用户名: 密码: 验证码:
荧光和共振瑞利散射测定环境中钯、银和铜的新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人们的生产生活中由于重金属的广泛应用,因此含重金属的污染物通过各种途径进入环境,对环境造成严重污染,远远超出了环境对它的承载能力,污染问题日益凸显。重金属的种类很多,检测手段也很多,一些常见的重金属(如铅、铬、汞、镉、锌和铝等)的检测引起了人们的广泛研究,而一些不常见的金属离子相对研究较少,我们选择了钯、银和铜三种重金属离子为研究对象,研究和发展了吸收光谱法、荧光光谱法和共振瑞利散射光谱法测定上述重金属的新体系和新方法,方法简便、快速、灵敏、具有良好的准确度和精密度。
     1、荧光猝灭法测定Pd(Ⅱ)的研究
     (1)钯(Ⅱ)对氟喹诺酮类抗生素的荧光猝灭作用及其分析应用研究
     在弱酸性至近中性介质中,培氟沙星(PEF)、左氧氟沙星(LEV)、洛美沙星(LOM)和氟罗沙星(FLE)等4种氟喹诺酮类抗生素具有相似的激发光谱和荧光光谱,它们的最大激发波长和最大发射波长分别位于276~293nm和442~487nm之间。当它们分别与Pd(Ⅱ)反应形成配合物时,均能导致荧光的猝灭。文中以Pd(II)-PEF体系为例,研究了吸收光谱、荧光光谱的变化,并用量子化学的密度泛函方法(B3LYP)对Pd采用LanL2DZ赝势基组计算,对其他原子采用6-31G(d,p)基组计算,所有计算都采用极化连续介质溶剂化模型(PCM),同时考虑到溶剂的影响,对反应进行了全优化计算。结果表明,此时PEF分子由于质子的转移以两性分子(HL±)型体存在,它与Pd(Ⅱ)反应时Pd(Ⅱ)与2分子的PEF中-COO-和>C=O结合形成两个6元环结构的平面四边形螯合物。根据吸收光谱的变化,温度的升高使荧光猝灭值减小以及高的双分子猝灭常数Kq,表明这类荧光猝灭是由于Pd()与氟喹诺酮抗生素形成配合物产生的一种静态猝灭,荧光猝灭反应具有较高的灵敏度。当用上述四种氟喹诺酮作荧光探针测定Pd(Ⅱ)时的检出限在1.74-3.42ng.mL-1之间,其中以Pd(II)-PEF体系最灵敏,它更适用于Pd(Ⅱ)的荧光测定。当用PEF作荧光探针时,方法有较好的选择性,多数金属离子和无机阴离子具有较大的允许量。方法简便、灵敏、快速具有良好的准确度和精密度,因此可用于某些环境水样中Pd(Ⅱ)的测定,结果与ICP-AES法一致。
     (2)钯(Ⅱ)和十二烷基苯磺酸钠对氟喹诺酮类抗生素荧光的协同猝灭作用及其分析应用
     在弱酸性至中性介质中,当Pd(Ⅱ)或十二烷基苯磺酸钠(SDBS)分别与某些FLQs反应时,均能使FLQs的荧光发生不同程度的猝灭,但是当钯(Ⅱ)和SDBS同时与FLQs反应形成三元配合物时,能产生一种增强的荧光协同猝灭作用,可大大提高猝灭反应的灵敏度,其中Pd(II)-PEF-SDBS对Pd(Ⅱ)的检出限可达0.13ng.mL-1,方法有良好的选择性并且简便、快速,用于某些环境水样中钯的测定,得到了满意的结果。文中研究了某些氟喹诺酮类抗生素的荧光光谱特征,Pd(Ⅱ)和SDBS对它们荧光的协同猝灭反应的适宜条件、影响因素、相关的分析化学特性及其分析应用。文中还以Pd(II)-PEF-SDBS体系为例,根据吸收光谱、荧光光谱的变化,以及量子化学的密度泛函法(B3LYP)和极化连续溶剂化模型(PCM),并使用化学计算方法对于FLQs的存在型体、电荷分布及三元配合物的组成和结构进行研究,表明此时FLQs是以HL±的两性型体存在,它与Pd(Ⅱ)反应形成2:1的四配位平面四边形结构的螯合物,而螯合物中两个PEF分子中另一端哌嗪环中带正电荷的质子化的氮原子则分别与2个SDBS结合而形成Pd(II):PEF:SDBS为1:2:2的三元配合物。实验结果还表明正是Pd(Ⅱ)和SDBS与FLQs之间形成的基态三元配合物导致了Pd()或SDBS对于FLQs具有更高的荧光猝灭效率。因此,对于钯的测定也具有更好的分析应用价值。
     (3)钯(Ⅱ)和溴化十六烷基吡啶对氟喹诺酮类抗生素荧光的协同猝灭作用及其分析应用
     在弱酸性至中性介质中,当Pd(II)或溴化十六烷基吡啶(CPB)分别与四种氟喹诺酮类抗生素(FLQs)反应时,均能使FLQs的荧光发生不同程度的猝灭,但是当钯(Ⅱ)和CPB同时存在并与FLQs反应形成三元配合物时,产生一种荧光协同猝灭作用,使FLQs的荧光显著降低,协同猝灭的强度大于分别作用时的总和,大大提高猝灭反应的灵敏度,其中Pd(II)-PEF-CPB对Pd(Ⅱ)的检出限可达0.16ng.mL-,方法有良好的选择性并且简便、快速,用于某些环境水样中钯的测定,得到了满意的结果。文中研究了四种氟喹诺酮类抗生素的荧光光谱特征,Pd(Ⅱ)和CPB对它们荧光的协同猝灭反应的适宜条件、影响因素、相关的分析化学特性及其分析应用。文中还以Pd(II)-PEF-CPB体系为例,根据吸收光谱、荧光光谱的变化,以及量子化学的密度泛函法(B3LYP)和极化连续溶剂化模型(PCM),并使用化学计算方法对于FLQs的存在型体、电荷分布及三元配合物的组成和结构进行研究,表明此时FLQs是以HL±的两性型体存在,PEF与CPB通过静电引力形成1:1的复合物,当加入Pd(Ⅱ)后,Pd(Ⅱ)嵌入复合物与-COO-和>C=O螯合形成Pd(II):PEF:CPB为1:2:2的三元配合物,实验结果还表明正是Pd(Ⅱ)和CPB与FLQs之间形成的基态三元配合物导致了Pd(Ⅱ)或CPB对于FLQs具有更高的荧光猝灭效率,猝灭过程为静态猝灭。
     2、环境中痕量银测定的新方法研究
     (1)Ag(Ⅰ)与赤藓红体系的吸收和共振瑞利散射光谱及其分析应用研究
     在4.4-4.6的弱酸性介质中,银(Ⅰ)能与赤藓红反应,形成疏水性的二元离子缔合物。反应产物的体积增大以及分子表面疏水性增强(分子的电荷被中和以及分子中含大量疏水的芳基和烷基骨架)使离子缔合物分子与水相之间形成一种疏水界面,产生一种表面增强的瑞利散射效应,引起共振瑞利散射(RRS)的显著增强,并出现新的发射光谱。据此可借共振瑞利散射发展出测定银的新方法。方法有很高的灵敏度,对银的检出限在0.12ng.mL-1.本文还研究了影响因素和适宜的反应条件,考察了共存物质的影响,表明方法有较好良好的选择性,此方法可用于环境水样中银的测定,得到了较好的结果。而且我们还对相关反应机理进行了讨论。
     (2)银(Ⅰ)与曙红Y体系的吸收和荧光光谱及其分析应用研究
     在4.4-4.6的弱酸性介质中,Ag(Ⅰ)能与曙红Y(EY)反应,通过静电引力的作用形成一种二元离子缔合物,结合比为1:1。根据吸收光谱的变化,温度对荧光猝灭的影响以及高的双分子猝灭常数Kq,表明这类荧光猝灭是由于Ag(Ⅰ)直接作用于EY的氧原子上,引起溴原子电荷的显著变化使荧光光谱和吸收光谱发生变化,从而产生了一种静态猝灭过程,荧光猝灭反应具有较高的灵敏度。据此可借荧光猝灭法发展出测定银的新方法。方法有很高的灵敏度,对银的检出限在0.24ng.mL-1.本文研究了荧光猝灭的最佳反应条件和影响因素,实验了共存物质的影响,表明方法有很好的选择性,此方法可用于环境水样中银的测定,测定结果与标准方法结果一致。我们还讨论相关的反应机理。
     3、环境中痕量铜测定的新方法研究
     (1)铜(Ⅰ)与赤藓红体系的吸收和共振瑞利散射光谱及其分析应用研究
     在4.4-4.6的弱酸性介质中,赤藓红以一价阴离子的形式存在,Cu(Ⅱ)被维生素C(VC)还原生成一价铜后,通过静电引力与赤藓红反应,形成疏水性的二元离子缔合物,反应导致共振瑞利散射(RRS)的显著增强,并出现新的发射光谱。由于RRS位于产物的吸收带中,反应产物的体积增大,极化率的降低以及分子表面疏水性增强使离子缔合物分子与水相之间形成一种疏水界面,产生一种表面增强的瑞利散射效应。据此可借共振瑞利散射技术可以建立一种测定铜离子的新方法。方法有很高的灵敏度,对铜的检出限在0.58ng.mL-1.本文研究了RRS适宜的反应条件和影响因素,实验了共存物质的影响,表明方法有较好的选择性,当以方法测定环境水样中Cu(Ⅱ)时,测定结果与标准方法一致,得到了较好的结果。同时我们还对相关反应机理进行了讨论。
     (2)铜(Ⅰ)与曙红Y体系的吸收和荧光光谱及其分析应用研究
     我们的研究发现,在4.4~4.6的弱酸性介质中,Cu(II)被维生素C(VC)还原生成一价Cu,Cu(I)与曙红Y(EY)反应,形成二元离子缔合物,导致EY的荧光强度显著猝灭。根据吸收光谱的变化,温度对荧光猝灭的影响以及高的双分子猝灭常数Kq,可以推断该反应导致的荧光猝灭是由于Cu(I)与EY形成了一种二元离子缔合物,从而产生的一种静态猝灭过程,荧光猝灭反应具有较高的灵敏度。据此建立了以EY为荧光探针,荧光猝灭法测定铜的新方法,对铜的检出限为3.7ng.mL-1.本文研究了适宜的反应条件和影响因素,考察了共存物质的影响,表明方法有较好的选择性,此方法可用于环境水样中铜的测定,测定结果与标准方法进行了比较,结果一致,另外我们还对相关反应机理进行了讨论。
Heavy metals have been used widely in the production and live of people, the heavy metals pollution become more and more serious with them into the environment through various ways, it is far beyond the carrying capacity of the environment, the problem of pollution is becoming more and more highlighted. There are many types of heavy metal, and their detection methods are different, the determinations of some common heavy metals including lead, chromium, mercury, cadmium, zinc and aluminum were extensively studied by people, and some of the unusual metal ions was less. Taking palladium, silver and Copper as research objects, we have studied and developed new systems and methods for the determination of the above heavy metal in environment using spectrophotometry, fluorescence and Resonance Rayleigh scattering techniques. The methods are rapid, simple and reliable.
     1Study on the fluorescence quenching methods for determination of Pd (Ⅱ)
     (1) The fluorescence quenching of fluoroquinolones by palladium(II) and its analytical application
     In a weakly acidic or neutral medium, fluoroquinolones (FLQs) such as pefloxacin (PEF), levofloxacin (LEV), lomefloxacin (LOM) and fleroxacin (FLE), have similar fluorescence spectral characteristics. Their fluorescence intensities could be significantly quenched by palladium. In this work, taking Pd(II)-PEF system as an example, the absorption and fluorescence spectral changes were investigated. In addition, the density functional theory (DFT) methods (B3LYP) was performed to optimize those compounds. A Pd (II) molecule bond two PEF molecules to form a square planar chelate with two six-membered rings, and the quenching effect of Pd(II) on PEF fluorescence is a single static quenching event. The detection limits were in the range of1.74-3.42ng/mL using the above four FLQs. Most of metal ions and inorganic anions have no interference. The method was applied to the determination of Pd(II) in environmental water.
     (2) Synergistic fluorescence quenching of quinolone antibiotics by palladium(II) and sodium dodecyl benzene sulfonate and the analytical application
     In weakly acidic and neutral media, palladium (II) or sodium dodecyl benzene sulfonate (SDBS) can result in fluorescence quenching of quinolone antibiotics (FLQs) to some different extents. When Pd(II) react with SDBS and FLQs to form ternary complexes, a enhanced fluorescence quenching of FLQs could be observed. This synergistic fluorescence quenching reaction has high sensitivity for Pd(II) and the detection limits could reach to0.13ng.mL-1. Based on this, a rapid, simple and reliable method for determination of Pd(II) in aqueous samples was established. The spectral characteristics of the fluorescence spectra were investigated. The optimum reaction conditions of the method were tested. The interaction between Pd(II), FLQs and SDBS was investigated by absorption spectra, fluorescence spectra, and was calculated by quantum chemical using density function theory B3LYP under polarizable continuum model (PCM). The pefloxacin (PEF) molecules exist as zwitter-ion of HL±reacting with Pd(II) to form2:1plane quadridentate chelates, which further binds two SDBS molecules to form ternary complexes (Pd(II):PEF:SDBS=1:2:2). The ternary complexes resulted in higher fluorescence quenching efficiency and enhanced the sensitivity for determination of Pd(II).
     (3) Synergistic fluorescence quenching of quinolone antibiotics by palladium(II) and Hexadecyl pyridine bromide and the analytical application
     In weakly acidic and neutral media, palladium (II) or Hexadecyl pyridine bromide (CPB) can result in fluorescence quenching of quinolone antibiotics (FLQs) to some different extents. When Pd(II) react with CPB and FLQs to form ternary complexes, a enhanced fluorescence quenching of FLQs could be observed. This synergistic fluorescence quenching reaction has high sensitivity for Pd(II) and the detection limits could reach to0.16ng.mL-1. Based on this, a rapid, simple and reliable method for determination of Pd(II) in aqueous samples was established. The spectral characteristics of the fluorescence spectra were investigated. The optimum reaction conditions of the method were tested. The interaction between Pd(II), FLQs and CPB was investigated by absorption spectra, fluorescence spectra, and was calculated by quantum chemical using density function theory B3LYP under polarizable continuum model (PCM). The ternary complexes resulted in higher fluorescence quenching efficiency and enhanced the sensitivity for determination of Pd(II).
     2Study on new methods for the determination of silver in environment
     (1) Study on the Interaction between Ag(I) and Erythrosin by Absorption and Resonance Rayleigh Scattering Spectra
     In weakly acidic and neutral media, Erythrosin (Ery) can react with Ag(I) to form ion-association complex. As a result, the increase of molecular volum and hydrophobic interface forms are advantageous to enhancement of RRS intensities, and a new RRS spectrum appeared. A sensitive, simple and new method for the determination of Ag(I) by using Ery as the probe has been developed. The detection limits for Ag(I) was0.12ng.mL-1for RRS method. The spectral characteristics of the RRS spectra were investigated. The optimum reaction conditions of the method were tested. The method was applied to the determination of Ag(I) in environmental water, and the result was fine. In addition, the reaction mechanism was discussed.
     (2) Study on the Interaction between Ag(I) and Eosin Y by Absorption and fluorescence Spectra
     In weakly acidic and neutral media, Eosin Y (EY) can react with Ag(I) to form ion-association complex. As a result, the complex could quench the fluorescence of EY. Based on change of absorption spectra, increase of temperature resulting in fluorescence quenching decrease and high apparent quenching constants, these indicated the quenching effect was a static quenching event. We developed a new method for the determination of Ag(I), the detection limits was0.24ng.mL-1. The optimum reaction conditions of the method were tested. The method was applied to the determination of Ag(I) in environmental water, and the result was fine. In addition, the reaction mechanism was discussed.
     3Study on new methods for the determination of copper in environment
     (1) Study on the interaction Cu(I) and Erythrosin by Absorption and Resonance Rayleigh Scattering Spectra
     In weakly acidic and neutral media, Cu(II) is redox to Cu(I) by vitamin C, Erythrosin (Ery) can react with Cu(I) to form ion-association complex. As a result, the increase of molecular volum and hydrophobic interface forms are advantageous to enhancement of RRS intensities, and a new RRS spectrum appeared. A sensitive, simple and new method for the determination of Cu(I) by using Ery as the probe has been developed. The detection limits for Cu(II) was0.58ng.mL-1for RRS method. The spectral characteristics of the RRS spectra were investigated. The optimum reaction conditions of the method were tested. The method was applied to the determination of Ag(I) in environmental water, and the result was fine. In addition, the reaction mechanism was discussed.
     (2) Study on the Interaction Cu(I) and Eosin Y by Absorption and fluorescence Spectra
     In weakly acidic and neutral media, Cu(II) is redox to Cu(I) by vitamin C, Eosin Y (EY) can react with Cu(I) to form ion-association complex. As a result, the complex could quench the fluorescence of EY. Based on change of absorption spectra, increase of temperature resulting in fluorescence quenching decrease and high apparent quenching constants, these indicated the quenching effect was a static quenching event. We developed a new method for the determination of Cu(II), the detection limits was3.7ng.mL-1. The optimum reaction conditions of the method were tested. The method was applied to the determination of Cu(II) in environmental water, and the result was fine. In addition, the reaction mechanism was discussed.
引文
[1]姚群峰,董春洲,邻菲罗啉分光光度法测定铁的价态,中国卫生检验杂志,2000,10(1): 3-5
    [2]龙如成,孟平,铬天青S光度法测定钝化镁中微量铝,冶金分析,2003,23(2):69-70
    [3]王怀公,甲基百里香酚蓝三元络合物光度法测定空气中的微量镉,高等学校化学学报,1981,1:47-53
    [4]国际环境保护总局,水和废水监测分析方法(第四版)(增补版),北京,中国环境出版社,2002
    [5]曹小安,陈永亨,林华敏,2-羟基-5-磺酸基苯基重氮氨基偶氮苯分光光度法测定痕量汞(Ⅱ),光谱学与光谱分析,2004,24(4):474-476
    [6]陈百玲,方艳芬,黄应平,黄柏成,邻羟基苯基荧光酮分光光度法测定铅,分析科学学报,2011,27(4):510-512
    [7]吕艳阳,张玉霞,2,5-二(邻羟苯基)-1,3,4-噻二唑分光光度法测定银,冶金分析,2007,27(1):445-47
    [8]Divrikli U., Kartal A. A., Soylak M., et al. Journal of Hazardous Materials,2007, 145(3):459-464.
    [9]Ciftci H., Yalcin H., Eren E., Desalination,2010,256(1/3):48-53.
    [10]马戈,谢文兵,伍一根,等.横向加热石墨炉原子吸收光谱法测定茶叶中铅和镉.光谱学与光谱分析,2003,23(6):1183-1184.
    [11]林焰,林宇,张炯涛,冶金分析,2001,21(5):55-57.
    [12]胡晓斌,韩志萍,王趁义,分析科学学报,2008,24(1):94-96.
    [13]李银保,彭湘君,张道英,等,光谱实验室,2009,26(3):599-6018.
    [14]傅峋,王文桂,谢克金,等.利用多功能LB-HG型雾化氢化物发生器电感藕合等离子体原子发射光谱联用测定人发中砷、锑、汞、铅.分析化学,1998,26(4):431-434.
    [15]谯斌宗,杨元,文君,等.连续氢化物发生端视ICP-AES法直接测定纯净水中痕量铅.中国卫生检验杂志,2001,11(4):385-386.
    [16]鲁丹,阮毅,电感辐合等离子体原子发射光谱法测定工业废水中铅、镉、铬和砷,理化检验-化学分册,2007,43(12):1022-1023.
    [17]Mohammad F., Yadollah Y., Abolfazl S., et al. A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal Chim Acta,2010,659(1/2):172-177.
    [18]Escudero L. A., Martinez L. D., Salonia J. A., et al, Determination of Zn(II) in natural waters by ICP-OES with on-line preconcentration using a simple solid phase extraction system, Microchemical Journal,2010,95 (2):164-168.
    [19]张国福,彭亮,贺殿,交流示波极谱法测定工业污水中的微量汞,分析科学学报,2006,22(3):365-366.
    [20]Vukomanovic D. V., Vanloon G. V, Nakatsu K., et al. Determination of Chromium (VI) and (III) by Adsorptive Stripping Voltammetry with Pyrocatechol Violet, Microchemical Journal,1997,57(1):86-95.
    [21]王玉娥,示波极谱法测定水中的六价铬,现代预防医学,2003,30(5):745.
    [22]Yilmaz T., Somer G., Investigation of polarographic interference between Se(IV) and Cr(VI), its elimination and application to Gerede river water, Journal of Electroanalytical Chemistry,2009,633(1):193-197.
    [23]王镇浦等译.仪器分析.北京:北京大学出版社,1986
    [24]Ghoneim M. M., Hassanein A. M., Hammam E., Beltagi A. M., Simultaneous determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe dissolved in natural water by differential pulse stripping voltammetry with a hanging mercury drop electrode. Fresenius'journal of analytical chemistry 2000,367(4):378-383
    [25]Ensagi A., Khayamian T., Benvidi A., Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network. Analytica Chimica Acta,2006,561(1-2):225-232.
    [26]Feeney R., Kounaves S. P., Voltammetric Measurement of Arsenic in Natural Waters. Talanta,2002,58(1),23-31.
    [27]赵藻藩.仪器分析.北京:高等教育出版社,1990.
    [28]Dai X., Nekrassova O., Hyde M. E., et al. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Analytical Chemistry, 2004,76 (19):5924-5929.
    [29]Locatelli C. Voltammetric methods for the simultaneous determination of trace metals in foods, plant tissues and soils. Journal of the Science of Food and Agriculture,2007,87:305-312.
    [30]Long J, Yukio N. Cathodic stripping voltammetric determination of As(III) with in situ plated bismuth-film electrode using the catalytic hydrogen wave. Analytica Chimica Acta,2007,593(1):1-6.
    [31]Colombo C., Constant M. G., Simultaneous determination of several trace metals in seawater using cathodic stripping voltammetry with mixed ligands, Anal Chim Acta,1997,337(1):29-40.
    [32]罗立强,王霞,李秋霞,等,方波阳极溶出伏安法同时测定水样中微量的铅和镉,分析化学,2009,37(A03):75-75.
    [33]Yantasee W., Hongsirikarn K., Warner C. L., et al. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles, Analyst,2008, 133(3):348-355.
    [34]Tarley C. R. T., Santos V. S., Baeta B. E. L., et al., Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode, Journal of Hazardous Materials,2009,169(1):256-262.
    [35]Clark A. C., Scollary G. R., Determination of total copper in white wine by stripping potentiometry utilising medium exchange. Analytica Chimica Acta 2000, 413(1-2):25-32.
    [36]董学芝,赵海兰,艾天宗,等.催化电位滴定法测定铬鞣剂中铬III,分析化学研究简报,2001,29(1):77-79.
    [37]Xie Y., Schubothe K. M., Lebrilla C. B., Infrared laser isolation of ions in fourier
    transform mass spectrometry. Analytical Chemistry,2003,75(1):160-164.
    [38]Ottingham K., Hybrid vigor for mass spectrometers. Analytical Chemistry,2003, 75(14):315A-319A.
    [39]王华建,黎艳红,丰伟悦,等.反相离子对色谱-电感耦合等离子体质谱联用技术测定水中痕量Cr(Ⅲ)与Cr(Ⅵ)分析化学,2009,37(3):433-436.
    [40]Jimenez M. S., Velarte R., Castillo J. R., Performance of different preconcentration columns used in sequential injection analysis and inductively coupled plasma-mass spectrometry for multielemental determination in seawater, Spectrochimica Acta Part B:Atomic Spectroscopy,2002,117(3):391-402.
    [41]张慧,杜鲲,桑志培,等. 利奈唑胺的合成,中国医药,工业杂志,2011,42(4):245-247.
    [42]赵肖玉,马燕如,徐正. 利奈唑胺合成工艺的改进.华西药学杂志,2007,22(2):179-181.
    [43]陈庆,张拥军,陈炜,等.利奈唑胺的合成新方法.中国药物化学杂志,2010,20(4):287-289.
    [44]Madhusudhan G, Reddy G. O., Rajesh T., et al. Stereoselec-tive synthesis of novel (R)-and (S)-5-azidomethyl-2-ox-azolidinones from (S)-epichlorohydrin:a key precursorfor the oxazolidinone class of antibacterial agents. Tetra-hedron Lett, 2008,49(19):3060-3062.
    [45]Augthun M., Kirkpatrick C., Schyma S., Studies on the pneumoconiosis risk of dental laboratory technicians due to palladium particles in dustDtsch. Zahnaerztl. Z.,1991,46:519-522
    [46]Freiesleben D., Wagner B., Hartl H., et al. Dissolution of palladium and platinum powder by biogenic compounds, Z. Naturforsch B,1993,48(6):847-848
    [47]Zimmermann S., MMenzel C, Stubenb D., Taraschewski H., Sures B., Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents. Environ. Pollut.,2003,124:1-5.
    [48]Durbin P. W., Scott K. G, Hamilton J. G.., The Distribution of Radioisotopes of Some Heavy Metals in the Rat.,Univ. Calif. Publ. Pharmacol,1957,3:1-34.
    [49]Moore W., Hysell D., Crocker W., Stara J., Biological fate of 103Pd in rats following different routes of exposure Environ. Res.,1974,8:234-240.
    [50]Moore W., Hysell D., Hall L., et al. Environ. Health Perspect,1975,10:63-71.
    [51]Ando A., Ando I., Bio. Metals,1994,7:185-192
    [52]Holbrook D. J., Washington M. E., Leake H. B., Brubaker P. E., Studies on the evaluation of the toxicity of various salts of lead, manganese, platinum, and palladium. Environ Health Persp, Environ. Health. Perspect.,1975,10:95-101.
    [53]Holbrook D. J., Washington M. E., Leake H., Brubaker P. E., Effects of platinum and palladium salts on parameters of drug metabolism in rat liver, Toxicol. Environ. Health,1976,1:1067-1079.
    [54]Roshchin A. V., Veselov V. G., Panova A. I., Industrial toxicology of metals of the platinum group. J. Hyg. Epidemiol. Microbiol. Immunol.,1984,28:17-24.
    [55]Phielepeit T., Legrum W., Netter K. J., KI6tzer W. T., Different effects of intraperitoneally and orally administered palladium chloride on the hepatic monooxygenase system of male miceArch. Toxicol. Suppl.,1989,13:357-362
    [56]Helm D., Association between palladium urinary concentrations and diseases of the thyroid and the immune system, Sci. Tot. Environ.,2002,299(1-3):247-249
    [57]Wahlberg J., Boman A., J. Contact Dermat.,1990,1:112-113
    [58]Rosner G., Merget R., in Danyan A D (Ed.), Immunotoxiicity of Metals and Immunoto-xicology, Plenun Press, New York,1990,93,
    [59]Henne A.,WiesmLler G A., Leng G., in Konietzo J and DuPuis H (Eds),Handbuch der Arbeitsmedizin, ChaPter IV-2.1.18, Eeomed Verlag, Landsberg a.L.,1994,1
    [60]Turner A., Lewis M. S., Shams L., Brown M. T., Uptake of platinum group elements by the marine macroalga, Ulva lactuca, Marine Chem.,2007,105:271-280.
    [61]王娟,朱若华,施燕支,北京市区公路旁尘土中铂族元素的化学形态,环境化学,2007,26(4):528-530.
    [62]Lottermoser B. G., Morteani G, Sewage sludges:Toxic substances, fertilizers or secondary metal resources? Episodes,1993,16:329-333.
    [63]张小玲,孙佳娟,鲁亚妮,旦正多杰,双波长叠加2-(5-硝基-2-吡啶偶氮)-5-二甲氨基苯胺分光光度法同时测定铑和钯的研究,冶金分析,2000,21(4),23-26
    [64]王园朝,徐国春,3,5-二溴吡啶偶氮对甲氧基酚与钯(II)的显色反应研究,咸宁师专学报,2000,20(6),47-49
    [65]王园朝,刘冰,.4-(2-噻唑偶氮)-5-二乙氨基苯胺光度法测定钯的研究冶金分析,2001,21(5),18-20
    [66]夏东升,崔凤灵,马东兰,李建平,王玉炉,N-十一烷基-N,-(对氨基苯磺酸钠)硫脲光度法测定微量钯(II),冶金分析,1999,19(1),9-12
    [67]赵建为,李树昌,黄章杰,等,5-(苯基偶氮)-8-[(对硝基苯偶氮)氨基]喹啉的合成及其分析应用研究,黄金,2000,21(9),42-44
    [68]王园朝,肖明良,2-(6-甲基苯并噻唑)偶氮间苯二酚与铂显色反应研究,分析科学学报,2001,17(2),120-122
    [69]东兰,侯凤莲,崔凤灵,李建平,王玉炉,Synthesis of the new reagent N-hexyl-N'-(sodium aminobenzenesulfonate) thiourea (HXPT) and its spectrophotometric study with Pd2+,光谱学与光谱分析,1999,19(5),755-757
    [70]房彦军,安太成,金星龙,陈慧,卟啉与钯的显色反应研究及应用,冶金分析,2000,20(3),40-42
    [71]何晓玲,刘清理,贾力,新显色剂3,3-二甲基联苯重氮氨基偶氮苯与钯显色反应的研究及其应用,分析试验室,1999,18(4),46-48
    [72]何晓玲,章鹏飞,刘清理,新试剂邻羧基苯基重氮氨基-4-苯基-2-噻唑的合成及其与钯显色反应的研究,化学试剂,1999,21(3),173-175
    [73]张佳娟,张小玲,应用2-(5-硝基-2-比啶偶氮)-5-二甲氨基苯胺同时测定铑与钯,分析试验室,2001,20(4),12-15
    [74]朱展才,方燕华,施华珠,.分光光度法测定痕量钯,分析测试技术与仪器,2001,7(3),163-165
    [75]张雷,马东兰,孙瑞霞,李建平,新显色剂N-对甲苯基-N’-(氨基对苯磺酸钠)硫脲的合成及与钯(II)的显色反应,分析测试学报,1999,18(2),10-13
    [76]赵建为,何严萍,徐其亨,新试剂5-(4-乙酰氨基苯偶氮)-8-(2,4-二硝基苯)氨基喹啉与钯显色反应的研究,黄金,1999,20(9),46-47
    [77]李蕾,陈江敏,饶美香,4-(2-噻唑偶氮)-苯二甘氨酸的合成及其与钯显色反应的研究,分析试验室,2002,21(1),43-45
    [78]张小玲,刘根起,李春迎,新显色剂1-羟基-2-(5-NO_2-2-吡啶偶氮)-8-氨基-3,6-萘二磺酸与钯的显色反应,分析试验室,2002,21(3),9-11
    [79]王玉枝,沈广宇,张亚学,陈同森,新显色剂meso-四(3-氯-4-羟基-5-甲氧基苯基)卟啉与Pd(Ⅱ)的显色反应,理化检验一化学分册,2001,37(6),263-265
    [80]张雷,马东兰,王玉炉,李建平,N-辛基N’-(氨基对苯磺酸钠)硫脲的合成及与钯(Ⅱ)显色反应的研究和应用,分析试验室,1999,18(5),5-9
    [81]刘根起,张光,周艳梅,王贵方,分光光度法同时测定铂和钯的新体系,分析试验室,1999,18(6),23-26
    [82]王园朝,杨水金,2-(5-溴-2-吡啶偶氮)-5-甲氧基酚与钯的显色反应及络合物结构,分析化学,2000,28(7),922
    [83]阮琼,赵建为,杨光宇,徐其亨,5-(3-苯甲酸偶氮)-8-氨基喹啉与钯显色反应及其应用冶金分析,1999,19(6),4-5
    [84]黄章杰,胡秋芬,陈家希,尹家元,5,7-二溴[杯(4)芳烃偶氮]氨基喹啉与Pd(Ⅱ)显色反应的研究与应用,贵金属,2002,23(3),48-51
    [85]陈国树,陆颖,催化褪色法测定痕量钯(Ⅱ),分析化学,1995,23(4):489
    [86]周之荣,张丽珍,催化动力学光度法测定痕量钯的研究,稀有金属1997,21(5):333
    [87]周之荣,彭道锋,溴酸钾氧化偶氮砷Ⅲ动力学光度法测定钯,分析试验室2001,20(4):9
    [88]刘海玲,段燕平,溴酸钾-偶氮氯膦Ⅲ-硫酸体系催化光度法测定钯,理化检验-化学分册,1995,31(6):333
    [89]成荣明,杨宝林,何建伟等,催化分光光度法测定微量钯,分析试验室1999,18(2):35
    [90]周之荣,张丽珍,催化分光光度法测定痕量钯(Ⅱ)的研究,南昌大学学报(理科版),1997,21(2):127
    [91]周之荣,张丽珍,溴酸钾-酸性品红-硫酸体系催化动力学光度法测定痕量钯,光谱实验室,1997,14(3):57
    [92]李方,程书麟,催化动力学光度法测定钯的研究:罗丹明B-H202指示反应体系,理化检验-化学分册,1991,27(5):286
    [93]李彬,崔艳霞,王瑾等,荧光动力学法测定痕量钯,理化检验-化学分册, 2001,37(4):160
    [94]张瑾,李慧芝,孟利军,催化动力学光度法测定钯的研究,化学分析计量,2000,9(2):24
    [95]周之荣,溴酸钾氧化甲基绿催化光度法测定痕量钯,稀有金属,1998,22(5):355
    [96]李小华,马美华,冯连生,催化动力学光度法测定痕量钯,分析试验室,1998,17(6):43
    [97]Sanchez-Pedreno C., Albero Quinto M. I.,Carcia Garcia M. S., Study of the reaction of Pyronine G with hypophosphite anion. Kinetic determination of palladium(II), Silver(Ⅰ) and iodide ion.Quim Anal.1985,4(2):168
    [98]程新园,黄干初,新催化动力学光度法测定痕量钯,分析试验室,1999,18(1):67
    [99]蒋治良,李芳,催化荧光光度法测定痕量钯,贵金属,1998,19(4):33
    [100]Hernandez Cordoba M., Sanchez-Pedreno C., Vinas Lopez-Pelegrin P., Analytical application of the reaction between Nile Blue and the hypophosphite anion. Kinetic determination of palladium and gold. An. Univ. Murcia Cinec,1984,43(1-4):79
    [101]李宏林,樊江莉,刘晓健,孙世国,彭孝军,罗丹明类钯离子荧光分子探针,高等学校化学学报,2010,31:1725-1728
    [102]袁泽利,乐清华,江波,吴庆,胡庆红,张铭钦,张成江,罗丹明型简易Pd2+高选择性增强型荧光探针,分析试验室,2013,32,38-42
    [103]周艳梅,徐文国, 童爱军,新型钯荧光探针的应用研究,北京理工大学学报,2006,26:369-372
    [104]L李少旦,李德洁,罗正华,李华茜,钙黄绿素荧光猝灭法测定痕量钯(II),冶金分析,2007,10:59-61
    [105]文志明,王怀公,食用合成色素柠檬黄高灵敏度荧光光度法测定钯(II)的研究,高等学校化学学报,1989,5:462-465
    [106]朱国辉,朱展才,薛珲,陈毅玲,荧光猝灭测定痕量钯,分析化学,2003,31,:48-51
    [107]Mihcael S., Mihcael S., Anal.Chim.Acta.,1996,38:1
    [108]Chwastowska J., Skwara W., Sterlinska E., Pszonicki L., Talanta,2004,64:224
    [109]林海山,微波消解-原子吸收法测定氧化铝为载体的钯催化剂中钯,分析试验室,2006,25(6):75-77
    [110]陈阳,金薇,杨永健,电感耦合等离子体发射光谱法测定盐酸奈必洛尔原料药中催化剂钯的残留量,药物分析杂志,2012,32(12):2226-2228
    [111]刘先国,方金东,活性炭吸附-电感耦合等离子体发射光谱法测定化探样品 中痕量金铂钯,贵金属,2002,23(1),33-35
    [112]李光俐,徐光,何姣,王应进,安中庆,ICP-AES法测定抗癌药物奥沙利铂中微量银,钯,镉,2009,30(3):34
    [113]Gomez M. B., Gomez M.M., Paleios M. A., Control of interferences in the determination of Pt, Pd and Rh in airborne particulate matter by inductively coupled plasma mass spectrometry, Anal. Chim. Acta.,2000,404(2):285
    [114]Barbnate C.,Cozzi G., Cpaodaglio G., et al. Determination of Rh, Pd, and Pt in polar and alpine snow and ice by double-focusing ICP-MS with microconcentric nebulization, Anal. Chem.,1999,71(19):4125-4133
    [115]朱若华,王娟,施燕支,电感耦合等离子体质谱法测定植物中痕量钯的光谱干扰消除方法的研究,光谱学与光谱分析,2007,27(4):792~795.
    [116]Dai X., Kobeerl C., Froxehl H., Determination of platinum group elements in impact breccias using neutron activation analysis and ultrasonic nebulization inductively coupled plasma mass spectrometry after anion exchange preconcentration Anal. Chim. Acta.,2001,436:79-85
    [117]Dybczynski R., Majchrzak J., Stokowska H., Szyszko H., Chem. Anal. (Warsaw, Pol.) 1990,35:609
    [118]Gong H., Li X., Y-type, C-rich DNA probe for electrochemical detection of silver ion and cystcine. Analyst,2011,136 (11):2242-2246.
    [119]Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T., Huxley A. J. M., McCoy C. P., Rademacher J. T., Rice T. E., Signaling Recognition Events with Fluorescent Sensors and Switches, Chem.Rev.,1997,97:1515-1566
    [120]Valeur B., Leray I., Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev.,2000,205:3-40
    [121]Leigh D. A.,Morales M. A. F.,Perez E. M.,Wong J. K. Y.,Saiz C. G.,Slawin A. M. Z.,Carmichael A. J.,Haddleton D.M.,Brouwer A. M.,Buma W. J.,Wurpel G. W. H.,Leon S.,Zerbetto F., Patterning through Controlled Submolecular Motion: Rotaxane-Based Switches and Logic Gates that Function in Solution and Polymer Films, Angew. Chem. Int. Ed.,2005,44:3062-3067
    [122]Feng Q. L.,Wu J.,Chen G. Q.,Cui F. Z.,Kim T. N.,Kim J. O., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res.,2005,52:662-668
    [123]Lansdown A. B., Silver. I:Its antibacterial properties and mechanism of action, J. Wound Care,2002,11:125-130
    [124]Yamanaka M.,HaraK.,Kudo J., Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis, Appl. Environ. Microbiol.,2005,71(11):7589-7593
    [125]《生活饮用水卫生标准》(GB 5749-2006)
    [126]张建民,季力强,试纸法快速测定溶液中的银离子,化学世界,1996,7:372-374
    [127]葛玉宏,银离子测试试纸色阶的制备,光谱实验室,2006,2:258-260
    [128]牛家治,徐月鸿,李响,制备银离子测试试纸的研究,淮北煤师院学报(自然科学版),1998,19(3):37-39
    [129]徐斌,陈才元,徐中秋,2-对亚氨基噻唑偶氮苯分光光度法测定银,冶金分析,2005,25(5):56-58
    [130]冯泳兰,刘智芳,1-吡啶-3-[4-(苯基偶氮)苯基]-三氮烯光度法测定银,冶金分析,2008,28(4):65-67
    [131]程晓宏,谢超,史玉坤,胶体金/DNA体系法快速测定不同水质中银离子,交通医学,2013,27(1):27-31
    [132]陶庭先,吴之传,单宁酸分光光度法测微量银,安徽机电学院学报,1996,1:65-68
    [133]陈亚华,罗绍青,乳化剂OP-TMK分光光度法测定银,郑州大学学报(理学版),1985,38(2):57-59
    [134]Du W. P., Li Z., Leng W. H., Xu Y. M., Photocatalytic Reduction of Silver Ions on Ferric Oxides and Ferric Hydroxides, Acta Physico-Chimica Sinica,2009,25(8): 1530-1534
    [135]郭雅先, 牛凤兰,魏庆殉,泡沫浮选-分光光度测定水中微量银离子,吉林大学学报(理学版),1988,4:79-82
    [136]吴秀明,朱晓瑛,曹丽华,王光丽,基于银纳米材料的银离子的超灵敏比色法测定,分析测试学报,2013,10:1187-1191
    [137]何荣桓,王建华,配体交换动力学法测定痕量银,稀有金属材料与工程,1999,28(1):60
    [138]黄湘源,章晨峰,万小芬,银催化氧化邻甲基酚的反应特性及其应用,分析化学,1999,27(11):1264
    [139]李建国,魏永前,王海龙,催化动力学光度法测定痕量银,分析试验室,1999,18(6):49
    [140]林志芬,郑肇生,以TvitonX-100作增敏剂催化光度法测定痕量银,分析化学,2000,28(3):326
    [141]汪明礼,照相业漂洗水及废水中痕量银的液膜富集与动力学方法测定,仪器仪表与分析监测,2003,3:23-24
    [142]朱庆仁,孙登明,马伟,靳春芝,双波长双指示物催化动力学光度法测定痕量银的研究, 冶金分析,2007,25(11):69-72
    [143]Chatterjee, A., et al. Selective Fluoregenic and Chremogenie Probe for Detection of Silver Ions and Silver Nanoparticles in Aqueous Media, Journal of the American Chemical Society,2009,131(6):2040-2043.
    [144]Iyoshi S., Taki M., Yamamoto Y., Rosamine-Based Fluorescent Chemosensor for Selective Detection of Silver(I)in an Aqueous Solution, Inorganic Chemistry, 2008,47(10):3946-3948
    [145]Shi W.,et al. Imaging Diferent Interactions of Mercury and Silver with Live Cells by a Designed Fluorescence Probe Rhodamine B Seleno-lactone, Inorganic Chemistry,2010,49(3):1206-1210.
    [146]Wang F., et al. Ratiometric Fluorescent Chemosensor for Silver Ion at Physiological pH. Inorganic Chemistry,2011,50(6):2240-2245.
    [147]Jang S., et al. Highly Sensitive Ratiometrie Fluorescent Chemosensor for Silver Ion and Silver Nanopartieles in Aqueous Solution. Organic Letters,2012, 14(18):4746-4749
    [148]Pandey M. D., et al. Silver-Guided Excimer Emission in an Ade-nine-Pyrene Conjugate:Fluorescence Lifotime and Crystal Studies. Inorganic Chemistry,2010, 49(5):2020-2022.
    [149]Wang, H., L. Xue, Jiang H., Ratiometric Fluorescent Sensor for Sil-ver Ion and Its Resultant Complex for Iodide Anion in Aqueous Solution. Organic Letters, 2011,13(15):3844-3847
    [150]Wang, H. H., et al. Novel Ratiometric Fluorescent Sensor for Silver Ions. Organic Letters,2009,12(2):292-295
    [151]Zheng H., et al. A heptamethine cyanine-based colorimetrie and ratiometfie fluorescent chemoseusor for the selective detection of Ag in an aqueousmedium, Chemical Communications,2012,48(16):2243-2245.
    [152]董微,徐淑坤,王莹,CdTe量子点荧光猝灭法测定奥沙利铂中微量银,分析试验室,2012,9:11-14
    [153]翁文婷,β-环糊精增敏荧光猝灭法测定水中微量银离子,宜春学院学报,2011,8:43-44
    [154]仵博万,刘建宁,香草醛缩邻肼基苯甲酸的合成及其与银的荧光猝灭反应, 理化检验:化学分册,2009,11:1336-1338
    [155]王炜,何松,陆燕,曾宪顺,基于杯[4]芳烃的银离子荧光探针的合成及性能,高等学校化学学报,2012,11:2470-2475
    [156]倪欣,高俊杰,孙凤,共振瑞利散射法测定痕量银的研究,广东微量元素科学,2009,7:59-62
    [157]翟好英,韩志忠,银-四氯四溴荧光素体系共振散射法测定痕量银,化学试剂,2010,8:715-717
    [158]韩志辉, 吕昌银, 杨胜圆, 王永生,银-邻菲罗啉-酸性三苯甲烷染料体系共振瑞利散射法测定痕量银,分析测试学报,2006,25(1):69-72
    [159]盛丽, 刘改兰, 苏碧泉,赵玉玲,银(I)-碘化钾-罗丹明B体系共振瑞利光谱法测定痕量银离子,光谱实验室,2013,2013,30(3):93
    [160]刘勇, 潘可亮, 王川, 李树伟, 申金山,共振光散射比浊法测定胶片废水中银离子的研究,四川师范大学学报:自然科学版,2012,3:377-380
    [161]范广宇,蒋小明,郑成斌,侯贤灯,徐开来,固相萃取N钨丝电热原子吸收光谱分析法测定水样中的银,光谱学与光谱分析,2011,31(7):1946-1949
    [162]Jiang X., Zheng C., Determination of trace silver in water samples by solid phase extraction portable tungsten-coil electrothermal atomic absorption spectrometry, Spectroscopy and Spectral Analysis,2011,31(7):1946-1949
    [163]邹建平, 马晓国, 党永锋, 李萍,磁性纳米材料固相萃取/火焰原子吸收光谱法测定环境水样中的痕量银离子,分析测试学报,2013,9:1139-1142
    [164]佟守义,银离子选择电极测定矿石中的银,分析化学,10(5):297-299
    [165]颜振宁,陆艳琦,李霞,中性载体双(N-乙基-N-苯基氨基二硫代甲酸)1,4-丁二醇酯PVC膜银离子选择电极的研制,分析测试学报,2006,5:7-10
    [166]陈权, 崔元臣, 张磊,二硫代氨基甲酸螯合树脂化学修饰电极的制备及银离子的测定,理化检验:化学分册,2006,11:926-92
    [167]张丽娜,柴雅琴,袁若,李艳,叶光荣,基于2,3-丁二酮双缩氨基硫脲为中性载体的新型银离子选择性电极的研究,化学学报,2007,6:537-541
    [168]吕鉴泉,陆江林,周兴旺,何锡文,以新型杯[6]衍生物为探针的银离子选择性电极研究,分析科学学报,2003,1:30-32
    [169]Bertinato J., Zouzoulas A., Considerations in the Development of Biomarkers of Copper Status. JAOAC International,2009,92(5):1541-1550
    [170]Barceloux D. G. J., Barceloux D., Copper. Clin. Toxicol.,1999,37(2):217-230
    [171]Gaggelli E, Kozlowski H, Valensin D, et al. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev.,2006,106 (6):1995-2044.
    [172]刘希玲,郑明花, 金京一, 铜离子荧光传感器的研究进展,广州化工2010,38(4):30-33.
    [173]Harrison M. D., Dameron C. T., Molecular mechanisms of copper metabolism and the role of the Menkes disease protein. J. Biochem. Mol.Toxicol.,1999,13(2): 93-106.
    [174]Strausak D., Mercer J. F. B., Dieter H. H., et al. Copper in disorders with neurological symptoms:Alzheimer's, Menkes, and Wilson diseases. Brain. Res. Bull.,2001,55 (2):175-185.
    [175]Waggoner D. J., Bartnikas T B, Gitlin J. D., The role of copper in neurodegenerative disease. Neurobiology of Disease,1999,6(4):221-230.
    [176]Bertinato J., Zouzoulas A., Considerations in the Development of Biomarkers of Copper Status, J A O A C International,2009,92(5):1541-1550
    [177]魏本郡,邹为和,双环己酮草酰二腙分光光度法测铜的试验研究.山东电力技术,2003,(6):45-46.
    [178]刘延荣,曾君莲,徐晓东,乙醛-双环己酮草酰二腙光度法测定纯铝中铜,冶金分析,2005,25(1):91.
    [179]王爱荣,黄晓丽,用分光光度法测定镀镍液中的微量铜.材料保护,2006,39(5):73-75.
    [180]司文会,印天寿,双乙醛草酰二肼直接快速分光光度法测定粮食及饲料中的铜,粮食与饲料工业,1998,(4):43-44.
    [181]Chaisuksant R., Palkawong-na-ayuthaya W., Grudpan K., Spectrophotometric determination of copper in alloys using Naphthazarin, Talanta,2000(53):579-585.
    [182]陈红,葛昌华,梁华定,潘富友,2,7-双(5-羧基-1,3,4-三氮唑偶氮)-变色酸分光光度法测定铜的研究.冶金分析,2005,25(3):55-57.
    [183]梁彦秋,林盛,显色试剂5-(5-羧基-1,2,4-三氮唑偶氮基)水杨酸的合成及其与铜的显色反应,辽宁化工,2004,33(10):555-590.
    [184]王晓菊,丙氨酸增敏动力学光度法测定痕量铜(Ⅱ),冶金分析,2002,22(3):53-54.
    [185]王洪福,刘家琴,何黎明,何明.H202-偶氮胂Ⅰ催化动力学光度法测定痕量铜(II),绵阳师范学院学报,2007,26(5):39-42.
    [186]陈志兵,张莉,王选,催化动力学光度法测定痕量Cu(Ⅱ)-罗丹明B-H202体系,皖西学院学报,2005,21(2):51-53.
    [187]张志兵,张莉,王选,催化动力学光度法测定痕量铜-甲基橙-H202体系. 阜阳师范学院学报:自然科学版,2004,21(3):34-36.
    [188]林险峰,催化褪色光度法测定痕量铜的研究,吉林师范大学学报:自然科学版,2005,8(3):30-32.
    [189]周之荣,彭道锋,王黎,溴酸钾氧化溴甲酚紫褪色光度法测定痕量铜.稀有金属,2005,29(1):119-122.
    [190]张江,郭振良,唐清华,表面活性剂增敏褪色光度法测定板蓝根中痕量铜.理化检验:化学分册,2005,41(11):815-817.
    [191]孙国良,应德标,陈金媛.催化动力学分光光度法测定痕量铜.浙江工业大学学报,2005,33(2):155-157.
    [192]宋学省,高碘酸钾氧化氨基黑10B催化光度法测定痕量铜(Ⅱ).冶金分析,2005,25(4):55-57.
    [193]张东,程岩,阻抑动力学光度法测定食品中的痕量铜.广东微量元素科学,2004,11(1 0):46-49.
    [194]孙登明,吴峰,用铜(II)-过氧化氢-二苯碳酰二肼/氯仿体系催化-萃取光度法测定铜,分析化学,1996,24(6):673-676.
    [195]李英杰,侯广顺,孟金呈,赵亚军.浊点萃取-分光光度法测定水样中的痕量铜.河南理工大学学报(自然科学版),2009,28(2):244-247.
    [196]金洪株,张晓霞,张敏.浊点萃取一分光光度法测定水样中痕量铜的研究.长春理工大学学报(自然科学版),2009,32(1):154-156.
    [197]沈友,碘-四氯化碳萃取光度法间接测定矿石及水中痕量铜.理化检验:化学分册,1997,33(11):517-515.
    [198]赖丰英,陈勇,异戊醇作萃取剂分光光度法测定微量元素铜.化工科技与开发,2003,32(6):41-42.
    [199]余金保,舒新兴,光度法测定茶叶中可溶性微量铜.景德镇高专学报,2001,16(4):9-10
    [200]孙海林,董学畅,刘晓芳,尹家元,杨光宇,亚试剂固相萃取光度法测定水中微量铜的研究,云南化工,2003,30(4):43-45.
    [201]吴方评,董学畅,张甜,张莉,QADAB的合成及其固相萃取光度法测定铜[J].云南民族大学学报:自然科学版,2004,13(3):197-199.
    [202]Yadollah Y., Atefeh T., Solid-phase extraction and spectrophotometric determination of trace amounts of copper in water samples. Talanta,1999(49):119-124
    [203]阮琼,胡秋芬,杨光宇,尹家元,2-(2-吡啶偶氮)-5-乙氨基酚固相萃取光度法测定水中痕量铜.冶金分析,2003,23(2):38-39.
    [204]Magnia D. M., Olivierib A. C., Bonivardi A. L., Artificial neural networks study of the catalytic reduction of resazurin:stopped-flow injection kinetic-spectrophotometric determination of Cu(II) and Ni(II).Analytica Chimica Acta,2005(528):275-284.
    [205]Vendramini D., Grassi V., Zagatto E. A.G., Spectrophotometric flow-injection determination of copper and nickel in plant digests exploiting differential kinetic analysis and multi-site detection. Analytica Chimica Acta,2006,570:124-128.
    [206]Norio T., Hideyuki K., Makoto K., Tadao S.T. K., Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline.Talanta,1999(50):41-47.
    [207]高宗华,黄玉玲.流动注射分光光度法测定痕量铜(Ⅱ)的研究.中国卫生检验杂志,2008,18(6):1091-1092.
    [208]余萍,于振安,在线分离富集F1分光光度法直接测定铜.环境保护科学,1995,21(3):32-34
    [209]Teshima N., Katsumata H., Kurihara M., Sakai T.. Kawashima T., Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline.Talanta,1999(50):41-47.
    [210]Zeng L., Miller E. W., Pralle A., et al. A selective turn-On fluorescent sensor for imaging copper in living cells. J Am Chem Soc,2006,128(1):10-11.
    [211]Domaille D. W., Zeng L., Chang C. J., Visualizing ascorbatetriggered release of labile copper within living cells using a ratiometric fluorescent sensor. J.Am. Chem. Soc.,2010,132(4):1194-1195.
    [212]Dujols V., Ford F., Czarnik A. W., Long -wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J.Am. Chem. Soc.,1997,119(31): 7386-7387.
    [213]Kumar M., Kumar N., Bhalla V., et al. Highly Selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett,2012,14(1):406-409.
    [214]Yuan L., Lin W. Y., Chen B., et al. Development of FRETbased ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging. Org Lett,2012,14(2):432-435.
    [215]Wegner S. V., Arslan H., Sunbul M., et al. Dynamic copper(I) imaging in mammalian cells with a genetically encoded fluorescent copper (I) sensor. J Am Chem Soc,2010,132(8):2567-2569.
    [216]钟海山,赖晓绮.催化动力学荧光光度法测定痕量铜.分析试验室,2006,25(9):93-95.
    [217]Diniz M. C. T., Filho O. F., Rohwedder J. J. R., An automated system for liquid-liquid extraction based on a new micro-batch extraction chamber with on-line detection:Preconcentration and determination of copper(II), Anal. Chim. Acta,2004,525(2):281-287.
    [218]Ghaedi M., Ahmadi R, Tavakoli Z., Montazerozohori M., Khanmohammadi A., Soylak M., Three modified activated carbons by different ligands for the solid phase extraction of copper and lead, J. Hazard. Mater.,2008,152(3):1248-1255.
    [219]Lemos V.A., Santos J. S., Baliza P. X.. Anal. Bioanal. Chem.,2006,17(1): 30-35.
    [220]陈建荣,林建军,浊点萃取—火焰原子吸收光谱法测定水样中痕量铜的研究,分析试验室,2002,21(5):86-89
    [221]王爱霞, 郭黎平, 张宏,活性炭微柱在线流动注射预富集-火焰原子吸收快速顺序测定铜,钻,镍,镉,铅的研究,分析化学,2005,33(3):385-388
    [222]李苏峰, 马运宏, 独霖, 于德,火焰原子吸收光谱法测定污泥中铜和锌,理化检验:化学分册,2000,36(6):282-283
    [223]刘劲松, 陈恒武,流动注射在线阴离子树脂预富集火焰原子吸收测定痕量铜,分析化学,1998,26(11):1369-1371
    [224]苏耀东, 朱文颖, 覃俐, 陈龙武,空气隔离法流动注射在线预富集火焰原子吸收测定水样中的痕量铜和镉,光谱学与光谱分析,2006,26(5):959-962
    [225]周焕英, 徐淑坤,流动注射蒸气发生原子吸收光谱测定痕量铜,光谱学与光谱分析,2000,20(4):529-534
    [226]王晖,郝莉花,王龙霞,火焰原子吸收分光光度法快速测定饮料中的铜,食品科学,2007,28(3):308-310
    [227]徐红波, 孙挺, 姜效军,电感耦合等离子体原子发射光谱法同时测定废水中锌,铬,铅,镉,铜和砷,冶金分析,2008,28(11):43-45
    [228]李韶梅, 石毓霞, 赵伟,电感耦合等离子体原子发射光谱法测定镍硅铜中镍和铜,冶金分析,2007,27(2):79-80
    [229]陈建国, 陈恒武, 金献忠, 陈海婷,浊点萃取-流动注射电感耦合等离子体原子发射光谱法同时测定水中镉钴铜镍锌,分析科学学报,2009,25(3):262-266
    [230]Ruiz M, Oritz R, Perello L, Latorre J, Server-Uarno J, potentiometnc and spectroscopic studies of transition-metal ions complexes with a quinolone derivative (cinoxacin). Crystal structures of new Cu(II) and Ni(II) cinoxacin complexes, J Inorg Biochem 1997,65:87-96
    [231]Okabayashi Y, Hayashi F, Terui Y, Kitagawa T, Studies on the interaction of pyridone carboxylic acids withmetals, Chem Pharm Bull,1992,40(3):692-696
    [232]杜黎明,晋卫军,董川,郑台,司帕沙星金属络合物在胶束体系中的荧光特性研究及应用,分析化学2000,28(4):403-406
    [233]徐子刚,郑琳,吴清洲,环丙沙星荧光特性研究,药物分析杂志2003,23(1):41-43
    [234]Wu, S. Zhang, W. Chen, X. Hu, Z. Hooper, M. Hooper. B. Zhao, Z., Fluorescence characteristic study of the ternary complex of fluoroquinolone antibiotics and cobalt (II) with ATP, Spectrochim. Acta, Part A 2001,57A(6):1317-1323
    [235]Mendoza-Diaz J, Ireta-Moreno, Synthesis and characterization of zinc mixed complexes with nalidixate anion and (N-N) donors, J. Inorg. Biochem. 1994,54:235-246
    [236]Perello L, Rosello M I, Ortiz R, Study of the thermal decomposition of cinoxacin complexes with Co(II), Ni(II) and Cu(II), Thermochim. Acta,1986,106:333-339
    [237]Wallis S C, Gahan L R, Charles B G, Hambley T W, Duckworth P A, Copper(II) complexes of the fluoroquinolone antimicrobial ciprofloxacin. Synthesis, X-ray structural characterization, and potentiometric study J. Inorg. Biochem.1996, 62:1-16
    [238]Wallis S C, Gahan L R, Charles B G and Hambley T W, Synthesis and X-ray structural characterization of iron (III) complex of the fluoroquinolone antimicrobial ciprofloxacin, Polyhedron,1995,14(20-21):2835-2840
    [239]Macias B, Villa M V, Rubio I, Castineiras A, Borras J, Complexes of Ni(II) and Cu(II) with ofloxacin:Crystal structure of a new Cu(II) ofloxacin complex, J. Inorg. Biochem.2001,84:163-170
    [240]Djurdjevic P T, Jelikic-Stankov M, Study of solution equilibria between aluminum(III) ion and ofloxacin, J. Pharm. Biomed. Anal.1999,19(3-4):501-510
    [241]Amin, A S, Moustafa M E, Dessouki H A, Abd-Allah A, Complexation equilibria between antibacterial drugs and tungstate, molybdate and vanadate applied to their determination in pure and dosage forms, Quim. Anal.2001,20(2):93-98
    [242]Veiopoulou C J, Ioannou P C, Lianidou E S, Application of terbium sensitized fluorescence for the determination of fluoroquinolone antibiotics pefloxacin, ciprofloxacin and norfloxacin in serum, J. Pharm. Biomed. Anal.1997, 15(12):1839-1844
    [243]王剑刘忠芳申伟孔玲刘绍璞,铈(IV)与氟喹诺酮类抗生素相互作用的共 振瑞利散射光谱及其分析应用,中国科学:化学,2011,6(41):1051-1058
    [244]Wu Y., Zhang T L, Zhao H C, Jin L P, Photochemical fluorescence enhancement of terbium-fleroxacin system and determination of fleroxacin, Anal. Lett.2000, 33(15):3303-3314
    [245]王磊.张延岭刘新泳李忠桑立红周洪,氧氟沙星及其片剂的分光光度测定,中国医药工业杂志,1999,30(5):224-225
    [246]Linnhoff G C, Vidal R C, Ges J M C. Spectrophotometric study of ciprofloxacin solutions in the presence of ferric ions in acid medium. Boll Chim Farm,1996, 135(6):391-396
    [247]Vadhanulu A B, Pantulu A R R, Spectrophotometric determination of pefloxacin in its. dosage forms, Indian Drugs 1994,31(6):258-262
    [248]Chowdary K P R, Prasad Y V R, Spectrophotometric estimation of ciprofloxacin hydrochloride in dosage forms and in dissolution rate studies, Indian Drugs 1994, 31(6):277-279
    [249]El Khateeb S Z, Abdel Razek S A, Amer M M, Stability-indicating methods for the spectrophotometric determination of norfloxacin, J. Pharm. Biomed. Anal. 1998,17(4-5):829-840
    [250]Rizk M, Belal F, Ibrahim F, Ahmed S, Sheribah Z A, Derivative Spectrophotometric Analysis of 4-Quinolone Antibacterials in Formulations and Spiked Biological, J. AOAC International 2001,84(2):368-375
    [251]El-Ansary A L, El-Hawary W F, Issa Y M, Ahmed A F, Application of ion-pairs in pharmaceutical analysis. Atomic absorption spectrometric determination of promazine, chlorpromazine, promethazine, imipramine and ciprofloxacin hydrochlorides with sodium cobaltinitrite, Anal. Lett.1999,32(11):2255-2269
    [252]El-Kommos M E, Saleh G A, El-Gizawi S M, Abou-Elwafa M A, Spectrofluorometric determination of certain quinoloneantibacterials using metal chelation. Talanta 2003,60(5):1033-1050
    [253]Takacs-Novak K., Noszal B., Hermecz I., Kereszturi G, Rodanyi B., Szasz G, Protonation equilibria of quinolone antibacterials, J. Pharm. Sci.1990,79: 1023-1028
    [254]Becke A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys.,1993,98:5648-5652
    [255]Albini A., Monti S., Photophysics and photochemistry of fluoroquinolones. Chem. Soc. Rev.,2003,32(4):238-250
    [256]Ware W. R., Oxygen quenching of fluorescence in solution:an experimenta; study of the diffusion process, J. Phys. Chem.,1962,66(3):455-458
    [257]王杨,周丹红,噻唑橙在表面活性剂介质中聚合状态的光谱研究,辽宁师范大学学报(自然科学版),2001,24(4):392-395
    [258]Gao J., Peng B., Fan H., Kang J., Wang X., Spectrophotometric determination of palladium after solid-liquid extraction with 1-(2-pyridylazo)-2-naphthol at 90℃. Talanta,1997,44:837-842
    [259]Dong Y., Gai K., Spectrophotometric determination of palladium after solid-liquid extraction with 4-(2-pyridylazo)-resorcinol at 90 ℃. Bull Korean Chem Soc,2005, 25:943-946
    [260]Shemirani F., Rahnama Kozani R., Jamali M. R., Assadi Y., Milani Hosseini M. R., Cloud-point extraction, preconcentration, and spectrophotometric determination of palladium in water samples. Int J Environ Anal Chem 2006,86:1105-1112
    [261]Yuan Z. L., Le Q.H., Jiang B., Wu Q., Hu Q.H., Zhang M. Q., Zhang C. J., A facile and highly selective fluorescence-enhanced Pd2+ probe derived from rhodamine fluorophore, Chin. J. Anal. Lab.,2013.32(3):38-42,
    [262]Zhou Y. M., Xu W. G, Tong A. J., Trans. Beijing Inst. Tech.,2006,26(4):369-372
    [263]Li H. L., Fan J. L., Liu X. J., Sun S. G., Peng X. J., Rhodamine-Based Fluorescence Probe for Pd2+ Detection,2010,31:1725-728
    [264]Ghaedi M., Shokrollahi A., Niknam K., Niknam E., Nijibi A., Soylak M., Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium (II) and silver(I) in environmental samples. J Hazard Mater 2009,168:1022-1027
    [265]Ahmadzadeh Kokya T., Farhadi K., Optimization of dispersive liquid-liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy. J Hazard Mater,2009,169:726-733
    [266]Liang P., Zhao E., Detennination of trace palladium in complicated matrices by displacement dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Microchim Acta,2011,174:153-158
    [267]Chakrapani G., Mahanta P. L., Murty D. S. R., Gomathy B., Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing. Talanta,2001,53:1139-1147
    [268]Elci L., Soylak M., Buyuksekerci E. B., Separation of gold, palladium and platinum from metallurgical samples using an amberlite XAD-7 resin column prior to their atomic absorption spectrometric determinations. Anal Sci,2003, 19:1621-1624
    [269]Mohamadi M., Mostafavi A., A novel solidified floating organic drop microextraction based on ultrasound-dispersion for separation and preconcentration of palladium in aqueous samples. Talanta,2010,81:309-313
    [270]Zhang S. M., Pu Q. S., Liu P., Sun Q. Y., Su Z. X., Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation, Anal. Chim. Acta 452 (2002) 223-230
    [271]Sayed Zia Mohammadi & Daryoush Afzali, Mohammad Ali Taher, Yar Mohammad Baghelani, Determination of trace amounts of palladium by flame atomic absorption spectrometry after ligandless-dispersive liquid-liquid microextraction. Microchim. Acta.,2010,168:123-128
    [272]Kovachev P., Djingov R., Ion-exchange method for separation and concentration of platinum and palladium for analysis of environmental samples by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta,2002,464:7-13
    [273]Jamali M. R., Assadi Y., Shemirani F., Salavati-Niasari M., Application of thiophene-2-carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination, Talanta,2007,71:1524-1-29
    [274]沈吉静,赵振国,马季铭,阳离子表面活性剂溴代十六烷基吡啶胶束对2,4-二硝基氯苯水解反应的影响,高等化学学报,1997,18(9):1527-1529
    [275]Szczepaniak W., Juskowiak B., Extraction-spectrophotometric determination of lead in heavy metal salts with cryptand (2.2.2) and eosin, Mikrochim Acta,1987, 11:237-242
    [276]Szczepaniak W., Juskowiak B., Ciszewska W., Extraction studies of metal complexes with some macrocyclic tetraaza ligands and xanthene dyes: spectrophotometric determination of cadmium (Ⅱ) with cryptand (2.2.2), Anal, chim. acta,1984,156:235-243
    [277]Gomis D. B., Garcia E. A., Alonso E. F., Abrodo P. A., Fluorimetric determination of calcium by ion-pair extraction with cryptand 2.2.1 and eosin Mikrochim. Acta,1990,3:259-269
    [278]杨振华,银-1,10邻菲罗啉-曙红-十六烷基三甲基溴化铵多元络合物显色反应的研究分析化学,1989,5:450-452
    [279]黄万兰,铜(I)-新亚铜灵-曙红显色反应的分光光度研究,冶金分析,1987,7(2):10-12
    [280]Matveets, M. A.; Shcherbov, D. P.; Akhmetova, S. D., Invistigation of spectrophtometric and luminescence properties of hydroxyxanthene dres in aqueous solution. Zh. Anal. Khil.,1979,34,1049-1054
    [281]Maslov, V. G., Turaeva, Z. N., Shakhverdov, T. A., Zh. Anal. Khim.,1986. 41(4).622-628
    [282]刘绍璞,蒋治良,孔玲,等[HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱,中国科学(B辑),2002,32(12):554~560
    [283]Liu S. P., Kong L., Interaction between Isopoly-Tungstic Acid and Berberine Hydrochloride by Resonance Rayleigh Scattering Spectrum. Anal Sci,2003,19(7): 1055-1060
    [284]Liu S. P., Yang Z., Liu Z. F., et al. Resonance Rayleigh Scattering for the Determination of proteins with gold nanoparticle probe. Anal Biochem,2006,353: 108-116
    [285]Stanton S. G., Pecora R. Resonance enhanced dynamic Rayleigh scattering. J Chem Phys,1981,75(12):5615-5626
    [286]胡小莉,刘绍璞,罗红群.曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用.化学学报,2003,61(8):1287~1293
    [287]Edition of Editorial Board of Chinese Macropaedia, "Chinese Macropaedia Biology (Ⅱ)", Chinese Macropaedia Press, Beijing,1991, p1374
    [288]曾云鹗,张华山,陈震华.现代化学试剂手册(第四分册).北京:化学工业出版社,1989:390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700