用户名: 密码: 验证码:
一种波浪压电发电装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,海洋无线传感器节点应用越来越广泛,但传感器节点电源主要是传统电池。现有传统电池使用寿命短、须定期更换或充电,难以满足传感网络节点长寿命稳定供电要求;人们开始研究利用环境能量发电技术,将其转化为电能并存储,为无线传感器供电。风能、太阳能容易受天气影响,利用波浪能发电的电源可就地取能,不受天气影响。研究波浪能发电技术为海洋无线传感器节点供电具有重要意义。
     本文设计了一种点吸收式阻尼板—浮子波浪压电发电装置;建立了波能初级换能结构的物理模型,仿真结果表明在波浪作用下,初级换能结构中阻尼板与浮子产生幅值为0.075m的相对运动;制作了波能换能装置样机,在实际海域进行实验得出,波浪作用下,样机中阻尼板与浮子产生了最大幅值约为0.05m的相对运动,验证了波能初级换能结构方案的可行性,为后续波能次级换能结构的研究提供了参考。
     对波能次级换能结构进行了理论研究,仿真结果表明激励磁铁与压电悬臂梁磁铁的磁极平行或垂直配置下,周期性永磁力冲击能够实现将超低频的波浪运动转化为压电悬臂梁高频振动,提高压电悬臂梁的振动响应频率。
     最后,本文设计并搭建了直线压电发电机实验装置,主要是为了模拟波能次级换能结构并进行实验测试,实验平台主要包括步进电机控制系统、滑块行程为±0.075m的对心曲柄滑块机构以及压电悬臂梁等。单一或阵列两个激励磁铁的运动行程为±0.075m,以0.5Hz的频率冲击压电悬臂梁的发电实验表明:两种磁铁磁极配置下,非接触—永磁冲击能够实现将超低频的波浪运动转化为压电悬臂梁的高频振动,实验结果与仿真结果相符,验证了非接触永磁冲击增频转换原理。
In recent years, the demand for ocean wireless sensor nodes has been spreading speedily. The sensors nodes are usually designed to run on traditional battery. As the traditional battery are limited in capacity and have to be replaced or charged constantly, they are unable to meet the sensor nodes, which require the long life and stable batteries. People start to research the generation technology of environment energy. The ambient energy can be converted and stored up to provide power for the wireless sensor nodes. Solar energy or wind energy can be affected easily by weather. The wave energy converters can extract wave energy, and can not be affected by weather. The study of the wave energy harvesting technology is provided with general significance for the ocean wireless sensor nodes.
     A novel point-absorber wave energy piezoelectric generator has been designed with a damping plate. The mathematic model of the wave energy primary transducer was established. Simulation result shows that the relative displacement of0.075m is generated between the float and the drag board. A wave primary transducer was made and tested in the actual ocean wave environment. Test result shows the relative displacement of0.05m is generated between the float and the drag board in the prototype. So the feasibility of wave energy primary transducer theory model and program was verified. The simulation and test results can give us a reference to study the secondary transducer in the future.
     The theory of the secondary transducer has been studied. The simulation result shows that as excitation magnet and the cantilever magnet pole was parallel or perpendicular, magnet impacting periodicity can convert the wave motion with super low frequency into high frequency vibration of the piezoelectric cantilever, and has improved the vibration frequency of the piezoelectric cantilever.
     Finally, The linear piezoelectric generator experimental device has been designed and set up to simulate the wave energy primary transducer. The device has consisted of the control system of the step-motor and the slider-crank mechanism with the stroke of0.15m and the piezoelectric cantilever. The stroke of the single or array double excitation magnets is±75mm, frequency is0.5Hz, the test of impacting the piezoelectric cantilever shows that non-contact impacting can convert the wave motion with super low frequency into high-frequency vibration of the piezoelectric cantilever with configuration of the two magnet poles, The experimental results are consistent with the numerical results, and has verified the non-contact increased frequency conversion principle with the permanent magnet impact.
引文
[1]Falnes J. A review of wave-energy extraction[J]. Marine Structures,2007,20:185-201.
    [2]http://www.emec.org.uk/wave_energy_developers.asp.
    [3]International Energy Agency. Energy and Environmental Technologies to Respond to Global Climate Change Concerns, OECD/IEA, Paris,1994[C].
    [4]苏林.海洋能源利用进展[J].中国高校科技与产业化.2004,6(6):12-14.
    [5]韩冰峰,褚金奎,熊叶胜等.海洋波浪能研究进展[J].电网与清洁能源.Vol28.Feb.2012.
    [6]任建莉,钟英杰,张雪梅等.海洋波能发电的现状与前景[J].浙江工业大学学报.2006,34(1):69-73.
    [7]游亚戈.我国海洋能产业状况.高科技与产业化[J].2008.07.
    [8]Salter, S. H. Wave power, Nature, Vol.249, No.5459,1974.
    [9]Emmanuel B. Agamloh, Alan K. Wallace, Annette Von Jouanne, A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system[J]. Renewable Eenergy.2008,33:520-529.
    [10]Irina A. Ivanova, Olov Agren, Hans Bernhoff, et al. Simulation of wave-energy converter with octagonal linear generator[J]. IEEE Journal of oceanic engineering.2005,30:619-629.
    [11]张丽珍,羊晓晨,王世明等.海洋波浪能发电装置的研究现状与发展现状[J].湖北农业科学.2011.50(1):161-164.
    [12]许耀.海上无人值守传感器综合电源装置及壳体研究[D].物理电子学.2010.南京理工大学:南京.
    [13]游亚戈,盛松伟,吴必军.海洋波浪能发电技术现状与前景[J].第十五届中国海洋(岸)工程学术讨论会论文集.2011.08:P743.2.
    [14]Nielsen K, Plum C. Comparison of experimental and theoretical results of the motions of a McCabe wave pump[C]. In the fourth European Wind Energy conference.2002,56-62.
    [15]平丽,振荡浮子式波能转换装置性能的研究[D].港口、海岸及近海工程.2005,大连理工大学:大连.
    [16]Bastien, S. P. Ocean Wave Energy Harvesting Buoy for Sensors[J]. Energy Conversion Congress and Exposition,2009. ECCE 2009. IEEE.
    [17]Wu Bi jun, Lin Hongjun, You Yage, et al. Study on two optimizing methods of the oscillating type wave energy conversion devices [J]. Acta Energiae Solaris Sinica,2010,31(6):769-774.
    [18]孟扬.浮子式波浪发电装置设计及其功率特性研究[D].哈尔滨:哈尔滨工程大学,2009.
    [19]Ted K. A. Brekken. Ocean Wave Energy Overview and Research at Oregon State University. Power Electronics and Machines in Wind Applications[J],2009. PEMWA 2009. IEEE.
    [20]R. Murray, J. Rastegar. Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys[C]. Active and passive smart structures and integrated system,2009.
    [21]Bingfeng Han,Jinkui Chu, Yesheng Xiong. Modeling and simulation of the novel wave energy[C]. Electrical and Control Engineering,2011 International Conference on.
    [22]张永良,林政.海洋波浪压电发电装置的进展[J].中国可再生能源学会海洋能专业委员会第三届学术讨论会论文集.2010.
    [23]杜小振.环境振动驱动微型压电发电装置的关键技术研究[D].大连:大连理工大学,2008.
    [24]邱大洪.波浪理论及其在工程上的应用[M].北京:北京海洋出版社,1985:97-99.
    [25]McCormick, M. E. Ocean Engineering Wave Mechanics[M]. Wiley Interscience, New York, 1981.
    [26]Alain Clement, et al. Wave energy in Europe current status and perspectives[J]. Renewable and Sustainable Energy Reviews 6 (2002) 405-31.
    [27]Kraemer, D. R. B, Ohl, C.0. G, et al. Comparison of experimental and theoretical results of the motions of a McCabe Wave Pump[C], Proc.4th European Wave Energy Conference, Aalborg University, Denmark,2000.34-48.
    [28]Nielsen K, Plum C. Comparison of experimental and theoretical results of the motions of a McCabe 955 wave pump[C].4th EWEC, Aalborg, Denmark,2000-56-62.
    [29]刁向红,吴必军.波浪能发电中水平阻尼板的实验和二维数值模拟[C].中国可再生能源学会海洋能专业委员会第三届学术讨论会论文集.
    [30]McCormick, M. E. A. Modified linear Analysis of a Wave-Energy Conversion Buoy [J]. Ocean Engineering.1976,3(3):133-144.
    [31]滕斌,勾莹,刘昌凤《WAFDUTI.4程序使用说明》[P].大连理工大学海岸和近海工程国家重点实验室,2008.
    [32]王传昆,陆德超.海洋能资源区划[J].北京:国家海洋局科技司,1989:13-14.
    [33]C. B.Williams, S. Shearwood, M. A. Ilarradine, et al. Development of an electromagnetic micro-generator[J]. IEE Proc. Circuits, Devices and Syst,2001,148(6):337-342.
    [34]S. Roundy et. Al, Improving Power Output for Vibration-Based Energy Scavenger[J]. Pervasive computing, vol.7, pp.1536-1268,2005.
    [35]李涛.收集环境振动能微压电发电装置的制作与测试[D].微机电工程.2009,大连理工大学:大连.
    [36]Priya, S. Modeling of Electric Energy Harvesting Using Piezoelectric Windmi 11 [J]. Appl. Phys. Lett.,87:184101.
    [37]Lee, D., Carman, G., Murphy, et al. Novel Micro Vibration Energy Harvesting Device Using Frequency Up Conversion[C]. In:Proceedings of 14th International Conference on Solid-State Sensors, Actuators and Microsystems,1014 June, Lyon, pp.871 874.
    [38]Kulah H, Najaf i K. Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications[J].IEEE Sensor J.8261-8.
    [39]Jung S M, Yun K S. Energy-harvesting device with mechanical frequency-up conversion mechanism for increase power efficiency and wideband operation[J].Appl. Phys. Lett.96 11906.
    [40]Gilles Akqun, Jean-Paul. Yonnet.3D Analytical Calculation of the forces exerted between two cuboidal magnets[J]. IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-20, NO.5. SEPTEMBER1984.
    [41]汪越胜.材料力学[M].北京:电子工业出版社,2006.
    [42]温志渝.振动式压电发电机及其在无线传感器网络中的应用[J].机械工程.2008,11:75-79.
    [43]阚君武,唐可洪,王淑云.压电悬臂梁发电装置的建模与仿真分析[J].光学精密工程.2008.Vol.16.No.1.
    [44]Donald R. DelBalzo, drag body design in support of wave energy harvesting[J]. 10.1109/OCEANS.2010.5664590.
    [45]刘善林,王会生,胡鹏浩.基于速度要求的曲柄滑块机构设计及Excel仿真[J].机械设计与制造.2009.1.
    [46]刘善林.曲柄滑块机构中滑块最大速度的位置探讨[J].机械,2008,35(7)18-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700