用户名: 密码: 验证码:
基于图像处理的氧化铝回转窑烧结工况识别系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铝土矿资源丰富,但占储量80%的铝土矿的铝硅比较低,普遍采用烧结法生产氧化铝。回转窑是烧结法生产氧化铝的核心设备,其主要功能是将生料浆烧结成为容重合格的熟料。回转窑烧结工况综合反映了窑内火焰燃烧状态与物料烧结状况,与回转窑过程熟料产品的质量、产量、能耗以及设备安全等因素密切相关,它的自动识别对于实现回转窑过程的自动控制具有非常重要的意义。
     回转窑长达百米,由于其结构的特殊性以及烧结法工艺的复杂性导致了氧化铝回转窑过程具有质量指标熟料容重难以在线测量,关键工艺参数烧成带温度检测干扰严重,多变量强耦合、强非线性、大惯性以及不确定性干扰等综合复杂特性。受到回转窑窑体倾斜、旋转以及窑内各类复杂的高温固、液、气三相物理化学反应产生的火焰闪烁、物料运动以及窑内各区域间的对流换热和辐射换热等因素的影响,回转窑过程还存在着窑内烧成带火焰区与物料区难于分辨,过程数据检测可靠性差等问题,难以采用常规仪表与监测技术实现对回转窑烧结工况的连续在线准确监测。工业现场长期依赖“人工看火”方式肉眼观测窑内烧成带火焰燃烧状态与物料烧结状况结合过程数据识别烧结工况后进行回转窑过程的控制。容易造成熟料的欠烧或者过烧,导致熟料容重合格率低、设备运转率差、窑内衬使用寿命短、产量低、能耗高、环境污染严重等问题。
     本文依托国家863高技术计划重点项目“中国铝业公司综合自动化系统总体设计方案及关键技术攻关”的子课题“大型回转窑过程优化控制技术”,以实现回转窑烧结工况的自动识别为主要目标,进行了基于图像处理的氧化铝回转窑烧结工况识别系统的研究与开发,取得了如下成果:
     1.将图像处理技术与数据融合技术相结合,在分析人工识别回转窑烧结工况的基础上,提出了由烧结工况图像预处理、图像分割、图像特征提取、数据融合与烧结工况识别模型组成的基于烧结工况图像特征与数据融合的烧结工况自动识别方法。具体研究内容归纳如下:
     针对氧化铝回转窑烧结工况图像频域噪声干扰的特点以及彩色图像处理算法复杂、实时性差的问题,提出了利用频域滤波技术与灰度变换技术相结合对烧结工况图像进行预处理的算法,实现了烧结工况图像的去噪与灰度变换。
     针对单纯的基于像素灰度值的图像分割方法难以精确分割火焰区与物料区的难题,分析了氧化铝回转窑烧结工况图像火焰区与物料区在纹理特征方面的差别,提出了利用Gabor小波纹理粗糙度对基于像素灰度值的FCM聚类结果进行去模糊化的烧结工况图像分割算法,实现了图像中火焰区与物料区的分割。
     根据“人工看火”经验描述了物料高度、闪烁频率、整体平均灰度、火焰颜色与物料颜色五个氧化铝回转窑烧结工况图像特征,提出了从整体图像及分割后的图像中提取上述特征的算法。
     根据“人工看火”过程的数据融合原理,针对烧结工况图像特征以及由烧成带温度、窑头温度、窑尾温度以及冷却机电流构成的关键过程数据的特点,提出了包括数据滤波、同步序列化与归一化处理的融合算法,得到了融合后的混合特征数据。
     将混合特征数据作为输入,欠烧结、正烧结和过烧结三种基本烧结工况作为输出,建立了基于准正态二叉树支持向量机的烧结工况识别模型。提出了基于上述模型的烧结工况自动识别算法,并利用专家修正样本进行模型的反馈增量学习,提高了模型适应生产边界条件波动的能力。
     2.研究并开发了基于上述烧结工况识别算法的工况识别软件,该软件具有烧结工况视频监视功能、烧结工况识别功能、过程数据通讯功能和人机交互功能;研制了由前端图像采集设备、网络视频传输设备、图像采集卡、工业控制计算机、显示与存储设备构成的远程分布式系统硬件平台和计算机操作系统、应用程序接口(API)、组件对象模型(COM)、动态链接库(DLL)、软件二次开发包(SDK)、工况识别软件组成的基于图像处理的氧化铝回转窑烧结工况识别系统。
     3.将本文提出的基于图像特征与数据融合的烧结工况识别方法与基于烧成带温度测量值模式识别的烧结工况识别方法进行比较实验,实验结果表明,该方法克服了由于单一类型的监测数据不可靠而导致的烧结工况识别率低、识别性能不稳定的问题,实现了烧结工况的准确识别。将本文研制的烧结工况识别系统于山西铝厂3#回转窑熟料烧结过程进行了实验研究,实验结果表明,系统实现了上述设计功能,运行过程稳定可靠,能够实时的识别烧结工况,识别率达到93.5%。
China has plenty of alumyte, but 80% of alumyte reserves is of low alumina silica ratio. Rotary kiln is the core equipment in alumina sintering process and its main function is to sinter raw material slurry to produce qualified alumina clinker. Sintering status of rotary kiln synthetically reflects the burning state and material sintering status, and tightly correlates with alumina clinker quality, production, energy consumption as well as equipments status etc. Its automated recognition is important for automation of rotary kiln process.
     Rotary kiln is about one hundred long, because of its special architecture and complexity of sintering process, the liter weight of clinker in the alumina sintering process is hard to directly measured online, and has many integrated complexity such as serious disturblance in temperature detection of burning zone, multi-variables strong coupling, strong nonlinearity, big inertia as well as uncertain disturbance etc.Sintering status of rotary can not be exactly measured continuously on-line. Because of flame flickering, material moving and convection as well as radiation exchange of heat which produced by inclined body and rolling of rotary kiln, as well as complex solid state, liquid state and gaseous physical chemical reactions with high temperature, flame area and material area in burning zone of rotary kiln is difficult to discriminate and disturbance in process data detection is serious, sintering status can not be exactly recognized by routine instrument. Alumina rotary kiln process control has depended on "man-watch" operation for a long time, which observes flame combustion state and material sintering status by eyes, and combines process data to recognize sintering status. As a result, over-burning or under-burning usually happens, the qualification index of liter weight of clinker is low, kiln liner is easy to wear out, the kiln running rate and yield is low; the energy consumption and labor intensity remains high; and environmental pollution is serious.
     This work is supported by the program of "Optimizing control techniques for large rotary kiln processes", which is a sub-project of the National Hi-tech 863/CIMS Program named "Overall project design and key technology development of the integrated automation system of China Aluminium Corporation". In order to realize the automated sintering status recognition of rotary kiln, this dissertation has made detail work on the research and development of burning zone status recognition system of alumina rotary kiln, The detail works are summarized as follows:
     1. Bases on "man-watch" recognition experiences, image processing technique has been combined with data fusion technique and a sintering status recognition method ground on features of sintering status image and process data fusion has been proposed which include image pre-processing, image segmentation, image features extraction, data fusion and sintering status recognition model.
     Consideing frequency characteristic of noise of sintering status image of alumina rotary kiln and the complexity of color image processing algorithm which is a time-cosuming algorithm, an integrated pre-processing algorithm is proposed for sintering status image with frequency filter technique and gray transform technique. Frequency noise can be removed from sintering status image by this algorithm. As a result, a filterd gray sintering status image is abtained.
     Because of difficulty of segmentation between flame area and material area of sintering status image based on different gray levels of the pixels, the texture difference between flame area and material area of sintering status image of alumina rotary kiln has been synthesized and a segmentation algorithm which uses texture coarseness that is depicted by Gabor wavelets is proposed to improve the fuzzy clustering result of gray levels, as a result a exact segmentation of sintering status image is abtained.
     Depending on "man-watch" experiences, five features of sintering status image of alumina rotary kiln is depicted, such as height of material, flickering frequency, average gray of whole image, color of flame as well as color of material, and the feature exaction algorithms for the above features from the whole image as well as segmented image areas are proposed.
     Refering to "man-watch" recognition process, a data fusion algorithm which is made up of data filtering, synchronization and standardization is proposed with the characteristics of features of sintering status image and key process data such as temperature of burning zone, temperature of head of rotary kiln, temperature of end of rotary kiln to as well as current of cooler,as a result, a hybrid data features is abtained.
     A recognition model of sintering status based on quasi-symmetrical binary tree svm(support vector machine)constructed with hybrid data features as input and over-sintering, just-sintering and under sintering status as output. An automated algorithm for sintering status recognition is proposed based on the above model. In order to adapt to the change of production boundary conditions, professional modified samples is used to realize feedback increment learning for recognition model.
     2. A status recognition software based on the above algorithms has been and developed, which realizes four functions, such as video surveillance of sintering status, recognition of sintering status, process data communication and human-machine interaction. a remote distributed system hardware platform has been constructed which is made up of fore-end image capture equipment, network video transformation equipment, image capture card, industrial control computer, display and storage. The above hardware, operation system of computer, API (Application Programming Interface), COM (Components Object Model), DLL (Dynamic Link Library), SDK (Software Development Kit) and recognition software of sintering status constitutes the recognition system of sintering status of alumina rotary kiln.
     3. The experiment which compares recognition method proposed by this dissertation with the status recognition method based on pattern recognition of temperature of burning zone shows that this method which based on features of sintering status of alumina rotary kiln and process data fusion can recognize the sintering status correctly. Carried out system experiment research on 3# rotary kiln in Shanxi alumina factory, the result shows that the recognition system can realize the designed function, run reliable and steady and recognize sintering status in real-time, accurate recognition rate is up to 93.5%.
引文
1.《回转窑》编写组.回转窑(设计、使用与维修)[M],北京:冶金工业出版社,1978:21-25.
    2. Kenneth R Castleman. Digital image processing [M], Tsinghua University Publishing Company and Prentice Hall International, Inc, Beijing,1998:1-3.
    3. Jiann-Der Lee, Yu-Lin Hsiao. Extract of tumor region in color image using wavelets[J], Computer and Mathematics with Application,2000; 40:793-803.
    4. Lu C S, Chung P C, Chen C F. Unsupervised Texture Segmentation via Wavelet Transform [J], Pattern Rcongnition,1997,30(5):729-742.
    5. Charalampidis D, Kasparis T. Wavelet-based Rotational Invariant Roughness Feature for Texture Classification and Segmentation [J], IEEE Transactions on Image Processing,2002,11(8):825-837.
    6. Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation [J], IEEE Trans.on Pattern Analysis Mach. Intell.1989,11(7):674-693.
    7. Daubiches. The wavelet transform, time frequency localization and signal analysis [J], IEEE Trans. on Information Theory,1990,36 (5):961-1004.
    8. T.Kima, R. E. Van Dyck, D. J. Miller. Hybrid fractal zerotree wavelet image coding [J], Signal Processing:Image Comunication,2002, (17):347-360.
    9. Jerry D. Gibson, Toby BergeTom Lookabaugh, etal.多媒体数字压缩原理与标准[M],北京:电子.工业出版社,2000,1-5,232-263.
    10.马东华.多媒体计算机技术原理[M],北京:清华大学出版社,1999,11-39.
    11.张旭东,卢国栋,冯健.图像编码基础和小波压缩技术(原理、算法和标准)[M],北京:清华大学
    出版社,2004,97-98.
    12. Raman B. Paranjape, Rangaraj M. Rangayyan.Adaptive-neighborhood histogram equalization for image enhancement [J], Graphic Model and Image Processing,1992,54(3):259-267.
    13.袁小平,钱建生,付慧生,刘富强.煤矿工业电视图像增强技术的应用研究[J],煤炭学报,1999,24(2):167-172.
    14.徐立中,刘富强.基于模型的工业图像增强技术[J].仪器仪表学报,1999,(6):609-611.
    15.章毓晋.图象分割[M],北京:科学出版社,2001:1-17.
    16. Fu K S, Mui J K.A survey of image segmentation [J]. Pattern Recognition,1981,13(1):3-16.
    17. Nikhil R. Pal and Sankar K. Pal, A review on image segmentation techniques [J]. Pattern Rcognition, 1993,26(9):1277-1294.
    18.赵荣椿,迟耀斌,朱重光.图像分割技术进展[J],中国体视学与图像分析,1998,3(2):121-128.
    19.G. T. Jermy. Monitoring out of normal conditions in repetitive cycle production machinery [C], Fifth international conference on FACTORY,2000.
    20.Motorola Labs. Smart Digital Video Surveillance System [R],2002.
    21.Mitsubishi, Dendi, Giho (Japan). Multimedia Technologic for Industry [J],1997,7(2).
    22.陈又新.工业过程多媒体监控系统软件的研究与开发[D],沈阳:东北大学,2000.
    23.TEKALP A M. Digital video processing [M], New Jersey:Prentice Hall,1995.
    24.Proc. SPIE(USA). Multimedia for industrial surreillance [J],1997,3(20):82-93.
    25.宋旸,朱光喜.工业远程多媒体监控系统的设计与实现[J],电讯技术,2001,2:47-51.
    26.高宪文,杨军,鱼晓峰.工业过程多媒体监控系统软件的研究与开发[J],东北大学学报:自然科学版,2005,26(10):934-937.
    27.辛伟.工业过程多媒体监控系统的设计与开发[D],沈阳:东北大学,2006.
    28.Moolman DW, Aldrich C, VanDeventer J S J. The interpretation of flotation froth surfaces by using digital image analysis and neural networks [J], Chemical Engineering Science,1995,50 (22):3501-3513.
    29.Moolman D, Aldrich C, Schmitz G, et al. The interrelationship between surface froth characteristics and industrial flotation performance [J], Minerals Engineering,1996,9 (8):837-854.
    30.Hargrave JM, MilesN J, HallST. The use ofgrey levelmeasurement in predicting coal flotation performance [J], Minerals Engineering,1996,9 (6):661-674.
    31.Ventura-Medina E, Cilliers J J. A model to describe flotation performance based on physics of foams and froth image analysis [J], International Journal of Mineral Processing,2002,67:79-99.
    32.Sadr-KazemiN, Cilliers J J. An image processing algorithm for measurement of flotation froth bubble size and shape distributions [J], Minerals Engineering,1997,10 (10):1075-1083.
    33.刘文礼,路迈西,王凡,王勇.煤泥浮选泡沫图像纹理特征的提取及泡沫状态的识别[J],化工学报,2003,54(6):830-835.
    34.林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J],煤炭学报,2007,(32):304-307,
    35赵晓东,王勤辉,石惠娴,骆仲泱,岑可法.循环流化床床内流场颗粒含量图像分析[J],化学工业与工程技术,2003,24(2):49-52.
    36. Joachim W, Measurement techniques in fluidized beds [J], PowderTechnology,1999,102:15-36.
    37.罗娅,马增益,朱建新等.图像追踪算法用于流化床颗粒横向混合特性的研究[J].热力发电,2005,34(11):34-38.
    38. Fujita M. et al. Characterization of vessel distribution by Fourier Transform Image Analysis, Recent fast fourier transforms. Wood Anatomy,1995, (2):36-44.
    39. Mc Millin Charles W. Application of automati image analysis to wood science. Wood Science,1982, 14(3):97-105.
    40. Jordan B.D, A simple image analysis procedure for fibre wall thickness. JPPS Journal of Pulp and Paper Science,1998,14(2):44-45.
    41. Clay G A. Measurement of the length of paper fibres [D], PhD Thesis, UMIST 1986.
    42. Sampson W W. The structural characterization of the networks in papermaking processes. In The Science of Papermaking, Trans. XIIth Fund. Res. Symp. (C.F. Baker, ed.), Pulp and Paper Fundamental Research Society, Bury,2001,1250-1288.
    43.夏庆根,陈港,李元元.信息技术在现代造纸工业中的应用.造纸科学与技术,2002,(2):4144.
    44.陈伟,胡开堂.纸浆絮聚检测技术在苇浆絮聚特性研究中的应用[J],中国造纸,2001,1:10-13.
    45. Olst, M. V., Brown, M., Bourke, P.,& Ronkainen, S. Improving flotation plant performance at Cadia by controlling and optimising the rate of froth recovery using outokumput Frothmaster. In Proceedings of the AusIMM seventh mill operators'conference, Melbourne, Australia,2000.
    46.J·查德威克.浮选工艺绝非走向衰落[J],国外金属矿选矿,2003,(9):12-16.
    47.沃国经.FP-01浮选泡沫图像处理系统[J],有色冶金设计与研究,2003,10,24(增刊):87-89.
    48.雷霆.水泥回转窑的监控系统[D],内蒙古工业大学,2006.
    49.G. Martin, D. Johnston. Continuous Model-Based Optimization [C], Process Optimization Conference, Houston, Texas, USA,1998:24-26.
    50. Jorge S. Marques, Pedro M. Jorge. Visual inspection of a combustion process in a thermoelectric plant [J], Signal Processing,2000,80:1577-1589.
    51.M Shimoda, A Sugano, Y Watanabe, et al. Prediction Method of Unburnt Carbon for Coal Fired Utility Boiler Using Image Processing Technology of Combustion Flame [J]. IEEE Trans. Energy Conversion,1990,15(4):640-645.
    52.Lu G, Yan Y, Riley G, et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames [J]. IEEE Transactions on Instrumentation and Measurement,2002,51(5): 990-995.
    53.Honglu Yu, John F. Monitoring Flames in an Industrial Boiler Using Multivariate Image Analysis [J], John Wiley & Sons, Inc. American Institute of Chemical Engineers (AIChE) Journal,2004,50 (7): 1474-1483.
    54.Collnis. S. Advanced flame monitors take on combustion control [J], Power,1993,10:75-78.
    55.刘维.HI-ACS3000系统技术的最新进展[J],中国电力,1993,10:58-61.
    56. Mitsubishi Heavy Industries LTD. Specification of Flame Detector.1997.
    57.舒子凯.三菱新型火焰监测装置OPTIS简介[J],热工自动化信息,1993,1:15-17.
    58. S Collins. Advanced flame monitors take on combustion control[J], Power,1993, (10):75-77.
    59. Hammaker R G, Colsher R J, Miles J J; An evalution of internal boiler components and gases using a high temperature InfraRed (IR) lens [M], PROC. of SPIE, Vol.2766,1996:74-82.
    60. Miles J J, Hammaker R G, Madding R P. Analysis of Thermal Radiation in Coal-Fired Furnaces [M], PROC.of SPIE, Vol.3056,1997:20-32.
    61.王补宣,李天锋,吴占松.图像处理技术用于发光火焰温度分布测量的研究[J],工程热物理学报,1989,10(4):446-448.
    62.徐雁,吴占松.非对称火焰三维温度分布测量的重构算法[J],清华大学学报(自然科学版),1996,36(10):30-34.
    63.周怀春,韩才元.煤粉燃烧火焰颜色定量分析试验研究[J],中国电机工学报,1993,13(1):44-49.
    64.周怀春.炉膛火焰温度场图像处理试验研究[J],中国电机工程学报,1995,15(5):95-300.
    65.余岳峰,赵铁城,徐伟勇.煤粉燃烧火焰的三色法温度测量[J],上海交通学学报,2000,34(9):1257-1260.
    66.徐伟勇,余岳峰,孙江等.数字图像处理技术在锅炉燃烧火焰检测中的应用[J],中国电力,1994,27(10):41-44.
    67.余岳峰,赵铁成,徐伟勇.煤粉燃烧火焰着火判据[J],上海交通大学学报,2000,34(9):1253-1256.
    68.谭皓,李立源,陈维南.基于BP网络的锅炉炉膛火焰燃烧状态自动识别[J],自动化学报,1998,24(2):667-670.
    69.甄成刚,张丽静.炉膛火焰图像处理技术[J],仪器仪表学报,2003,24(4):481-482.
    70.李树涛,王耀南.基于神经网络的回转窑火焰图象分割[J].仪器仪表学报,2001,22(1):10-16.
    71.张红亮,李劫,陈湘涛,邹忠.回转窑火焰图像阈值分割的应用研究[J],计算机应用,2007,27:75-79.
    72.M. C. Clark (Whitehopleman). Spyrometer from IST quadtek optimizing with confidence [R],2006.
    73.Naner Yuan, Deze Zhou, Fang Liang, Xiaoming Yan. Real-time expert production guiding and control system based on multi-media computer information processing [C], Beijing:IEEE International Conference on Intelligent Processing Systems,1997,787-791.
    74.梁丰,袁南儿,周德泽.水泥回转窑窑头自动看火系统原理与应用[J],仪表技术与传感器,1997,3:24-26.
    75.杨重愚主编.轻金属冶金学[M],北京:冶金工业出版社,1991,70-80.
    76. V. C. Farmer. Infrared spectra of minerals [J], The Mineralogical Society, London 1974, (3):146-147.
    77.Liao S. Liang. Types of bauxites in China with discussion on main depositional origin and metal logenic model [J], Earth Sciences,1987,2:191-206.
    78.G. G. Christoph, C. E. Corbato. The crystal structure of boehmite [J], Clays and Clay Minerals,1979,2: 81-86.
    79.顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J],中国有色金属学报,200414(S1):91-97.
    80.郑娟,何静华.氧化铝熟料烧结过程的优化研究[J],河南冶金,2005,10(5):8-10.
    81.王士钊.氧化铝熟料窑烧成温度自动控制系统[J],工业仪表与自动化装置,1996,(5):24-29.
    82.M. Akalp, A. L. Dominguez, R. Longchamp. Supervisory fuzzy control of a rotary cement kiln [C], Mediterranean:Proceedings of 7th IEEE Electrotechnical Conference,1994,2:754-757.
    83.P. Albertos, M. Martinez, J. L. Navarro, F. Morant. Fuzzy controllers design:a methodology [C], Vancouver, B. C.:Second IEEE Conference on Control Application,1993,69-75.
    84. J. Bordeneuve Guibe, F. Morant Anglada, et al. Supervised predictive control of a cement kiln [C], IEEE International Workshop on Emerging Technologies and Factory Automation,1992,25-30.
    85.C. Smith, K. J. Burke. Cooler scanner technology [C], Cement Industry Technical Conference,1998, 391-402.
    86.Carl R. Petrus. Integration of imagining pyrometry into the wampum plant automation project [C], Hershey, Pennsylvania:IEEE Cement Industry Technical Conference,1997,419-431.
    87.章立新,王少林,茅忠明,伍贻文.水泥回转窑温度检测与图像处理系统的研究与开发[J],2002,23(5S):70-73.
    88.张小刚,陈华,章兢,刘小燕.基于图像反馈的回转窑烧结温度智能预测控制[J],控制理论与应用,2007,24(6):995-998.
    89.王炜峰.数字图像处理技术在熟料窑监控系统中的应用[J],计算机测量与控制,2002,10(8):511-513.
    90.陈岩,常虎成,李冬.熟料窑计算机集中控制[J],轻金属,2000,3:54-56.
    91.易正明,吕子剑,刘志明.氧化铝回转窑火焰图像处理与特征提取[J],仪器仪表学报,2006,27(8):969-972.
    92.魏兆一.光流算法及其在回转窑窑况识别中的应用研究[D],东北大学,2005.
    93.李树涛,王耀南,张昌凡.基于燃烧火焰图象特征的回转窑神经网络控制系统[J],自动化学:报,2002,28(4):591-595.
    94.D L Hall.Mathematical Techniques in Multisensor Data Fusion[M], Norwood:Artech House Publisher, 1992:1-10.
    95.Luo R C, Michael G K. Multisensor integration and fusion in intelligent systems. IEEE Trans System, Man and Cybernetics,1989,19(5):901-931.
    96.Xiaogang Zhang, Jing Zhang, Hua Chen. The application of data fusion based on fuzzy theory in temperature judgement of rotary kiln [C], Hefei, China:Proceeding of 3rd World IEEE Congress on
    Intelligent Control and Automation,2000:1730-1733.
    97.何青.数据融合技术在工业回转窑工况识别中的应用研究fDl,长沙:湖南大学硕十学位论文,1999
    98.Zhang Jing, Tong Tiaosheng. Rotary Kiln Intelligent Control Based on Flame Image Processing [J], IEEE International Conference on Intelligent Processing System,1997,792-796.
    99.张小刚,陈华,章兢.基于多传感器融合的窑温检测和控制方法[J],控制与决策,2002,17(6):565-870.
    100.Zhou, X. J., Chai, T. Y. Pattern-based Hybrid Intelligent Control for Rotary Kiln Process [C], Singapore:16th IEEE International Conference on Control Applications (Part of IEEE Multi-conference on Systems and Control),2007,30-35.
    101.Zhou X. J., Yue H., Chai T. Y. et al. Supervisory Control for Rotary Kiln Temperature Base on Reinforcement Learning [J], Lecture Notes in Control and Information Sciences,2006,344:428-437.
    102.R. Sutinen. Causticizing plant and lime kiln computer control [J], Pulp and Paper,1981,82(8):90-95.
    103.R. M. Bailey, T. R. Willison. Computerization of the recovery cycle-Lime kiln control and optimization [C], Hollywood, USA:Proceedings of the TAPPI engineering conference,1985:619-627.
    104.A. Scheuer, M. Principato. Experience with the PYROEXPERT kiln control system at the Leimen cement [J], ZKG International,1995,48(9):464-471.
    105.L. Nilsson. Skoghall brings cement logic to causticizing [J], Pulp and Paper,1997,2(10):24-27.
    106.D. W. Haspel, R. Taylor, J. Brooks. A new perspective on the cement making process through LINKman [C], Praque, Czechoslovkia:Proceeding of the cemtech conference,1991,1(3):1-12.
    107.E. A. Dekkiche, Advanced kiln control system [J], Zement-Kalk-Gips,1991,44(6):286-290.
    108.G. N. Charos, R. A. Taylor, Y. Arkun. Model predictive control of an industrial lime kiln [J], Tappi Journal,1991,74(2):203-211.
    109.D. B. Smith, P. Aggarwal. Advanced lime kiln control:Operating results from a mill installation [C], Atlanta, USA:Proceedings of the Tappi Process Control,1998:343-352.
    110.J. Valiquette. Practical aspects of model-predictive control implementation on an industrial lime kiln [J], Tappi Journal,1999,82(5):130-136.
    111.B. M. Ribeiro, A. D. Correia. Lime kiln simulation and control by neural networks, Neural networks for chemical engineers [M], Amsterdam:Elsevier Science Ltd.1995,163-191.
    112.B. Yang, L. Yi, Q. Shouning. A rule based cement kiln control system using neural networks [C], Beijing, China:Proceeding on IEEE international conference on intelligent processing systems,1997, 1:493-497.
    113.[俄]E.H.霍多罗夫,H.C.什漠古宁卡.宁云峰译.氧化铝工业熟料烧成技术[M],轻金属文集.氧化铝专辑(译著).中国有色金属工业轻金属信息网,2000.1.
    114.王士钊.氧化铝熟料窑烧成温度自动控制系统[J],工业仪表与自动化装置,1996,(5):24-29.
    115.陈岩,常虎成,李冬.熟料窑计算机集中控制[J],轻金属,2000,3:54-56.
    116.邱远,赵阳.计算机自动控制系统在氧化铝熟料烧成生产中的应用[J],焦作工学院学报(自然科学版),2001,9(1):41-44.
    117.牟学民,王荣俊.氧化铝烧成过程自动控制系统[J],电气传动自动化,1999,21(2):35-38.
    118.王耀南,王辉,彭建春,刘国才.复杂工业过程的综合集成智能控制[J],信息与控制,1999,28(4):298-304.
    119.周晓洁.氧化铝熟料烧成回转窑混合智能优化控制的研究[D],沈阳:东北大学,2007.
    120.杨重愚.氧化铝生产工艺学[M],冶金工业出版社,1982,195-198,233-250.
    121.王延明,阎鼎欧,杨重愚,高守正.氧化铝生产过程与设备[M],北京:冶金工业出版社,1987,197-246.
    122.[俄]A.A.阿格拉诺夫斯基等著.沈阳铝镁设计院氧化铝专业组译.氧化铝生产手册[M],北京:冶金工业出版社,1974,115-132.
    123.陈念贻.氧化铝生产的物理化学[M],上海:科学技术出版社,1962,102,250.
    124.洪广言.无机固体化学[M],北京:科学出版社,2002,186-187.
    125.《联合法生产氧化铝》编写组.联合法生产氧化铝(熟料烧结)[M],北京:冶金工业出版社,1975,1-2,11-13,17-20.
    126.K.E.帕雷,J.J.瓦得尔著,华新水泥厂编译组译.水泥回转窑的操作[M],北京:中国建筑工业出版社,1975,95-96.
    127.张天序.模式识别与智能系统研究展望和对策[J],自动化学报,2002,28(s):92-95.
    128.李祖枢,涂亚庆.仿人智能控制[M],北京:国防工业出版社,2003,121-125.
    129.吴宏鑫,王迎春,邢琰.基于智能特征模型的智能控制及应用[J],中国科学(E辑),2002,32(6):805-816.
    130.吴宏鑫.智能特征模型和智能控制[J],自动化学报,2002,28(s):30-37.
    131.李欣欣.氧化铝熟料窑烧成带数字图像测温系统研究与开发[D],沈阳:东北大学,2004.
    132.易正明.氧化铝回转窑热工分析与控制应用研究[D],长沙:中南大学,2007.
    133.章毓晋.图像工程(下册)图像理解与机器视觉[M],北京:清华大学出版社,2000.
    134.Milan Sonka, Vaclav Hlavac, Roger Boyle著,艾海舟,武勃等译.图像处理、分析与机器视觉[M],北京:人民邮电出版社,2003,10-18.
    135.霍宏涛,林小竹,何薇.数字图像处理[M],北京:北京理工大学出版社,2003,158-162.
    136.孙兆林.Matlab 6.x图象处理[M],北京:清华大学出版社,2002.
    137.Nikhil R. Pal and Sankar K. Pal, A review on image segmentation techniques [J], Pattern Rcognition 1993; 26(9):1277-1294.
    138.章毓晋.图象处理和分析[M],北京:清华大学出版社,2001.
    139.Otsu N A. Threshold Selection Method from Gray-level Histograms [J], IEEE Transaction System Man Cybernetic,1979,8(1):62-66.
    140.Bezdek J C. Pattern Recognition With Fuzzy Objective Function Algorithm [M], New York: Plenum Press,1981.
    141.J. H. Pei, W.X. Xie, Adaptive Multi-Thresholds Image Segmentation Based on Fuzzy Restrainted Histogram FCM Clustering [J], Acta Enectronica Sinica,1999,27 (10):38-42.
    142.C. A. Glasbey. An analysis of histogram-based thresholding algorithms [J], CVGIP,1993,55(6): 532-53.
    143.裴继红,谢维信.直方图模糊约束FCM聚类自适应多阈值图像分割[J],电子学报,1999,27(10):38-42.
    144.Weiling Cai, Songcan Chen, Daoqiang Zhang. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J], Pattern Recognition,40 (2007),825-838.
    145.Haralick R M, Shanmugam K, Dinstein I. Texture Features for Image Classification. IEEE Trans on Systems, Man, and Cybernetics,1973, SMC-3(6):768-780.
    146.Tamura H., Mori S., Yamawaki T. Texture features corresponding to visual perception [J], IEEE Transactions on Systems, Man, and Cybernetics,1978, SMC-8(6):460-473.
    147.M. Kaplan and C.-C. J. Kuo. Texture roughness analysis and synthesis via extended self-similar (ess) model [J], IEEE Trans. Pattern Analysis and Machine Intelligence,1995,17:1043-1056.
    148.邬文隽,马利庄,肖学中.一种结合亮度和粗糙度信息的舌像分割方法[J],系统仿真学报,2006,18(增刊11):374-379.
    149.Gross M IT, Koch R, Lippert L, Dreger A. Multiscale Image Texture Analysis in Wavelet Spaces [C]. In:Proc. IEEE Int. Conf. on Image Proc.1994.168-194.
    150.R M. Haralick. Statistical and structural approaches to texture [C], Proceeding of IEEE,1980,67(5): 786-804.
    151.W. Y. Ma and B.S. Manjunath. A comparison of wavelet transform features for texture image annotation [C], Proceedings of IEEE Inter-national Conference on Image Processing,1995.
    152.T. P. Weldon, W. E. Higgens, D. Dunn. Efficient Gabor Filter for Texture Segmentation [J], Pattern Recognition,1996,29 (12):2005-2015.
    153.Kato N, Suzuki M, Omachi S, Aso H, Nemoto Y. A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance [J], IEEE Trans, on Pattern Analysis and Machine Intelligence,1999,21(3):258-262.
    154. R. Azencott, J. P. Wang, L. Younes. Texture Classification Using Windowed Fourier Filters [J], IEEE Trans on PAMI.1997,19(2):148-152.
    155.Zhang H J, Wu Jianhua, et al. An Integrated System for Content-Based Video Retrieval and Browsing [J], Pattern Recognition,1997.30(4):643-657.
    156.Brooks, R.R.and lyengar, S. S.. Multiple-sensor fusion-fundamentals and applications with software [M], prentice Hall, Englewood Cliffs, NJ,1998.
    157. Robert M McGraw, Craig Lammers, Jerffey Steimnna. Sotfware Frmaework in Support of Dynamic Simutation Assessment and Predietive Cpabailities for JSB-RD [C]. Enabling Techologies for Simulation Science Ⅷ, Proceedings of SPIE,2004.
    158.M R Endsley. Situation awareness in dynamic human decision making:Theory in situational awareness in complex systems [M], Embry-Riddle Aeronautical University Presss,1994:27-58.
    159滕召胜,罗隆福,童调生.智能检测系统与数据融合[M],北京:机械工业出版社,1999:169-200.
    160.温熙森,胡茑庆,邱静.模式识别与状态监控[M],北京:国防科技大学出版社,1997:8-11.
    161.K. Ronald. Outliers in Process Modeling and Identification [J], IEEE Transactions on Control Systems Technology,2002,10(1):55-63.
    162.R. K. Pearson. Exploring process data [J], Journal of Process Control,2001,11:179-194.
    163.Fuat Doymaz, Amid Bakhtazad, Jose A. Romagnoli, Ahmet Palazoglu. Wavelet-based robust filtering of process data [J], Computers & Chemical Engineering,2001,25(11-12):1549-1559.
    164.刘丽梅,孙玉荣,李莉.中值滤波技术发展研究[J],云南师范大学学报,2004,24(1):23-27.
    165.Mohamed N. Nounou, Bhavik R. Bakshi. On-line multiscale filtering of random and gross errors without process models [J], AIChE Journal,1999,45(5):1041-1058.
    166.范明,范宏建等译.数据挖掘导论[M],北京:人民邮电出版社,2006,38-39.
    167.边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    168.J. P. Marques de Sa著,吴逸飞译.模式识别原理方法及应用[M],北京:清华大学出版社,2002,51-53.
    169.张学工.关于统计学习理论与支持向量机[J],自动化学报,2000,(1):32-42.
    170.V. N. Vapnik. Statistical Learning Theory [M], John Wiley and Sons Inc., New York,1998.
    171. V.N. VapniK. The Nature of Statistical Learning Theory [M], Springer, New York,1995.
    172.Konig, H. Eigenvalue Distribution of Compact Operator [M]. Basel:Birkhauser,1986.
    173.Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [J], Data Mining and Knowledge Discovery,1998,2 (2):121-167.
    174.Fumitake Takahashi, Shigeo Abe. Decision-Tree-based Multiclass Support Vector Machines [EB/OL]. http://frenchblue.scitec.kobe-u.ac.jp/-abe/pdf/iconip02takahashi.pdf,2002.
    175.Chih-Wei Hsu, Chih-Jen Lin. A Comparison of Methods for Multiclass Support Vector Machines [J]. IEEE Transactions on Neural Networks,2002,13(2):415-425.
    176.Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimi-zation [A]. B. Scholkopf, C. Burges, A. Smola. Advances in Kernel Methods-Support Vector Learning [C]. Cambridge MA:MIT Press,1999,185-208.
    177.R. Fan, P. Chen, and C. Lin. Working set selection using second order information for training support vector machines [J], Journal of Machine Learning Research,2005 (6):1855-1884.
    178.C.-C. Chang and C.-J. Lin. LIBSVM:a library for support vector machines,2001. http://www.csie.ntu.edu.tw/-cjlin/libsvm.
    179.S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt's SMO algorithm for SVM classifier design [J], Neural Computation,2001,13:637-649.
    180.Alistair Shilton, M. Palaniswami, Daniel Ralph, Ah Chung Tsoi. Incremental training of support vector machines. IEEE transactions on neural networks,2005,16(1):114-131.
    181.Cauwenberghs G, Poggio T. Incremental and Decremental Support Vector Machine Learning [J], Machine Learning,2001,44(13):409-415.
    182.雷晓峰,王耀南,段峰.利用VC++开发图像采集卡与图像预处理库[J],微型机与应用,2002,(1):44-46.
    183.杨淑莹.图像模式识别VC++技术实现[M],北京:清华大学出版社,2005.
    184.黄维通.Visual C++面向对象与可视化程序设计[M],北京:清华大学出版社.2002.
    185. Jeff Prosise. Programming windows with MFC [M], Microsoft Press,1999.
    186.王育坚.Visual C++面向对象编程教程[M],北京:清华大学出版社,2004,230-249.
    187.潘爱民.COM原理与应用[M],北京:清华大学出版社,1999.
    188.郑立.OPC应用程序入门[M],北京:OPC中国促进委员会,2002.
    189.Y. Shimanuki, OLE for process control (OPC) for new industrial automation systems [C]. Proc.1999 IEEE Int'l Conf. Systems, Man, and Cybernetics, vol.6, IEEE Press,1999, pp.1048-1050.
    190.徐士信.浅谈OPC技术及其应用[J],石油化工自动化,2000,(5):6-8.
    191.季胜鹏,林中达.基于OPC规范的客户/服务器模型设计[J],电力自动化设备,2002,2(11):59-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700