用户名: 密码: 验证码:
半导体激光器的宽谱快速调谐及其在气体检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于DFB半导体激光器的调谐机理,建立了半导体激光器的调谐特性的数学模型,结合实验,给出了激光器调谐特性传递函数,即辐射波长与电流、温度的关系。提出了快速温度调谐的方法并搭建了实验装置,通过给激光二极管组件中的热电制冷器(TEC)施加较大的周期性驱动电流改变激光腔温度实现快速连续调谐。TEC驱动电流为1.5A时,可在小于2.2s调谐时间内实现4nm的波长扫描,改善激光器散热条件等可以拓宽温度扫描范围从而实现更宽的波长扫描。
     本文提出了在快速温度调谐过程中的波长辨识方法,通过实测负温度系数(NTC)热敏电阻的温度值来预测LD chip的温度值,从而根据激光器的注入电流值和先验的激光器调谐特性实时预测快速调谐时激光器的输出波长。实验证明所述方法有效可行,波长预测的偏差小于10pm。建立了激光器模块(LDM)的等效电路模型,使用PSPICE仿真了不同环境温度下的温度调谐过程,验证了模型及波长补偿方法的适用性。
     利用宽谱温度调谐TDLAS系统进行了气体检测实验。首先,测得了CO_2气体在6320 cm~(-1) ~ 6336 cm~(-1)波段的波长调制光谱的二次谐波(WMS-2f)信号,得到了8个强吸收线和14个弱吸收线的位置,线强、线宽等数据。然后又测得了CO_2和CO混合气在6318.5cm~(-1)~6336 cm~(-1)波段的WMS-2f吸收谱。因此,宽谱TDLAS技术可以用于单一气体的高精度测量和多成分气体的同时检测。
     本文的创新之处在于提出了一种宽谱快速调谐方法以及调谐过程中激光器辐射波长精确预测方法,可用于调谐激光二极管吸收光谱(TDLAS)技术以及光通信等领域。
Based on the tuning mechanism of DFB LD, the mathematical model of LD tuning characteristic was established in the paper. The transfer function of LD tuning characteristic is given to express the relation between radiation wavelength and current and temperature. A fast thermal tuning method of LD was proposed, which we changed the LD temperature fast and continuously by exerting a larger cyclic drive current to the thermoelectric cooler (TEC) in LD component. With TEC drive current of 1.5A, 4nm wavelength range can be achieved in less than 2.2s. Temperature tunning range can be broadened by improving the conditions of laser cooling to obtain a wider wavelength scanning range.
     It’s very simple and effective. The prediction method of dynamic wavelength was proposed, that is, by measuring the temperature of NTC thermistor to predict the LD chip temperature, according to the injection current value and priori tuning characteristics of LD output wavelength can be estimated in real time. The experimental results showed that the deviation of absorption lines wavelength were less than 10pm, which proved the method described in this paper effective and feasible. An equivalent circuit model of LD module (LDM) was built and the performance of LDM has been simulated by PSPICE at different ambient temperatures,which proved the applicability of the wavelength prediction method.
     The second harmonic signal of wavelength modulation spectroscopy (WMS-2f) of CO_2 has been recorded between 6320 cm~(-1) and 6336 cm~(-1) by employing the wide range TDLAS system. 8 strong absorption lines and 14 weak lines were obtained in the region. The WMS-2f absorption spectra of CO_2 and CO gas mixture have been measured and analyzed as well. Therefore, wide range TDLAS technology can be used for high-precision measurement or simultaneous multiple gases detection.
     The innovations of this paper are that a fast tuning method of broad spectrum was proposed and the dynamic wavelength of the laser was identified precisely during the temperature tuning,which can be used for tunable diode laser absorption spectroscopy (TDLAS) technology and optical communication.
引文
[1]刘文清,崔志成,刘建国等,大气痕量气体测量的光谱学和化学技术,量子电子学报,2004,21(4):202~210
    [2]郑龙江,李鹏,秦瑞峰等,气体浓度检测光学技术的研究现状和发展趋势,激光与光电子学进展,2008,45(8):24~32
    [3]翟雅琼,基于准连续激光调制吸收光谱检测技术的研究:硕士学位论文,天津大学,2009
    [4]陈东,刘文清,张玉钧,调谐半导体激光光谱分时扫描多路方法,光子学报,2009,38(8):1901~1905
    [5]杜振辉,翟雅琼,李金义等,空气中挥发性有机物的光谱学在线监测技术,光谱学与光谱分析,2009,29(12):3199~3203
    [6]陈辉,高红,张云刚等,半导体激光器的发展及其在激光光谱学中的应用,哈尔滨师范大学自然科学学报,2005,21(1):40~43
    [7]张瑞君,波长可调谐激光器开发现状及市场应用前景,中国电子商情:基础电子,2008(7):52~55
    [8]张瑞君,波长可调谐DFB激光器及其进展,集成电路通讯,2006,24(2):43~47
    [9]齐丽云,石家纬,高鼎三,波长(频率)可调谐半导体激光器,半导体光电,1999,20(5):320~325
    [10] Upschulte, BL, Sonnenfroh, DM,Allen, MG,Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser , APPLIED OPTICS, 1999,38(9): 1506~1512
    [11] Wang. J, Sanders. ST, Jeffries. JB, et al ,Oxygen measurements at high pressures with vertical cavity surface-emitting lasers, APPLIED PHYSICS B-LASERS AND OPTICS,2001,72(7): 865-872
    [12] Nicolas, JC, Baranov, AN, Cuminal, Y, et al ,Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35μm ,APPLIED OPTICS, 1998 , 37(33): 7906~7911
    [13] J. Reid, J. Shewchun, B. K. Garside,et al,High sensitivity pollution detection employing tunable diode lasers, APPLIED OPTICS ,1978,17(2): 300~307
    [14] Salhi.A,Barat.D,Romanini.D,et alSingle-frequency Sb-based distributed-feedback lasers emitting at 2.3μm above room temperature for application in tunable diode laser absorption spectroscopy ,APPLIED OPTICS, 2006,45(20): 4957~4965
    [15] M. Aidaraliev, N.V. Zotova, S.A. Karandashov,et al, Midwave (3-4μm) InAsSbP/InGaAsSb infrared diode lasers as a source for gas sensors, Infrared Physics and Technology, 1996, 37:83~86
    [16] A. Ray,A. Bandyopadhyay, B. Ray,et al, Line-shape study of water vapour by tunable diode laser spectrometer in the 822–832 nm wavelength region, Applied Physics B,2004,79(10):915~921
    [17] D. Weidmann,D. Courtois,High quality infrared (8μm) diode laser source design for high resolution spectroscopy with precise temperature and current control,Infrared Physics&Technology,2000,41(6):61~371
    [18] Scott T. Sanders, Daniel W. Mattison, Jay B. Jeffries, and Ronald K. Hanson, Rapid temperature tuning of a 1.4-μm diode laser with application to high-pressure H2O absorption spectroscopy, OPTICS LETTERS, 2001,26(20):1568~1570
    [19] Benjamin Scherer, Jurgen Wollenstein, Matthias Weidemuller,et al, Oxygen measurements at high pressures using a low cost,polarization stabilized, widely tunable vertical-cavity surface-emitting laser, Smart Sensors, Actuators, and MEMS III, Proc. of SPIE,2007,6589(8):1~10
    [20] V. Weldon, J. O'Gorman, P. Phelan et al. H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57μm ,Sensors and Actuators B, 1995, 29:101~107
    [21] Hui Jia, Weixiong Zhao, Tingdong Cai et al. Absorption spectroscopy of ammonia between 6526 and 6538cm-1, Journal of Quantitative Spectroscopy & Radiative Transfer, 2009,110(6-7) : 347~357
    [22] Weixiong Zhao, Xiaoming Gao, Lunhua Deng et al,Absorption spectroscopy of formaldehyde at 1.573μm, Journal of Quantitative Spectroscopy & Radiative Transfer,2007,110(2):331~339
    [23] R. Lewicki, G.Wysocki, A.A.Kosterev et al. Carbon dioxide and ammonia detection using 2μm diode laser based quartz-enhanced photoacoustic spectroscopy ,Appl. Phys B, 2007 ,87, 157~162
    [24]黄德修,刘雪峰,半导体激光器及其应用,北京:国防工业出版社,2001
    [25]陆同兴,路轶群,激光光谱技术原理及应用,合肥:中国科学技术大学出版社,2006
    [26]江剑平,半导体激光器,北京:电子工业出版社,2000
    [27]徐庆扬,陈少武,可调谐半导体激光器研究及进展,物理,2004,33(7):508~514
    [28]栖原敏明(日),周南生译,半导体激光器基础,北京:科学出版社,2002
    [29]刘淑萍,贾跃虎,GeSi合金的等离子色散效应,半导体杂志,1998,23(2):11~13
    [30] http://www.dzsc.com/data/html/2008-12-3/74266.html
    [31] Larry A. Coldren, Scott W. Corzine(美),史寒星译,二极管激光器与集成光路,北京:北京邮电大学出版社,2006
    [32] Chiachung Chen,Evaluation of resistance–temperature calibration equations for NTC thermistors,Measurement,2009,42(4):1103~1111
    [33] ILX Lightwave, Application Note No. 4, Thermistors Calibration and the Steinhart–Hart Equation, ILX Lightwave Corporation, 2003
    [34] YANG Ming-wei, ZHOU Zhao-ying, Numerical analysis on heat transfer of laser diode module by equivalent electrical network method, OPTOELECTRONICS LETTERS,2008,4(3):180~183
    [35] J.A.Chavez, J.A.Ortega, J.Salazar et al., SPICE Model of Thermoelectric Elements Including Thermal Effects, Proc. Instrumentation and Measurement Technology Conference, 2000,2:1019~1023
    [36] Todd Wey, On the Behavioral Modeling of a Thermoelectric Cooler and Mechanical Assembly,IEEE,2006,7:277~280
    [37] Daniel Mitrani, Jordi Salazar ,Antoni Turo, et al., One-dimensional modeling of TE devices considering temperature-dependent parameters using SPICE, Microelectronics Journal, 2009,40:1398~1405
    [38]李毅,蒋群杰,武斌等,非制冷980nm泵浦激光器封装技术,红外与激光工程,2006,35(10):110~114
    [39]庞长林,王晓浩,周兆英等,小型半导体制冷系统的参数辨识,仪器仪表学报,2003,24(6):605~607
    [40]齐汝宾,基于调谐激光光谱技术的痕量气体检测技术研究:硕士学位论文,天津大学,2008
    [41]胡波,在线光谱数据的滤波器优化与TDLAS系统集成:硕士学位论文,天津大学,2010
    [42] J.Reid,D.Labrie, Second-Harmonic Detection with Tunable Diode Lasers-Comparison of Experiment and Theory, Applied Physics B,1981, 26:203~210
    [43] Simon Lineykin, Sam Ben-Yaakov, Analysis of Thermoelectric Coolers by a Spice-Compatible Equivalent-Circuit Model, IEEE Power Electronics Letters, 2005,3(2):63~66
    [44]七维高科有限公司,综合优化软件包1stOpt使用手册
    [45]陈本永,杨万福,严利平,激光频率(波长)测量技术研究现状及发展,激光杂志,2009,30(2):1~3
    [46] L.S.Rothman,D.Jacquemart,A.Barbe,et al, The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 96 (2):139~204
    [47]马维光,尹王保,黄涛等,气体峰值吸收系数随压强变化关系的理论分析,光谱学与光谱分析,2004,24(2):135~137
    [48]邓勃,原子吸收光谱分析的原理、技术和应用,北京:清华大学出版社,2004
    [49] E. D. Hinkley, HIGH-RESOLUTION INFRARED SPECTROSCOPY WITH A TUNABLE DIODE LASER, Appl. Phys.Lett,1970,16(9):351~354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700