用户名: 密码: 验证码:
核自旋诱导的新磁光效应及金属卟啉激发态的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核磁共振谱(NMR)和核磁共振成像(MRI)是极其重要的分子结构检测和医学诊断技术;但是NMR和MRI发现至今,一直沿用六十多年前提出的核磁感应概念和方法。2006年开始报道一种新核磁共振信号检测方法,提出核自旋诱导的磁光效应(NSOR),即线偏振光在液体分子的预极化核磁矩诱导下发生旋光。但是NSOR一直缺乏解析理论,根据Buckingham等人的极化率理论和法拉第效应理论,我们推导了核自旋诱导法拉第效应(NSOFR)的解析公式。根据外磁场Cotton-Mouton效应理论,我们首次提出并理论研究了核自旋诱导的新Cotton-Mouton效应(IBCM)。这两种核自旋诱导的磁光效应都与分子的结构信息密切相关,可能发展成为综合NMR和光学光谱的新分析技术。此外,金属卟啉是长期受关注的热点之一,但对其激发态的结构与光谱的量子化学研究还较少,我们用密度泛函理论(DFT)对金属卟啉第一激发单重态的姜-泰勒构型畸变问题进行了理论研究。
     第一章简述了核自旋诱导的新磁光效应及金属卟啉激发态的结构与光谱相关的基本知识,包括核磁共振原理、分子极化率、旋光效应、计算量子化学基础,并介绍了本论文的研究背景及意义。
     第二章研究了预极化核自旋与入射光平行时产生的核自旋诱导法拉第效应(NSOFR)。基于Buckingham等人的核磁矩诱导的反对称极化率理论和外磁场引起的法拉第效应理论,得出了圆柱体样品中抗磁性饱和分子的NSOFR的解析理论表达式,它包括分子内和分子间的核与电子之间的超精细作用(hfi)诱导产生的两部分贡献。分子内超精细作用的贡献分为轨道角动量项、费米接触项和自旋偶极作用项;对于抗磁性饱和闭壳层分子,轨道角动量项对分子内贡献起决定作用;但是对于含重原子(如Xe,Hg等)的分子,费米接触项是非常重要的。用新导出的NSOFR公式和普通法拉第效应实验中获取的维尔德Verdet)常数,分别计算了水、液态的己烷、环己烷、甲醇、和气态氢中质子1H产生的NSOFR。水的计算值与实验值相吻合。预言三种碳氢化合物的NSOFR也跟水有相同数量级,符合其后的实验结果。本章得出核自旋诱导法拉第效应的解析理论,我们新导出的分子间hfi贡献项,跟分子内hfi贡献项同数量级,相关工作为国际同行多篇论文肯定。
     第三章研究了极化核自旋和外磁场同时存在,并都与入射光垂直时产生的Cotton-Mouton效应。它包含三项:磁场B引起磁致双折射(Cotton-Mouton效应);核自旋-自旋耦合张量引起的Cotton-Mouton效应(NSCM);第三项是我们新发现项,它是强直流磁场和核磁矩交叉效应诱导的新核自旋诱导Cotton-Mouton效应(IBCM)。我们基于Buckingham和Pople的磁致双折射理论推导出了IBCM的解析表达式。它包含温度无关项和相关项,后者与各向异性极化率和各向异性磁屏蔽的乘积成正比。对于强各向异性极化率和各向异性磁屏蔽分子的IBCM,温度相关项起决定作用,估算结果与NSOFR强度相近。在多光程实验方法中,根据时间反演对称性推论:IBCM可以将被消除,但是NSOFR被增强。此外,我们推演了同时存在法拉第效应和Cotton-Motton效应时的旋光总表达式。由于与各向异性极化率和各向异性磁屏蔽直接相关,本章提出的IBCM有可能成为一种新的分子结构分析手段。
     第四章用密度泛函理论(DFT)模拟计算了第三章得出的新Cotton-Mouton效应(IBCM)。对于非球形分子,温度相关项是主要的,只需用量化方法计算频率依赖各向异性极化率和各向异性磁屏蔽,就能根据公式得出IBCM。采用不同DFT算法和基组的计算结果与C6F6的实验数据作对比,优选了合适平面分子的算法和基组。计算了系列金属卟啉的IBCM,计算结果表明平面共轭分子有较大的各向异性极化率,从而具有与NSOFR相近量级的新Cotton-Mouton效应,有可能通过实验测得。此外,我们发现IBCM具有类似于共振拉曼的电子共振效应,当入射光接近共振激发波长时,IBCM的强度会急剧上升。本章用量子化学方法计算了金属卟啉的核自旋诱导新Cotton-Mouton效应(IBCM);发现IBCM旋光强度存在共振增强效应,有可能提供关于分子激发态的信息。
     第五章用密度泛函理论研究了系列锌卟啉配合物(ZnP, ZnTBP, ZnPc, ZnTAP)的基态、第一激发单重态(S1态)、第一激发三重态(T1态)的结构与光谱性质。通过与时间分辨共振拉曼实验数据对比,现有的量子化学方法对激发态结构与光谱计算结果是可信的;计算结果表明ZnP的S1态结构确实存在很弱的动态姜-泰勒效应。理论和计算结果都表明:由于ZnP的HOMO和HOMO-1轨道近简并,S1态具有强组态相互作用,姜-泰勒畸变很弱;T1态由于交换作用,几乎不存在组态相互作用,所以畸变较强。有关结果有助于解决长期以来关于金属卟啉第一激发单重态是否存在姜-泰勒畸变的争议。
Nuclear magnetic resonance (NMR) is an important phenomenon that is applied in various fields, from structural characterization to medical imaging. Most NMR and MRI measurements use the traditional nuclear induction methods put forward sixty years ago. In2006, nuclear-spin-induced optical rotation (NSOR) was reported as a novel NMR signal detection method related to magneto-optical effect. In the NSOR, the plane of polarization of linearly polarized light is rotated by spin-polarized nuclei in an NMR sample. Based on Buckingham et al's theory of antisymmetric polarizability and Faraday effect, we derived an analytical theoretical expression of nuclear-spin-induced optical Faraday rotation (NSOFR). Based on Buckingham and Pople's theory of magnetic double refraction, we first proposed and theoretically researched a new Cotton-Mouton effect (IBCM) which is induced by the crossed effect between the high dc magnetic field Bo and the nuclear magnetic moment. These two new nuclear-spin-induced magneto-optical effects are closely related to the molecular structure and thus may be developed into new analytical techniques integrating NMR and optical spectroscopy. The metalloporphyrins have long been studied, but details about their excited state structures are still lack. In this thesis, density functional theory (DFT) calculations are used to study Jahn-Teller distortion of zinc-porphyrins in the excited states. The IBCM of porphyrins are also be studied by using DFT. This dissertation is divided into five chapters.
     Chapter1introduced the basic knowledge of NMR, molecular polarizability, magneto-optical effect and quantum chemistry computational methods. The research backgrounds and developments of nuclear-spin-induced magneto-optical effect and metalloporphyrins are presented in this chapter. The main content of this dissertation is introducd briefly.
     In Chapter2, based on the thought on the antisymmetric polarizability induced by nuclear magnetic moments and theory of the Faraday effect, an analytical theoretical expression is derived for the nuclear-spin-induced optical Faraday rotation (NSOFR) of diamagnetic saturated molecules in a circular cylinder. That consists of two parts,(?)(1)and(?)(B), induced by the intramolecular and intermolecular hyperfine interaction, respectively. By using them and the Verdet constants, NSOR for1H in water, hexane, cyclohexane and methyl-alcohol in liquid and H2gas have been calculated. The calculated NSOR for water agrees with the experiment and for three hydrocarbons predicts the same order of magnitude as water. For the samples studied (?)(1) and(?)(B) are comparable in magnitude. This part of the work was confirmed by recent experimental study and quantum chemical calculations.
     In Chapter3, based on Buckingham and Pople's theory of magnetic double refraction, a theoretical expression is derived for a new Cotton-Mouton effect (IBCM) in liquid induced by the crossed effect between the high dc magnetic field Bo and the nuclear magnetic moment. It contains temperature-independent and-dependent parts. The latter is proportional to the product between anisotropy of polarizability and nuclear magnetic shielding tensor. For this new effect, its order in magnitude for a molecule with large polarizability anisotropy is estimated to be comparable to the nuclear-spin-induced optical Faraday rotation (NSOFR). In the multipass approach, IBCM can be eliminated by time-reversal symmetry arguments, but NSOFR is enhanced. In addition, we derived the expression of optical rotation when Faraday effect and Cotton-mouton effect exist at the same time.
     In Chapter4, density functional theory was used to calculate the new Cotton-Mouton effect (IBCM) of C6F6and a series of porphyrins. For conjugated molecules that have large polarizability anisotropy, the tempetature-dependent term almost determine the total new Cotton-Mouton effect. We calculate the frequency-dependent polarizability anisotropy and nuclear magnetic shielding anisotropy which are connected with the tempetature-dependent contribution to IBCM. The preferable methods and basis sets for IBCM calculation is tested out. The new effect of porphyrins is strong and comparable with NSOFR, so it may be detected by experiments. Besides, IBCM is found resonance enhanced when the incident light is in resonance with the excitation wavelength of the molecule.
     In Chapter5, we have studied the first singlet exciting state of Zinc-porphyrins (ZnP, ZnPc, ZnTAP, ZnTBP). It was discovered that Jahn-Teller distorted assuredly occur in the S1state. The stable rectangle geometries can transform to each other through B3g vibration mode of a diamond-like transition state. The dynamic Jahn-Teller effect (DJT) transition energy barriers increase with the degree of the distortion. The degree of distortion is related to configuration interaction. The J-T distortion in T1state is much stronger than the S1state, because of the absence of configuration interaction.
引文
[1]李俊清,何天敬,王俭,刘凡镇,物质结构导论,中国科学技术大学出版社:合肥,1990.
    [2]1.1. Rabi, J. R. Zacharias, S. Millman, Physical Review 53 (1938) 318.
    [3]E. M. Purcell, H. C. Torrey, R. V. Pound, Physical Review 69 (1946) 37.
    [4]F. Bloch, Physical Review 70 (1946) 460.
    [5]A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press: Oxford,1961.
    [6]P. Mansfield, A. A. Maudsley, Br.J.Radiol.50 (1977) 188.
    [7]D. A. Long, Raman Spectroscopy, McGraw-Hill:New York,1977.
    [8]C. J. F. Bottcher, P. Bordewijk, Theory of Electric Polarization, Elsevier scientific publishing company:Amsterdam,1978, vol.1 and 2.
    [9]T. Miller, B. Bederson, In Advances in Atomic and Molecular Physics, Academic Press:New York,1977, vol.13.
    [10]A. D. Buckingham, Adv. Chem. Phys.12 (1967) 107.
    [11]A. D. Buckingham, Phil. Trans. R. Soc. Lond.293 (1979) 239.
    [12]A. D. Buckingham, P. A. Galwas, F.-C. Liu, J. Mol. Structure 100 (1983) 3.
    [13]H. C. Longuet-Higgins, Mol. Phys.6(1963) 445.
    [14]J. T. Hougen, J. Phys. Chem 90 (1986) 562.
    [15]J. Tang, A. C. Albrecht, In Raman Spectroscopy, H. A. Szymanski, Ed., New York,1970, Vol.2, Ch.2.
    [16]H. Eyring, J. Walter, G. E. Kimball, Quantum Chemistry石宝林译,科学出版社:北京,1981.
    [17]J. R. Ferraro, K. Nakamoto, C. W. Brown, Introductory Raman Spectroscopy, Amsterdam,2003.
    [18]E. J. Heller, R. L. Sunberg, D. Tannor, J. Phys. Chem.86 (1982) 1822.
    [19]W. L. Peticolas, T. Rush III, J. Comput. Chem.16 (1995) 1261.
    [20]D. C. Clary, B. J. Orr, Optical, Electric and Magnetic Properties of Molecules:A Review of the Work of A. D. Buckingham Elsevier, Science:Amsterdam, New York,1997.
    [21]D. R. Lide, CRC handbook of chemistry and physics, Taylor & Francis:London, 2005.
    [22]G.-H. Yao, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, Chem. Phys.387 (2011) 39.
    [23]刘公强,乐志强,沈德芳,磁光学,上海科学技术出版社:上海,2001.
    [24]A. K. Zvezdin, V. A. Kotov, Modern Magnetooptics and Magnetooptocal Materials, Institute of Physics Publishing:Bristol, UK,1997.
    [25]D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, Rev. Mod. Phys.74 (2002) 1153.
    [26]A. D. Buckingham, J. A. Pople, Proc. Phys. Soc. Section B 69 (1956) 1133.
    [27]A. J. Thorvaldsen, K. Ruud, A. Rizzo, S. Coriani, J. Chem. Phys.129 (2008) 164110.
    [28]S. G. Vulfson. Molecular Magnetochemistry, Gordon and Breach Science Publishers:Australia,1998.
    [29]T.-T. Lu, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, Chem. Phys. Lett.479 (2009) 14.
    [30]F. Jensen, Introduction to Computational Physcics, Cambridge University Press: 1999.
    [31]W. J. Hehre, L. Radom, P. V. R. Schleyer, J. Pople, ab inito Molecular Orbital Theory, John Wiley & Sons:New York,1986.
    [32]C. D. Sherrill, H. F. Schaefer Ⅲ, Advances in Quantum Chemistry 34 (1999) 143.
    [33]C. M(?)ller, M. S. Plesset, Phys. Rev.46 (1934) 618.
    [34]K. Raghavaehari, J. A. Pople, E. S. Replogle, M. Head-Gordon, J. Phys. Chem. 94 (1990) 5579.
    [35]P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, Oxford University Press:New York,2011.
    [36]J. F. Stanton, R. J. Bartlett, J. Chem. Phys.98 (1993) 7029.
    [37]P. Hohenberg, W. Kohn, Phys. Rev.136 (1964) 864.
    [38]W. Kohn, L. J. Sham, Phys. Rev.140 (1965) A1133.
    [39]D. M. Ceperley, B. J. Alder, Phys. Rev. Lett.,45 (1980) 566.
    [40]E. Runge, E. K. U. Gross, Phys. Rev. Lett.52 (1984) 997.
    [41]M. Petersilka, U. J. Gossmann, E. K. U. Gross, Phys. Rev. Lett.76 (1996) 1212.
    [42]R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett.256 (1996) 454.
    [43]G. P. Bartholomew, M. Rumi, et al., J. Am. Chem. Soc.126 (2004) 11529.
    [44]N. A. Besley, M. T. Oakley, A. J. Cowan, J. D. Hirst, J. Am. Chem. Soc.126 (2004) 13502.
    [45]F. E. Jorge, J. Autschbach, T. Ziegler, J. Am. Chem. Soc.127 (2005) 975.
    [46]M. E. Casida, D. R. Salahub, J. Chem. Phys.113 (2000) 8918.
    [47]R. J. Cave, F. Zhang, N. T. Maitra, K. Burke, Chem. Phys. Lett.389 (2004) 39.
    [48]吴国桢,分子振动光谱学原理与研究,清华大学出版社:北京,2002.
    [49]H. J. Mamin, M.Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, D. Rugar, Science 339 (2013) 557.
    [50]T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, J. Wrachtrup Science 339 (2013) 561.
    [51]P. Hemmer, Science 339 (2013) 529.
    [52]I. M. Savukov, S.-K. Lee, M. V. Romalis, Nature 442 (2006) 1021.
    [53]W. S. Warren, Nature 442 (2006) 990.
    [54]A. S. Edison, J. R. Long, Nature 447 (2007) 646.
    [55]D. Pagliero, W. Dong, D. Sakellariou, C. A. Meriles, J. Chem. Phys.133 (2010) 154505.
    [56]D. Pagliero, Y. Li, S. Fisher, C. A. Meriles, Appl. Opt.50 (2011) 648.
    [57]D. Pagliero, C. A. Meriles, PNAS 108 (2011) 19510.
    [58]S. Ikalainen, M. V. Romalis, P. Lantto, J. Vaara, Phys. Rev. Lett.105 (2010) 153001.
    [59]J. Shi, S. Ikalainen, J. Vaara, M. V. Romalis, J. Phys. Chem. Lett.4 (2013) 437.
    [60]G.-H. Yao, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, ChemPhysChem,13 (2012) 1325.
    [61]T. S. Mashiko, Comprehensive Coordination Chemistry, Pergamon press:Oxford, 1987.
    [62]J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry-Principles of Structure and Reactivity, Harper Collins College publishers:New York,1993.
    [63]A. L. Lehinger, Biochemistry, Kalyani publishers:New Delhi,1978.
    [64]E. L. Smith, R.L. Hill, I. R Lehman, R. J. Lefkowitz, P. Handler, A. White, Principles of Bio-Chemistry-General Aspects, Me Graw-Hill Inc.:Singapore, 1983.
    [65]J. P. Collman, Inorg. Chem.36 (1997) 5145.
    [66]O. A. Golubchikov, B. D. Berezin, Russian Chem. Rev.55 (1986) 768.
    [67]B. Meunier, Chem. Rev.92 (1992) 1411.
    [68]V. V. Borovkov, R. P. Evstigneeva, L. N. Strekova, E. I. Filippovich, Russian Chem. Rev.58 1989)602.
    [69]K. E. Keller, N. Foster, Inorg. Chem.31 (1992) 1353.
    [70]K. S. Suslick, C. T. Chen, G.R. Meredith, L. T. Cheng, J. Am. Chem. Soc.114 (1992) 6928.
    [71]W. M. Sharman, C. M. Allen, J. E. van Lier, Drug Discovery Today 4 (1999) 507.
    [72]F. D'Souza, P. M. Smith, M. E. Zandler, A. L. McCarty, M. Itou, Y. Araki, O. Ito, J. Am. Chem. Soc.126 (2004) 7898.
    [73]S. Ardo, D. Achey, A. J. Morris, M. Abrahamsson, G J. Meyer, J. Am. Chem. Soc. 133 (2011) 16572.
    [74]R. W. Larsen, L. Wojtas, J. Perman, R. L. Musselman, M. J. Zaworotko, C. M. Vetromile J. Am. Chem. Soc.133 (2011) 10356.
    [75]A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev.41 (2012) 19.
    [76]A. Cnossen, L. Hou, M. M. Pollard, P. V. Wesenhagen, W. R. Browne, B. L. Feringa, J. Am. Chem. Soc.134 (2012) 17613.
    [77]J. A. Faiz, V. Heitz, J. P. Sauvage, Chem. Soc. Rev.38 (2009) 422.
    [78]V. Balzani, A. Credi, M. Venturi, Chem. Soc. Rev.38 (2009) 1542.
    [79]M. Kawao, H. Ozawa, H. Tanaka, T. Ogawa, Thin Solid Films 499 (2006) 23.
    [80]B. L. Feringa, W. R. Browne, Molecular Switches; Wiley-VCH:Weinheim,2011.
    [81]E. R. Kay, D. A.Leigh, F. A. Zerbetto, Chem., Int. Ed.46 (2007) 72.
    [82]D. A. Leigh, J. K. Y. Wong, F. Dehez, F. Zerbetto, Nature 424 (2003) 174.
    [83]R. Sakamoto, S. Kume, M.-Sugimoto, H. Nishihara, Chem. Eur. J.15 (2009) 1439.
    [84]K. A. Nguyen, R. Pachter, J. Chem. Phys.114 (2001) 10757.
    [85]K. A. Nguyen, R. Pachter, J. Chem. Phys.118 (2003) 5802.
    [86]X. Liu, E.K.L. Yeow, S. Velate, R. P. Steer, Phys. Chem. Chem. Phys.8 (2006) 1298.
    [87]B. Minaev, H. Agren, Chem. Phys.315 (2005) 215.
    [88]X. Liu, L.-C. Xu, T.-J. He, D.-M. Chen, F.-C. Liu, Chem. Phys. Lett.379 (2003) 517.
    [89]D. H. Kreszowski, G Deinum, G T. Babcock, J. Am. Chem. Soc.116 (1994) 7463.
    [90]K. Prendergast, T. G Spiro, J. Phys. Chem.95 (1991) 9728.
    [91]J. A. Shelnutt, L. D. Cheung, R. C. C. Chang, N. T. Yu, R. H. Felton, J. Chem. Phys.66 (1977) 3387.
    [92]L. D. Cheung, N.T. Yu, R. H. Felton, Chem. Phys. Lett.55 (1978) 527.
    [93]C. Otto, A. Voroshilov, S. G. Kruglik, J. Greve, J. Raman Spectrosc.32 (2001) 495.
    [94]S. E. J. Bell, J. M. Hegarty, F. Morvan, J. Raman Spectrosc.31 (2000) 289.
    [1]I. M. Savukov, S.-K. Lee, M. V. Romalis, Nature 442 (2006) 1021.
    [2](a) W. S. Warren, Nature 442 (2006) 990. (b) A. S. Edison, J. R. Long, Nature 447 (2007) 646.
    [3]S. Ikalainen, M. V. Romalis, P. Lantto, J. Vaara, Phys. Rev. Lett.105 (2010) 153001.
    [4]D. Pagliero, W. Dong, D. Sakellariou, C. A. Meriles, J. Chem. Phys.133 (2010) 154505.
    [5]T-T Lu, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, Chem. Phys. Lett.479 (2009) 14.
    [6](a) A. D. Buckingham, L. C. Parlett, Science 264 (1994) 1748. (b) A. D. Buckingham, L. C. Parlett, Mol. Phys.91 (1997) 805.
    [7]A. D. Buckingham, P. J. Stephens, Ann. Rev. Phys. Chem.17 (1966) 399.
    [8]I. Ando, G. A. Webb, Theory of NMR Parameters, Academic Press:London, 1983 ((a) sections 2. D; 4. A. (b) section 3. B. (c) section 3. C.2).
    [9]H. F. Hameka, Advanced Quantum Chemistry, Addison-Wesley, Reading: Massachusetts,1965 ((a) sections 3-6,3-7. (b) sections 8-7. and 10-1. (c) section10-2. (d) section 9-5. (e) section 10-4).
    [10]L. D. Barron, Molecular Light Scattering and Optical Activity, Second Ed., Cambridge University Press:Cambridge,2004. ((a) ch.2. (b) ch.4. (c) ch. 6).
    [11](a) W. C. Dickinson, Phys. Rev.81 (1951) 717. (b) C. Kittel, Introduction to Solid State Physics,7th Ed., Wiley:New York,1996 (ch.13).
    [12]M. Jaszunski, A. Rizzo, Mol. Phys.96 (1999) 855.
    [13]D. C. Clary, B. J. Orr (Eds.), Optical, Electric and Magnetic Properties of Molecules, A Review of the Work of A. D. Buckingham, Elsevier:Amsterdam, 1997. ((a) ch.5. (b) ch.11. (c) p.166. (d) p.46).
    [14]L. Li, D.-M. Chen, T.-J. He, X.-Y. Wang, F.-C. Liu, Chinese Journal of Chemistry 17 (1999) 570.
    [15](a) J. Vaara, K. Ruud, O. Vahtras, J. Chem. Phys. 111(1999) 2900. (b) H. Nakasuji, M. Hada, H. Kaneko, C. C. Ballard, Chem. Phys. Lett.255 (1996) 195.
    [16](a) L. Li, T.-J. He, D.-M. Chen, X.-Y. Wang, F.-C. Liu, J. Phys. Chem. A 102 (1998) 10385. (b) R. H. Romero, J. Vaara, Chem. Phys. Lett.400 (2004) 226.
    [17]D. Budker, M. Romalis, Nat. Phys.3 (2007) 227.
    [18]H. A. Bethe, E. E. Salpeter, Quantum Mechanics of One-and Two-electron Atoms, Plenum:New York,1977 ((a) p.7. (b)p.17. (c)p.6. (d)p.217).
    [19](a) G. Herzberg, Molecular Spectra and Molecular Structure, D. Van Nostrand: Princeton,1950 (p.340. p.329). (b) A. Carrington, A. D. Mclachlan, Introduction to Magnetic Resonance, Wiley:New York,1979 (ch.5).
    [20]J. R. Partington, An Advanced Treatise on Physical Chemistry, Vol.4:Phys.-Chem. Optics, Longmans:London,1953, ((a) p.624-627. (b) p.596).
    [21]M. Born, E. Worf, Principles of Optics,7th Ed., Cambridge University Press: Cambridge,1999 (ch. II).
    [22]S. G. Vulfson, Molecular Magnetochemistry, Gordon and Breach Science Publishers:Australia,1998 (ch.4).
    [23](a) R. Daudel, Quantum Theory of the Chemical Bond, D. Reidel:Dordrecht, 1974 (section 1.6.4). (b) R. Daudel, F. Gallais, P. Smet, Int. J. Quamt. Chem.1 (1967)873.
    [24]J. A. Pople, J. Chem. Phys.37 (1962) 53,60.
    [25](a) R. A. Marcus, J. Phys. Chem. C 113 (2009) 14598. (b) R. A. Marcus, Faraday Discuss.145 (2010) 9-14,127.
    [26]S. Ikalainen, P. Lantto, P. Mannimen, J. Vaara, J. Chem. Phys.129 (2008) 124102.
    [27]A. K. Zvezdin, V. A. Kotov, Modern Magnetopptics and Magnetooptical Materials, Institute of Physics Publishing:Bristol, UK,1997 (chs.1,5).
    [28]D. Budker, W. D. Gawlik, F. Kimball, S. M. Rochester, V. V. Yashchuk, A. Weis, Rev. Mod. Phys.74 (2002) 1153.
    [29]A. J. Thorvaldsen, K. Ruud, A. Rizzo, S. Coriani, J. Chem. Phys.129 (2008) 164110 (and references therein).
    [30](a) A. D. Buckingham, Chem. Phys. Lett.398 (2004) 1. (b) A. D. Buckingham, P. Fischer, Chem. Phys.324 (2006) 111. (c) S. Pelloni, P. Lazzeretti, R. Zanasi, J. Chem. Theory Comput.3 (2007) 1691.
    [31]T. S. Pennanen, S. Ikalainen, P. Lantto, J. Vaara, J. Chem. Phys.136 (2012) 184502.
    [32](a) J. Shi, S. Ikalainen, J. Vaara, M. V. Romalis, J. Phys. Chem. Lett.4(2013)437 (b) S. Ikalainen, Academic Dissertaion, Section 4.4, ISBN978-952-10-7741-8, Helsinki University Print, Helsinki,2012.
    [1]I. M. Savukov, S.-K. Lee, M. V. Romalis, Nature 442 (2006) 1021.
    [2]W. S. Warren, Nature 442 (2006) 990.
    [3]D. Pagliero, W. Dong, D. Sakellariou, C. A. Meriles, J. Chem. Phys.133 (2010) 154505; and its supplementary material at http://dx.doi.org/10.1P63/I3502484.
    [4]S. Ikalainen, M. V. Romalis, P. Lantto, J. Vaara, Phys. Rev. Lett.105 (2010) 153001.
    [5]G.-H. Yao, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, Chem. Phys.387 (2011) 39.
    [6]T.-T. Lu, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, Chem. Phys. Lett.479 (2009) 14.
    [7]a) D. Pagliero, Y. Li, S. Fisher, C. A. Meriles, Appl. Opt.50 (2011) 648; b) C. A. Meriles, Concepts Magn. Reson.32A (2008) 79.
    [8]a) A. D. Buckingham, L. C. Parlett, Science 264 (1994) 1748; b) A. D. Buckingham, P. Fischer, Chem. Phys.324 (2006) 11.
    [9]A. D. Buckingham, L. C. Parlett, Mol. Phys.91 (1997) 805.
    [10]A. D. Buckingham, J. A. Pople, Proc. Phys. Soc. London, Sect. B 69 (1956) 1133.
    [11]A. J. Thorvaldsen, K. Ruud, A. Rizzo, S. Coriani, J. Chem. Phys.129 (2008) 164110.
    [12]S. G. Vulfson, Molecular Magnetochemistry, Gordon and Breach Science Publishers:Australia,1998, section 2.1.2.
    [13]A. K. Zvezdin, V. A. Kotov, Modern Magnetooptis and Magnetooptical Materials, IOP Publishing:Bristol, UK,1997, a) section 3.2; b) section 2.4; c)section 3.3; d) section 2.5; e) section 3.1.
    [14]W. J. Tabor, F. S. Chen, J. Appl. Phys.40 (1969) 2760.
    [15]R. C. Weast (Ed.), Handbook of Chem. and Phys., CRC Press:1979-1980.
    [16]H. kling, E. Dreier, W. Huttner, J. Chem. Phys.78 (1983) 4309.
    [17]D. C. Clary, B. J. Orr (Eds.), Optical, Electric and Magnetic Properties of Molecules, A Review of the work of A. D. Buckingham, Elsevier:Amsterdam, 1997,a)ch.2;b)ch.l;c)ch.11.
    [18]F. Guenneau, P. Mutzenhardt, X. Assfeld, D. Canet, J. Phys. Chem. A 102 (1998) 7199.
    [19]P. M. Rinard, J. W. Calyert, Amer. J. Phys.39 (1971) 753.
    [20]L. D. Barron, Nature 238 (1972) 17.
    [21]M. B. Isabel, de Figueiredo, R. E. Raab, Proc. R. Soc. Lond. A.369 (1980) 501.
    [22]P. D. Maker, R. W. Terhune, C. M. Savage, Phys. Rev. Lett.12 (1964) 507.
    [23]D. Budker, W. Gawlik, D. F. Kinmball, S. M. Rochester, V. V. Yashchuk, A. Weis, Rev. Mod. Phys.74 (2002) 1153-1201 a) sections Ⅰ and Ⅺ; b) sections Ⅺ,and ⅩⅢC.
    [24]A. D. Buckingham, J. E. Del Bene, S. A. C. McDowell, Chem. Phys. Lett.463 (2008) 1.
    [25]L.-J. Fu, J. Vaara, J. Chem. Phys.138 (2013) 204110.
    [I]I. M. Savukov, S.-K. Lee, M. V. Romalis, Nature 442 (2006) 1021.
    [2](a) W. S. Warren, Nature 442 (2006) 990. (b) A. S. Edison, J. R. Long, Nature 447 (2007) 646.
    [3]S. Ikalainen, M. V. Romalis, P. Lantto, J. Vaara, Phys. Rev. Lett.105 (2010) 153001.
    [4]G.-H. Yao, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, Chem. Phys.387 (2011) 39.
    [5]J. Shi, S. Ikalainen, J. Vaara, M. V. Romalis, J. Phys. Chem. Lett.4 (2013) 437.
    [6]T.-T. Lu, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, Chem. Phys. Lett.479 (2009) 14.
    [7]D. Pagliero, W. Dong, D. Sakellariou, C. A. Meriles, J. Chem. Phys.133 (2010) 154505.
    [8]D. Pagliero, Y.Li, S. Fisher, C. A. Meriles, Appl. Opt.50 (2011) 648.
    [9]a) A. D. Buckingham, L. C. Parlett, Science 264 (1994) 1748, b) A. D. Buckingham, L. C. Parlett, Mol. Phys.91 (1997) 805.
    [10]A. D. Buckingham, J. A. Pople, Proc. Phys. Soc. London, Sect. B 69 (1956) 1133.
    [11]G.-H. Yao, M. He, D.-M. Chen, T.-J. He, F.-C. Liu, ChemPhysChem,13 (2012) 1325.
    [12]A. J. Thorvaldsen, K. Ruud, A. Rizzo, S. Coriani, J. Chem. Phys.129 (2008) 164110.
    [13]G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 374 (1995) 517.
    [14]F. D'Souza, P. M. Smith, M. E. Zandler, A. L. McCarty, M. Itou, Y. Araki, O. Ito, J. Am. Chem. Soc.126 (2004) 7898.
    [15]M. C. Yoon, S. Cho, P. Kim, T. Hori, N. Aratani, A. Osuka, D. Kim, J. Phys. Chem. B,113(2009)15074.
    [16]K. A. Nguyen, R. Pachter, J. Chem. Phys.114 (2001) 10757.
    [17]X. Liu, E.K.L. Yeow, S. Velate, R. P. Steer, Phys. Chem. Chem. Phys.8 (2006) 1298.
    [18]F. Guenneau, P. Mutzenhardt, X. Assfeld, D. Canet, J. Phys. Chem. A 102 (1998) 7199.
    [1]G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 374 (1995) 517.
    [2]J. Deisenhofer, J. R. Norris, The Photosynthetic Reaction Center, Academic Press: New York,1993; Vols.1 and 2.
    [3]M. C. Yoon, S. Cho, P. Kim, T. Hori, N. Aratani, A. Osuka, D. Kim, J. Phys. Chem. B,113(2009)15074.
    [4]J. Larsen, B. Bruggeman, T. Polivka, V. Sundstr□m, E. Akesson, J. Sly, M. J. Crossley, J. Phys. Chem. A 109 (2005) 10654.
    [5]J. P. Strachan, S. Gentemann, J. Seth, W. A. Kalsbeck, J. S. Lindsey, D. Holten, D. F. Bocian, J. Am. Chem. Soc.119 (1997) 11191.
    [6]F. D'Souza, P. M. Smith, M. E. Zandler, A. L. McCarty, M. Itou, Y. Araki, O. Ito, J. Am. Chem. Soc.126 (2004) 7898.
    [7]E. Maligaspe, N. V. Tkachenko, N. K. Subbaiyan, R. Chitta, M. E. Zandler, H. Lemmetyinen, F. D'Souza, J. Phys. Chem. A 113 (2009) 8478.
    [8]D. H. Kreszowski, G. Deinum, G. T. Babcock, J. Am. Chem. Soc.116 (1994) 7463.
    [9]J. A. Shelnutt, L. D. Cheung, R. C. C. Chang, N. T. Yu, R. H. Felton, J. Chem. Phys.66(1977)3387.
    [10]L. D. Cheung, N.T. Yu, R. H. Felton, Chem. Phys. Lett.55 (1978) 527.
    [11]C. Otto, A. Voroshilov, S. G. Kruglik, J. Greve, J. Raman Spectrosc.32 (2001) 495.
    [12]S. E. J. Bell, J. M. Hegarty, F. Morvan, J. Raman Spectrosc.31 (2000) 289
    [13]K. A. Nguyen, R. Pachter, J. Chem. Phys.114 (2001) 10757.
    [14]K. A. Nguyen, R. Pachter, J. Chem. Phys.118 (2003) 5802.
    [15]X. Liu, E. K. L. Yeow, S. Velate, R. P. Steer, Phys. Chem. Chem. Phys.8 (2006) 1298.
    [16]B. Minaev, H. Agren, Chem. Phys.315 (2005) 215.
    [17]X. Liu, L.-C. Xu, T.-J. He, D.-M. Chen, F.-C. Liu, Chem. Phys. Lett.379 (2003) 517.
    [18]K. Prendergast, T. G. Spiro, J. Phys. Chem.95 (1991) 9728.
    [19]W. R. Scheidt, J. U. Mondal, C. W. Eigenbrot, A. Adler, L. J. Radonovich, J. L. Hoard, Inorg. Chem.25 (1986) 795.
    [20]M. Gouterman, J. Mol. Spectrosc.6 (1961) 138.
    [21]M. Gouterman, J. Mol. Spectrosc.11 (1963) 108.
    [22]G. W. Canters, G. Jansen, M. Noort, J. H. Van der Waals, J.Phys. Chem,80 (1976) 2253.
    [23]J. A. Shelnutt, J. Porphyrins Phthalocyanines 5 (2001) 300.
    [24]R. Bachmann, F. Gerson, G. Gescheidt, E. Vogel, J. Am. Chem. Soc.114 (1992) 10855.
    [25]A. T. Gradyushko, M. P. Tsvirko, Opt. Spectrosc.31 (1971) 291.
    [26]L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, P. Foggi, J. Phys. Chem. A 112 (2008) 11044.
    [27]X.-Y. Li, R. S. Czermuszewicz, J. R. Kincaid, P. Stein, T. G. Spiro, J.Phys. Chem. 94(1990)31.
    [28]X.-Y. Li, R. S. Czernuszewicz, J. R. Kincaid, P. Stein, T. G. Spiro, J.Phys. Chem. 94 (1990) 47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700