用户名: 密码: 验证码:
驻极体中空间电荷新型测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体材料在某些因素的作用下,改变了自身电荷的分布状态,或者俘获了外来电荷,使得在固体材料内部出现了局部的净电荷,这种电荷就是所谓的空间电荷。我们对固体材料中空间电荷关注的原因主要来自于两个方面:其一,如果空间电荷能够在固体材料中长期保持,该固体材料就会带有极性,这就形成了所谓的驻极体材料;其二,空间电荷在固体材料中的存储或变化,会引起固体材料内局部电场产生畸变,进一步使固体材料的局部性质发生变化。为了深入理解固体材料的工作性质和服役特性,需要对固体材料,特别是驻极体材料中空间电荷的存储机制和分布状态进行测量和表征。本文针对这一问题展开如下工作:
     第一,对空间电荷的形成机理、表征的意义和现有的空间电荷表征方法及技术进行综述和评论,总结存在的问题和发展趋势。指出对空间电荷的表征可以分成两个方面:其一是,对电荷陷阱的表征,表征陷阱特性最重要的参数是陷阱深度;其二是,对电荷分布的表征,包括电荷在材料中的位置和数量。
     第二,详细描述用于表征电荷陷阱的热激电流与光激放电(光激电流)方法的原理、测量方法和实验技术。热激电流方法一般用于表征深度为1.5eV以下的浅陷阱。对于该方法,着重研究聚合物驻极体材料热激电流的特点和分析方法,以及可以代替实验方法分解复杂热激电流曲线的模拟计算分解方法,提出利用光照扣除的办法,对偶极电荷机制和空间电荷机制热激电流进行分离的实验方法。利用这些实验技术和分析方法,对聚酯样品的热激电流谱进行测量和分析,实验结果表明,在聚酯样品中存在着深度为0.30~0.73eV之间的准连续分布陷阱能级。
     光激电流方法一般用于表征深度在3eV以上的深陷阱。针对传统激发光源的缺点,首次利用光参量振荡器设计和实现了一种波长可以线性变化的激光激发光源用于光激电流谱测量系统,彻底解决了传统激发光源激发光强弱的问题,从而使光激电流方法成为实用化的实验方法。设计和研制基于新型激发光源的光激电流测量系统,并全面研究其工作特性。针对激光器在不同的波长上输出能量并不相同的实际问题,提出进行能量校正的方法,定义能量归一化光激电流谱的新概念。实际测试4种典型聚合物驻极体材料的光激电流谱,得到其电荷陷阱参数,分析电荷陷阱来源。实验结果表明,聚酯和聚酰亚胺样品中都具有约4eV的深陷阱,而聚丙烯和聚乙烯样品中的陷阱更深。根据这四种样品的结构特点推断,羰基是聚酯和聚酰亚胺样品中陷阱的可能来源,而聚丙烯和聚乙烯样品中的陷阱最可能的来源是,聚合过程中催化剂的残留物。
     第三,详细研究聚乙烯样品热激电流与光激电流的关系,发现热激电流与光激电流实际上来源于同一陷阱电荷的释放。根据实验结果,重新评价热激电流与光激电流方法的优劣。指出热激电流表征的陷阱深度被严重低估了,光激电流是表征聚合物驻极体材料中电荷陷阱的有效方法。
     第四,分析现有测量空间电荷空间分布的方法中,影响空间分辨率的关键因素。指出在现有的方法中,得到纳米级的电荷测量空间分辨率是不可能的。需要设计出一种基于太赫兹辐射脉冲和电光取样技术的空间电荷分布测量系统方案,该方案完全使用光学方法,其工作带宽能够达到太赫兹数量级,因此理论上可以实现纳米级的电荷测量空间分辨率。给出电光取样传感器的结构和原理,并提出整体测试系统的设计方案。为驻极体材料在微传感器和微执行器领域的应用提供可行的研究和实验方法。
Under the function of some factors, solid material may change its distribution state of its own charge, or capture external charge leading to some net charge occurred inside it. This kind of charge is so called“space charge”. Attention paid to the space charge in solid material mainly comes from the following two respects: first, if the space charge can be stored inside the solid for a long term, the solid material which can have polarity is so called“electret material”; Second, the storage or change of space charge in the solid material will cause distortion of local electric field inside it, thus further bring about local property change of the solid material. Therefore, in order to understand the performance characteristics and the service properties of solid material deeply, the storage mechanism and distribution state of space charge in material, especially in electret material are needed to be measured and characterized. This dissertation focuses on the problem and carries on the works as following:
     Firstly, the formation mechanism, the characterization significance, existing characteristic methods of space charge are summarized and reviewed, and the problems existed and development trend are concluded. This points out that the characterization to space charge can be divided into two respects: First, the depth of the trap is the most important parameter due to characterization trap; Second, the position and quantity of space charge in the material are very important due to the distribution state.
     Secondly, the principle, measurement method and experimental technique of thermally stimulated current (TSC) and photo-stimulated discharge (PSD) used for characterizing trap are described in detail in the dissertation. Generally, TSC method is used to characterize those shallow traps with depth lower than 1.5eV. For this method, TSC characteristic and analytical method of polymeric electret material, the simulation computing method which can replace experimental method for decomposing complex TSC curve are mainly studied, and comes up with an new experimental method, the illumination deduction method, to separate dipole charge mechanism TSC and space charge mechanism TSC. By applying these experimental techniques and analytical methods to the measurement and analysis of polyester sample’s TSC record, the result shows that quasi-continuity distribution trap energy rank with depth between 0.30~0.73eV existed in the polyester sample. Meanwhile, PSD method is generally used to characterize those deep traps with depth higher than 3eV. In light of the shortcoming of traditional stimulating light source, Optical Parametric Oscillator (OPO) is put into use for the first time to design and realize a laser stimulating light source with its wavelength linear change. This thoroughly solves the problem of weakness of traditional stimulating light source, and makes PSD method a practical experiment method. Besides, a PSD measurement system is designed based on the new type of stimulating light source, and its overall performance characteristics are studied. In light of the practical problem that laser device outputs different energy at different wavelength, an energy correction method is advanced, and the concept of PSD with normalized energy is defined. By practically testing the PSD spectrum of 4 types of polymeric electret materials, the trap parameter is acquired and the source of trap is analyzed. The experiment result shows that there are traps with their depth around 4eV existed in both polyester and polyimide samples, and the depth of traps in polypropylene and polyethylene samples are even deeper. According to the structural characteristics of the 4 sorts of samples, it can be inferred that carbonyl is the possible source of the trap in polyester and polyimide samples, and the residual catalyst during the polymerization process may be the most probable source of traps in polypropylene and polyethylene samples.
    
     Thirdly, the relations between TSC and PSD of polyethylene sample are studied in detail. The study discovers that the current of TSC and PSD is, in fact, from the same trap’s discharge. On the basis of experiment results, the advantage and disadvantage of TSC and PSD method are re-evaluated, and points out that the trap depth characterized by TSC has been seriously underrated and PSD is the effective method to state trap in polymeric electret.
     Finally, for existing methods used to measure the space distribution of space charge, the key factors affecting spatial resolution are analyzed, and points out that in the existing methods, it is impossible to acquire charge measurement with nano-scale resolution. Therefore, a new system for measuring the distribution of space charge is designed based on Terahertz pulse and electro-optic sampling techniques, the system completely uses optical method, and its working bandwidth can reach Terahertz level, as a result, it is theoretically possible to realize nano-scale spatial resolution of charge measurement. Further, the dissertation provides the structure and principle of electro-optical sampling sensor, puts forward the design proposal of overall measurement, this provides feasible research and experiment method for the application of polymeric electret to micro sensor and micro-actuator fields.
引文
[1]殷之文.电介质物理学(第二版)[M].北京:科学出版社,2003
    [2]王丽坤,李光,王光灿.灵敏度可调式压电薄膜水听器[J].应用声学.2003,22(2):35-38页
    [3]李东林,蒋楠祥,蔡崇成.双套筒式PVDF聚合物薄膜水听器[J].哈尔滨船舶工程学院学报.1991,12(1):49-56页
    [4] Gerhard-Multhaupt R.Less be more:Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducer[J].IEEE Trans. on DEI.2002,9(2):850-859P
    [5] Tsurumi Y,Suzuki Y,Kasogi N.Non-contact electrostatic microbearing using polymer electret.In: Proc. IEEE Int. Conf. MEMS.Tucson, USA.MAY 2008:511-514P
    [6] Schellin R,Hess G,Kressmann R.Corona-poled piezoelectric polymer layers of P(VDF-TrFE) for micromachined silicon microphones[J].J. Macromech. Microeng.1995,5(1):106-108P
    [7] Furukawa T,Vematsu Y,Asakawa K.Piezoelectricity,Pyroelectricity and Thermoelectricity in polymer films [J] .J.Appl.Polym.Sci.1968,12(4):2675-2689P
    [8] Hillenbrand J,Sessler G M.Piezoelectricity in cellular electret films [J] .IEEE Trans.DEI.2000,7(4):537-542P
    [9] Gerhard-Multhaupt R.Voided polymer Electrets-New materials , new challenges,new chances.In:Proc.ISE11,IEEE report,OZCH37383,Melbourne USA.2002:36-45P
    [10] Schwoediauer R,Neugschwandtner G S.Low-dielectric-constant cross linking polymers:film electrets with excellent charge stability [J] . Appl. Phys. Lett. 1999,75(6):3998-4000P
    [11] Sovolainen A,Kirjavainen K.Electrothermomechanical film part I:Design and characteristics [J].Macromolecular Science-Chemistry.1989 , A.26:583-591P
    [12] Hohm D,Sessler G M.An intergrated silicon-electret condenser microphone. In:Proc.11th Intern Congr.on Acoustics.Paris France.JUN 1983:29-32P
    [13] Thielemann C, Sessler G M.Capacitive silicon sensors for ultrasound [J].Acoustics.1997,83(4):715-720P
    [14] Ding H. Charge decay and transportation in Teflon AF films. In:Proc. 8th ISE.Paris France,MAY 1991,89-94P
    [15] Lakala J,Paajamen C.EMFi-new electret material for sensors and actuators. In:Proc.ISE10,IEEE Report,99CH36256.NewYork USA,JUL 1999:261-264P
    [16] Wegener M,Wirges W,Tiersch B. Porous polytrtrafluoroethy(PTFE)eletret films:porosity and time dependent charging behavior of the free surface[J]. J.porous Mater. 2007,14(5):111-118P
    [17] Sessler G M.Eletrets [M]. New York:Springer-verlay.1987
    [18]夏钟福.驻极体[M].北京:科学出版社,2001
    [19]夏钟福,王飞鹏.驻极体声传感器及其储电材料的现状[J].声技术.2003,28(7):40-43页
    [20] Ahmed N H,Srinivas.Review of space charge measurements in dielectrics [J].IEEE Trans.on EDI.1997,4(5):644-656P
    [21]陈少卿,成霞,王霞,屠德民.聚合物中空间电荷的研究[J].绝缘材料.2007,40(4):48-51页
    [22] Dissado L A, Mazzanti G, Montanari G C.The Role of Trapped Space Charges in the Electrical Aging of Insulating Materials[J].IEEE Trans. on DEI. 1997,4(5): 496-506P
    [23] Amin M , Salman M.Aging of polymeric insulators ( an overview )[J].Rev.Adv.Mater.Sci.2006,13(2):93-116P
    [24]郑飞虎,张冶文,肖春.聚合物电介质的击穿与空间电荷的关系[J] .材料科学与工程学报.2006,24(2): 316-320页
    [25]李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论.北京:科学出版社,2003
    [26]基泰尔C.固体物理导论.北京:化学工业出版社,2009
    [27] Braunlich P. Thermally Stimulated Relaxation in Solids[M]. Berlin: Springer-verlag, 1979
    [28]谢华.纳米杂化聚酰亚胺薄膜热激电流的研究.哈尔滨理工大学硕士学位论文.2005
    [29] Meunter M, Quirke N, ASLANIDES A. Molecular Modeling of Electron Traps in Polymer Insulators: Chemical Defects and Impurities[J]. Chem. Phys.2001, 115(4): 2876-2881P
    [30] Ieda M. Electrical Conduction and Carrier Traps in Polymeric Materials[J]. IEEE Trans. DEI.1984, 19(3): 162-178P
    [31]李晓吉,张冶文,夏钟福等.空间电荷在聚合物老化和击穿过程中的作用[J].科学通报.2000,45(23):2469-2475页
    [32]雷清泉.高聚物的结构与电性能[M].武汉:中理工大学出版社,1990
    [33] Kaneko K, Charge Transport and Space Charge Formation in Low-Density Polyethylene. In:Proc. of ICPADM, Xi’an, china, JUN 2000, 71-74P
    [34] Steven Boggs. A Rational Consideration of Space Charge [J]. IEEE Trans. DEI.2004, 20(4): 22-27P
    [35] Wangs K, Schetal S. Effects of Sample Preparation Conditions and Short Chains on Space Charge Formation in LDPE [J]. IEEE Trans. DEI.1996, 3(2): 153-160P
    [36]雷超.氟树脂结构形态与空间电荷关系研究.复旦大学硕士学位论文.2008
    [37] Chen R, KirshY.Analysis of Thermally Stimulated Process [M]. Oxford:Pergamon Press.1981
    [38] Mckeever S.W.S. Thermoluminescence of Solids[M]. Cambridge :Cambridge University Press.1985
    [39]钱人元,金祥风.有机固体中载流子陷阱表征[J].物理.1993,17(6):329-336页
    [40] Partridge R H. Electron Traps in Polyethylene [J], J: Polymer Sci. A, 1965,3(9):425-434P
    [41] Shimizu H, Kitano T, Natayama K. An Application of Thermally Stimulated Current Technique to Molecular Motion Analysis of Polymer. In:Proc. ISE9, Shanghai,China,JUN 1996,552-557P
    [42] Pender L F, Fleming R J. Thermoluminescence in Polystyrene[J].J. Phys.C:Solid State Phys. 1977,10(5): 1571~1586P
    [43] Markiewic z, Pleming R J. Simultaneous Thermally Stimulated Luminescence and Conductivity in Low-density Polyethylene [J]. J.Phys. D:Appl. Phys. 1988,21(2):349-355P
    [44] Lei Q Q, Fan Y.Effect of Inorgamic Filler on Thermally Stimulated Current in Low-density Polyethylene[J]. J. Materials Sci. &Tech. 1997,13(3):223-226P
    [45] Guissi S, Bindi R.Theoretical Model for Thermally Stimulated Luminescence, Conductivity and Exoelectronic Emmission[J].J.Phys.D:Appl. Phys. 1998, 31(1):137-145P
    [46] Kantorovich L N, Fogel G M. A Theoretical Description of Complex Thermoluminescence: II Method of Integral Equation [J]. J.Phys. D:Appl. Phys.1989,22(3):817-824P
    [47] Chen R, Hernyak W F. Competition between Excitation and Bleaching of Thermoluminescence [J]. J.Phys. D:Appl. Phys.1990,23(2): 724-728P
    [48] Bull P K. Kinetics of The Localised Transition Model for Thermoluminescece [J].J.Phys. D:Appl. Phys.1989,22(7): 1375-1379P
    [49] Hage Kyriakou J, Fleming R J. Determination of The Kinetic Order ofThermoluminescence in The Presence of Distribution of Elctron Trap Activation Energies[J].J.Phys. D:Appl Phys.1982,15(1):163-176P
    [50] Mahmoud A G, Arafah D E. Characterization of TL-glow-curves resulting from Sensitized TLD-100[J]. J.Phys. D: Appl. Phys.1998, 31(1):224-230P.
    [51] Rashidy M S.A New Method for Obtaining The Trap Paramethers of Complex ThermoluminescenceGlowPeaks[J].J.Phy.D:Appl.Phys.1996,29(7):1340-344P
    [52] Gartia R K, Singh S J. Determination of The Activation Energy of Thermally StimulatedLuminescence Peaks Obeying General-ordeer Kinetics [J]. Phys. State Sol.(a)1989,114(2):407-411P
    [53] Mills A, W.Sears D. Apparatus for The Measurement of Thermoluminescence, J.Phys E:Sci, Ins. 1977,10(1):51-56P
    [54] Baba M, Ghibaba K.A Compact Cryostat and A Sinple Photon-counting Unit for Microcomputer-controlled Themoluminescence Measuring System[J] Meas. Sci, Technol. 1991,2(6):1210-1212P
    [55] Shachar B, Horowitz Y S.Anomalous Thermally Induced Fading of Annealed and Unannealed Lif: Mg, Ti(TLD-100,Harshaw) Using Computerized GlowCurve Deconvolution[J]. J.Phys D:Appl. Phys. 1991,24(8):1649-1657P
    [56] Hoogenboom J E, Vries W D. Computerized Analysis of Glow Curves from Thermally Activated Processes [J]. J.Appl.Phys. 1988,64(6): 3193-3200P
    [57] Lei Q Q, Wang X. A New Method of Auto-separationg Thermally Stimulated Current [J]. J.Appl. Phys. 1992, 72(9): 4254-4257P
    [58] Kitis G., Gomez-Ros J M ,Tuyn J W N. Thermoluminescence Glow-curve Deconvolution Functions for First ,Second and General Order of Kinetics[J]. J.Phys. D:Appl .Phys. 1998,31(19):2636~2641P
    [59]王暄.聚合物热发光与热激电流联合谱仪的研究.西安交通大学博士学位论文,1999
    [60] Brodribb J D, Hughes D M. The Energy Spectrum of Traps in Insulators by Photon-induced Current Spectroscopy[J].Electrets.1972,15(3):177-187P
    [61] Takai Y, Mori K, Mizutani T. Investigation of Traps inγ-Irradiated Polyethylene by Photostimulated Detrapping Current Analysis [J]. Appl. Phys.1976, 15(12): 2341-2347P
    [62] Oda T, Utsumoi T, Kunano T. Observation of Photo-stimulated Detrapping Currents of FEP Teflon Electrets. In: Proc. IEEE 5th Intern. Conf. Electrets. Piscataway, NJ, IEEE Service Center, MAY 1985, 288-293P
    [63] Oda T, Utsumoi T, Matsubara G.. Observation of UV Photo-stimulated Currents of Teflon Electrets. In: Proc. IEEE 6th Intern. Conf. Electrets. Piscataway, NJ, IEEE Service Center. MAY 1988: 142-146P
    [64] Mellinger A, Gonzalez C. Photo-Stimulated Discharge in Electret Polymers: an Alternative Approach for Investigating Deep Traps [J]. IEEE Trans. on DEI. 2004, 11(2): 218-226P
    [65] Gonzalez C, Mellinger A. Photo-Stimulated Discharge of Highly Insulaing Polymers (PTFE and PETP). In: Proc. IEEE-CEIDP, London UK, JUN 2002,590-593P
    [66] Gonzalez C, Mellinger A. Energy Levels of Charge Traps in Polyethylene Terephthalate Films. In: Proc. IEEE-ISCD 2004, Toulouse, France,OCT 2004 843-847P
    [67] Mellinger A, Singh R, Gonzalez C. In Situ Observation of Optically and Thermal Induced Charge Depletion in Chromophoredoped Cyclic Olefin Copolymers. In:Proc. IEEE-CEIDP 2004, Boulder, Colorado, USA, MAY 2004, 498-501P
    [68]李吉晓,张冶文,彭宗仁.用Piezo-PWP法和TSD法研究交联聚乙烯中的空间电荷[J].科学快报.2001,7(4):504-505页
    [69] Coelho R, Aladennize B, Guillaumond F. Charge Build up in Lossy Dielectrics with Induced Inhomogeneities[J].IEEE Trans. DEI.1997, 4(5): 477-486P
    [70] Chapeau F, Alouik C, Lewiner J. The Pressure Wave Propagation Method for theAnalysis of Insulating Materials: Application to LDPE Used in HV cables [J]. IEEE Trans. on DEI.1986, 21(3): 405-410P
    [71] Gerhard-Mulphaupt R. Analysis of Pressure-wave Methods for the Nondestructive Determination of Spatial Charge or Field Distributions in Dielectrics [J]. Phys. Rev. B 1983, 27(4): 2494-2504P
    [72] Fukuma M, Fukunaga K, Laurent C. Two-dimensional Structure of Charge Packets in Polyethylene under High DC Fields [J]. Appl. Phys. Lett. 2006, 88(25): 253110-1-253110-2P
    [73] Thomas C, Teyssedre G, Laurent C. A New Method for Space Charge Measurements under Periodic Stress of Arbitrary Waveform by the Pulsed Electro-acoustic Method [J]. IEEE Trans. DEI.2008, 15(2): 554-559P
    [74] Mazzanti G, Montanari G C, Alison J M. A Space-Charge Based Method for the Estimation of Apparent Mobility and Trap Depth as Markers for Insulation Degradation-Theoretical Basis and Experimental Validation [J]. IEEE Trans. on DEI, 2003, 10(2): 187-197P
    [75] Fukunaga K, Maeno T. Three-dimensional space charge measurements of printed circuit boards. In: Proc. 2001 Annual report conference on electrical insulation ang dielectric phenomena. Tokyo Japan, DEC 2001, 465-468P
    [76] Dagher G, Hole S. A preliminary study of space charge distribution measurements at namometer spatial resolution [J]. IEEE Trans. On DEI. 2006,13(5):1035-1041P
    [77] Kivits P, Hagebeuk H. Evaluation of the Model for Thermally Stimulated Luminescence and Conductivity, Reliability of Trap Depth Determination [J].J.Lumin. 1977,15(1):1-9P
    [78] Sorokin P P, Lankard J R. Stimulated Emission Observed from an Organic Dye Chloroaluminium Phtalocyanine [J]. Res Develop.1966, (10): 162-163P
    [79] Soffer B H, Farland B B. Continuously Tunable Narrowband Organic Dye Lasers [J]. Appl. Phys, Lett.1967, (10): 266-267P
    [80] Moulton P F. Pulse-Pumped Operation of Divalent Transition-Matal Laser [J]. Phys. Rev. Lett. 1982, 32(8):354-360P
    [81] Giordmaine J A, Miller R C. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies [J]. Phys.Rev.Lett. 1965, (14): 973-976P
    [82] Akhmanov S A, Kovrigin A I, Koslolv V A. Tunable Parametric Light Generation with KDP Crystal[J]. JETP Lett.1966, (3): 241-245P
    [83]姚建栓.非线性光学频率变换及激光调谐技术[M].北京:科学出版社,1995
    [84]柳强,王月珠.发展中的光学参量振荡器技术[J].激光杂志.1999,(20): 11-14页
    [85]宋春荣,赵建君.高效率可调谐光参量振荡器输出线宽的理论研究[J].激光杂志.2004,25(6):27-31页
    [86]耿优福,姚建铨,谭晓玲.波长可调谐准相位匹配光学参量振荡器[J].激光与红外.2006,36(9):34-37页
    [87]包照日格图,裴博.1.57μm非临界相位匹配KTP参量振荡器[J].激光与红外. 2001,31(5):13-17页
    [88]段宝兴.无机纳米复合聚酰亚胺热激电流研究.哈尔滨理工大学硕士学位论文,2004
    [89]许蕾.无机纳米—聚酰亚胺薄膜制备及在高压力下松驰特性研究.哈尔滨理工大学硕士学位论文,2003
    [90]蒋晓娟.聚合物热释光的测量及谱特性研究.哈尔滨理工大学硕士学位论文,2003
    [91]茹占军.新型有机光折变材料的合成及载流子陷阱表征方法研究.哈尔滨理工大学硕士学位论文,2005
    [92]李明.介质阻挡放电材料对放电特性影响的研究.华北电力大学(北京)博士学位论文,2008
    [93]张维国.高压力下无机纳米杂化聚酰亚胺薄膜的热激电流谱特性.哈尔滨理工大学硕士学位论文,2004
    [94]张颖.光致放电及其测量系统研究.哈尔滨理工大学硕士学位论文,2007
    [95]钱士雄,王恭明.非线性光学—原理与进展.上海:复旦大学出版社,2001
    [96]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989
    [97] D.A.朗.拉曼光谱学[M].北京:科学出版社,1983
    [98] LaFemina J P, Arjavalingam G. Photophysics of Poly(eth-ylene terephthalate): Ultraviolet Absorption and Emission[J]. Phys. Chem. 1991, 95(2):984-988P
    [99]朱诚身.聚合物结构分析[M].北京:科学出版社,2005
    [100]Kressmann R,Sessler G M,Gunther P.Space-charge electrets[J].IEEE Trans.on DEI.1996,3(5):607-623P
    [101]许景周,张希成.太赫兹科学技术和应用[M].北京:北京大学出版社,2007
    [102]Karpowicz N,Dai J,Zhang X C.Recent developments in broad band terahertz spectroscopy[J].Inter.J.High speed electronics and systems.2008,18(4):1005-1012P
    [103]Wang C B.Simulation analysis of rectangular dielectric-loaded traveling wave amplifiers for THz sources[J].Phy.Rev.ST Accel.Beams.2007,10(3):120701-1-120701-15P
    [104]Jeon T I , Grischkowsky G.Electrical and optical characterization of conduting poly-3-methylthiophene film by THz time-domain spectroscopy [J]. Appl.Phys.Lett.2001,79(25):4142-4144P
    [105]王璐,刘庆纲,李锁印等.超高速电光采样技术及应用[J].微纳电子技术.2006,4:197-202页
    [106]Alexander M S,Hayden L M.Efficient electrooptic polymers for THzapplication[J].J.Phys.Chem.B.2004,108(9):8515-8522P
    [107]Shiktorov P , Starikov E.Modeling of THz-electro-optical sampling measurements [J].Acta Phys.Pol.A.2008,113(3):913-916P
    [108]Park S G,Melloch M R,Weiner A M. Comparison of terahertz waveforms measured by electro-optic and photoconductive sampling [J]. Appl. Phys. Lett. 1998,73(22):3184-3186P
    [109]Zhao G,Schouten R N.Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter[J]. Rev.Sci. Inst. 2002,73(4):1715-1719P
    [110]Planken P C,Rijmenam C E,Schouten R N.Opto-electronic pulsed THz systems[J].Semiconductor Sci.& Tech.2005,20(5):s121-s127P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700