AIAA 606: 1-3.
    [237] K.S. Chiang, R. Kancheti, V. Rastogi, Temperature-compensated fiber Bragg grating based magnetostrictive sensor for DC and AC currents. Optical engineering, 2003; 42(7): 1906-1909.
    [238] 李川,张以谟,赵永贵等,光纤光栅:原理、技术与传感应用.北京:科学出版 社.2005.
    [239]吴重庆,光波导理论.北京:清华大学出版社,2005.
    [240]赵凯华,钟锡华,光学.北京:北京大学出版社,1993.
    [241]Y.L.Lo,In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing.Photonics Technology Letters,1998;10:1003-1005.
    [242]H Geiger,M.G.Xu,N.C.Eaton,et al.Electronic tracking system fro multiplexed fibre grating sensors.Electronics Letters,1995;31:1006-1007.
    [243]M.G.Xu,H.Geiger,J.P.Dakin,Modeling and performance analysis of a fieber Bragg grating interrogation system using an acousto-optic tunable filter.Journal of Lightwae Technology,1996;14:391-396.
    [244]D.A.Jachson,A.B.Lobo,R.L.Reekie,et al.,Simple multiplexing scheme for fiber optical grating sensor network.Optics Letters,1993;18(14):1192-1194.
    [245]G.A.Ball,W.W.Morey,P.K.cheo,Fiber laser source/analyzer for Bragg grating sensor array interrogation.Journal of Lightwave Technology,1994;12:700-703.
    [246]S.M.Melle,K.Liu,M.A.Measure,A passive wavelength demodulation system for guided wave Bragg grating sensors.Journal of Lightwave Technology,1994;30:75-77.
    [247]Y.J.Rao,D.A.Jackson,L.Zhang,et al,Dual-cavity interferometric wavelength shift detection for in-fiber Bragg grating sensors.Optics Letters,1996,21(19):1556-1558.
    [248]A.Ezbiri,S.E.Kanellopoulos,V.A.Handerek,High-resolution instrumentation system for fiber-Bragg grating aerospace sensors.Optical Communication,1998,150:43-48.
    [249]D.A.Jackson,A.D.Kersey,M.Corke,et al.,Pseudoheterodyne detection scheme for optical interferometer.Electronics Letters,1982,18(25):1081-1083.
    [250]南京安正软件有限公司,基于CRAS模态分析软件使用手册,南京,2003.
    [251]肖俊峰,朱宝田.基于模态综合方法的汽轮机叶片组振动特性研究.中国电机工程学报,1999,19(6):77-79.
    [252]王玥,盛德仁,陈坚红等.国产300 MW汽轮机叶片模态分析与故障识别,汽 轮机技术,2003,45(3):168-169.
    [253]H L Ho,W.Jin,C.C.Chan,et al.A fiber Bragg grating sensor for static and dynamic measurands.Sensor and Actuator A:Physical,2002,96(1):21-24.
    [254]盛德仁,黄雪峰,陈坚红等,一种基于布拉格光纤光栅测量湿蒸汽两相流湿度场的新方法.中国电机工程学报,2005,25(5):136-140.
    [255]姜德生,何伟.FBG传感器的应用概况.光电子·激光.2002,19(4):420-430.
    [256]康昌鹤,唐省吾等.气、湿敏感器件及其应用,北京:科学出版社,1988.
    [257]A.MacLean,M.W.Craig,S.G.Pierce,et al.Hydrogel/ Fibre Optic Sensor for Distributed Measurement of Humidity and pH Value.Proceeding of SPIE,1998,3330:134-144.
    [258]P.Giaccari,H.G.Limberger,P.Kronenberg,Influence of humidity and temperature on polyimide-coated fiber Bragg gratings.Proceedings of SPIE,2001,61:BFB2.
    [259]T.L.Yeo,T.Suna,K.T.V.Grattan,et al.Characterisation of a polyimide-coated fibre Bragg grating sensor for relative humidity sensing.Sensor and Actuators,B:Chemical,2005,110(1):148-155.
    [260]P.Kronenberg,P.K.Rastogi,P.Giaccari,et al.Relative humidity sensor with optical fiber Bragg grating,Optics Letters.2002,27(16):1385-1387.
    [261]W.Kunzler,S.Calvert,M.Laylor.Measuring humidity and moisture with fiber optic sensors.Proceedings of SPIE,2003,5278:86-93.
    [262]张向东,李育林,彭文达等.光纤光栅型温湿度传感器的设计与实现.光子学报,2003;32(10):1167-1169.
    [263]R.Buchhold,A.Nakladal,et al.Mechanical stress in micromachined components caused by humidity-induced in-plane expansion of thin polymer films.Thin Soild Films,1998;312:232-239
    [264]M.Guenther,K.Sahre,et al.Influence of ion-beam induced chemical and structural modification in polymers on moisture uptake,Surface and Coatings Technology,2001,142-144:482-488
    [265]唐羽章,江大志,单向复合材料的湿膨胀.宇航材料工艺,1993;1:9-11.
    [266]易惠中.湿度传感器用湿敏材料.仪表材料,1990;21(2):118-124.
    [267]尹京智.碳纤维复合材料湿膨胀系数试验方法.材料工程,1997;(5):26-27.
    [268]江大志,唐羽掌,环氧-酚醛树脂的湿效应实验研究.宇航材料工艺,1992;(5):29-31.
    [269]M.Msanobu,K.Takaaki,H.Tomohito,et al.,A thin polyimide based capacitive type relative humiditysensor.Sensors and Actuators B:Chemical,1993;13(1-3):89-91.
    [270]S.Karsten,G.Gerald,S.Andreac,et al.,A humidity sensor of a new type.Sensors and Actuators B:Chemical,1994;18(1-3):85-88.
    [271]M Masanobu,K Takaaki,M.Tetsuya,et al.,Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films.Sensor and Actuators B:Chemical,1998;52(1-2):53-57.
    [272]易洪,李占元,任长青.饱和盐溶液标准相对湿度表(国际建议)介绍.第七届全国湿度与水分学术交流会论文集,内蒙古呼和浩特,1998,70-72.
    [273]K.matsubara,S.Kawata,and S.Minami,Optical chemical sensor based on surface plasma measurement.Applied Optics,1998;27:1160-1163.
    [274]G.Matteo,M.Franco,and G.Giorgio,Direct measurement of refractive-index dispersion of transparent media by white-light interferometry.Applied Optics,2003;42:3910-3914.
    [275]J.Raty,K,E,Peiponen,Measurement of refractive index of liquids using S-and p-polarized light.Measurement Science and Technology,2000;11:74-76.
    [276]B.Argha,M.Sayak,K.V.Rishi,Fiber optic sensing of liquid refractive index.Sensors and Actuators B:Chemical,2007;123:594-605.
    [277]C.B.Kim and C.B.Su,Measurement of the refractive index of liquids at 1.3 and 1.5micron using a fibre optic Fresnel ratio meter.Measurement Science and Technology,2004;15:1683-1686.
    [278]R.Slavik,J.Ctyroky,Miniturization of fiber optical surface plasmon resonance sensor.Sensors and Actuators B:Chemical,1998;51:311-315.
    [279]A.Cusano,A.Cutolo,M.Giordano,et al.,Optoelectronic refractive index measurements:Applications to smart processing.Sensors Journal,2003;3:781-787.
    [280]R.Bernini,S.Campopiano,L.Zeni,Silicon Micromachined Hollow Optical Waveguides for Sensing Applications.Journal of Selected Topics in Quantum Electronics,2002;8:106-110.
    [281]R.Bemini,S.Campopiano,L.Zeni,et al.,ARROW optical waveguides based sensors.Sensors and Actuators B:Chemical,2004;100:143-146.
    [282]D.Yin,H.Schmidt,J.P.Barber,e al.,Integrated ARROW waveguides with hollow cores.Optics Express,2004;12:2710-2715.
    [283]J.Villatoro,D.M.Herna'ndez,D.Talavera,High resolution refractive index sensing with cladded multimode tapered optical fibre.Electronics Letters,2004;40:106-107.
    [284]S.W.James,R.P.Tatam,Optical fibre long-period grating sensors:characteristics and application.Measurement Science and Technology,2003;14:R49-R61.
    [285]T.Allsopa,F.Floreania,K.P.Jedrzejewskib,Tapered Fibre LPG device as a sensing element for refractive index.Proceeding of SPIE,2005;5855:443-446.
    [286]X.W.Shu,B.A.L.Gwandu,Y.Liu,Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement.Optics Letters,2001;26:774-776.
    [287]G.Laffont,P.Ferdinand,Tilted short-period fibre-Bragg-grating induced coupling to cladding modes for accurate refractometry.Measurement Science and Technology,2001;12:765-770.
    [288]C.L.Zhao,X.F.Yang,M.S.Demokan,et al.,Simultaneous Temperature and Refractive Index Measurements Using a 3°Slanted Multimode Fiber Bragg Grating.Journal of Lightwave Technology,2006;24:879-883.
    [289]K.Zhou,X.Chen,L.Zhang,et al.,High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings.Electronics Letters,2004;40:232-234.
    [290]王廷云,陈振宜,沈育青.单模光纤渐逝波传输分析.光电子·激光,2003;14(2):136-139.
    [291]邓立新,冯莹.光纤倏逝波生物传感器的结构研究.传感技术学报,2005;18(2):353-357.
    [292]H.P.Phillip,K.George,Fiber-optic evanescent field absorption sensor.Applied Physics Letters.1987;51(1):12-14.
    [293]G.Stewart,B.Culshaw,Optical waveguide modelling and design for evanescent field chemical sensors.Optical and Quantum Electronics,1994;26:S249-S259.
    [294]M.Quinten,A.Pack,R.Wannemacher,Scattering and extinction of evanescent waves by small particles, Applied Physics B, 1999; 68: 82-97.
    [295] S.K. Khijw, A. Nia, B.D. Gupta, Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe. Optical and Quantum Electronics, 1999; 31: 625-636
    [296] N. Chen, B.F. Yun, Y.P. Cui. Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing. Applied Physics Letters. 2006; 88:11902
    [297] A.N. Chryssis, S.S. Saini, S.M. Lee, et al., Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors. Photonics Technology Letters. 2006; 18(1): 178-180
    [298] W. Liang, Y.Y. Huang, Y. Xu, et al, Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters. 2005,86:151122.
    [299] M Monerie. Propagation in doubly clad single-mode fibers. Microwave Theory and Techniques, 1982; 82( 4): 381- 388.
    [300] B. D. Gupta, H. Dodeja, A.K.Tomra, Fiber-optic evanescent field absorption sensor based on a U-shaped probe. Optical and Quantum Electronics. 1996: 28: 1629-1639.
    
    [301] B.D. Gupta, A.K. Tomar, A. Sharma, A novel probe for an evanescent wave fibre-optic absorption sensor. Optical and Quantum Electronics, 1995; 27: 747-753.
    [302] P. Domachuk, I.C.M. Litter, M.C. Golomb, et al., Compact resonant integrated microfluidic refractometer. Applied Physics Letters, 2006; 88: 093513-1-3.
    [303] A. Iadicicco, S. Campopiano, A. Cutolo, Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings. Sensors and Actuators B: Chemical, 2006; 120: 231-237.
    [304] A. Iadicicco, A. Cusano, S. Campopiano, et al., Thinned Fiber Bragg Gratings as Refractive Index Sensors. Sensors Journal, 2005; 5: 1288-1295.
    [305] A. Iadicicco, S. Campopiano, A. Cutolo, et al., Refractive Index Sensor Based on Microstructured Fiber Bragg Grating. Photonics Technology Letters, 2005; 17: 1250-1252.
    [306] A. Iadicicco, A. Cutolo, S. Campopiano, et al., Advanced fiber optical refractometers based on partially etched fiber Bragg gratings. Proceedings of IEEE Sensors, 2004; 3: 1218-1221.
    [307] A. Cusano, A. Iadicicco, S. Campopiano, et al., Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors. Applied Optics, 2005; 7: 734-741.
    [308] X. F. Huang, Z. M. Chen, L. Y. Shao, et al., Design and Characteristics of Refractive Index Sensor based on Thinned and Microstructure Fiber Bragg Grating. Applied Optics, 2008; 47: 504-511.
    [309] M. Buric, J. Falk, K.P. Chen, Piezo-electric tunable fiber Bragg grating diode laser for chemical sensing using wavelength modulation spectroscopy. Optics Express, 2006; 14(6): 2178-2183.
    [310] A. Hidayat, Q.L. Wang, P. Niay, et al., Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings. Applied Optics, 2001; 40(16): 2632-2642.
    [311] Y.J Wang, Y.T Wang, Y.Y Kang, Study on Optical Fiber CO Gas Sensor Based on Difference Absorption. Institute of Physics Publishing Journal of Physics: Conference Series, 2006; 48:1172-1175.
    [313] Y. J. Wang, Y. T. Wang, Y. Y. Kang, Study on optical fiber CO gas sensor based on difference absorption. 2006, Institute of Physics Publishing Journal of Physics: Conference Series 48 :1172-1175.
    [314] K. Chan, H. Ito, H. Inaba, An optical-fiber-based gas sensor for remote absorption measurement of low-level CH4 gas in the near-infrared region. IEEE Journal of Lightwave Technology, 1984; LT-2(3): 234-237.
    [315] David Jacob, Nam Huu Tran, Fabien Bretenaker, and Albert Le Floch. Differential absorption measurement of methane with two spatially resolved laser lines, Applied Optics, 1994; 33(15): 3261-3264.
    [316] Mark G Alleny. Diode laser absorption sensors for gas-dynamic and combustion flows, Measurement Science and Technology, 1998; 9: 545-562.
    [317] Kinpui Chan, Hiromasa Ito, and Humio Inaba, Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link. Applied Optics, 1984; 23 (19): 3415-3420.
    [318] C. Goh, M.R. Mokhtar, S.A. Butler, S. Set, K. Kikuchi, and M. Ibsen, Wavelength Tuning of Fiber Bragg Gratings Over 90nm Using a Simple Tuning Package. IEEE Photonics. Technology Letters, 2003; 15: 1-3.
    
    [319] T. Iseki. A portable remote methane detector using an InGaAsP DFB laser. Environmental Geology, 2004; 46: 1064-1069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700