用户名: 密码: 验证码:
西藏小型猪急性辐射损伤模型的建立及肠损伤机制的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     核恐怖、核污染及医源性核放射治疗对人类健康、安全及生存的影响非常广泛。尤其是近年来核事件如日本福岛核电站泄漏,朝鲜试验杀伤性核武器等引起了人们的广泛关注,如何在这种突发事件中做好应对是各国都非常关心的重点。大型核电站事故或核恐怖事件都会导致短时间内波及大量人员,受害者通常在短时间内受到高剂量辐射后产生全身反应,常伴有全身炎症,恶心呕吐,败血症,皮肤烧伤等症状。由于这些症状的特征不明显,再加上临床工作中,处理受到核辐射损害的患者非常罕见,大部分临床工作人员对这类受害者没有清楚的认识,不能正确及时的诊断病人的伤情并采取积极治疗措施。此外,全球每年有2000万肿瘤患者接受放射治疗,放疗后伴有辐射损伤症状的存活患者约150万。小肠组织的放射毒性仍然是腹部和盆腔肿瘤治疗的主要障碍,限制了高治疗剂量的使用。鉴于此,通过建立西藏小型猪急性辐射损伤模型来进行快速诊断方法和损伤机制的研究,可为临床辐射损伤的保护及救治提供新的思路。
     [18F]-FDG-PET/CT(18氟代葡萄糖正电子发射断层扫描术/计算机层析X射线摄影法)是一种先进的分子成像诊断技术。其将先进的分子、功能、代谢成像与经典的解剖、形态、密度显示相互结合,不仅保留了经典解剖影像的作用,还加入了先进分子影像的功能,对于临床诊断具有重要的意义。目前,PET/CT在90%的临床应用主要用于早期发现或排除肿瘤、然而,关于[18F]-FDG-PET/CT在急性放射损伤中的应用报道较少。理论上,机体遭受不同程度的电离辐射后,全身发生炎症反应、甚者细胞凋亡、组织坏死,能量代谢通路会发生不同程度的改变,且这种改变必将导致[18F]-FDG的摄取发生变化。但辐照诱导的这种[18F]-FDG摄取的变化是否具有规律性?能否可用于快速诊断患者受照剂量并反映机体受损程度是本课题解决的问题之一。
     PET/CT用于急性辐射病的诊断原理基于急性辐射病的发病机制与葡萄糖代谢异常紧密相关,而葡萄糖代谢是机体能量代谢的重要组成部分。线粒体是小肠能量代谢的结构基础,是细胞有氧氧化合成ATP的部位,同时也是对辐射损伤最敏感的细胞器之一。我们通过对小肠线粒体复合物酶活,呼吸功能,能量物质的含量及荧光定量PCR测定线粒体蛋白编码基因的表达,展示了辐射引起小肠线粒体各指标的变化和相互关系,为能量代谢通路障碍的分子机制提出了进一步的验证。
     方法
     第一章西藏小型猪急性辐射病模型的建立
     选用未去势雄性西藏小型猪为动物模型(n=54),实验组用直线加速器分别予2、5、8、11、14Gy单次剂量照射(n=9/组),剂量率均统一为255cGy/min。对照组9只未予照射。观察西藏小型猪辐射后呕吐、腹泻,大便隐血、外周血淋巴细胞计数及淋巴结淋巴细胞凋亡等指标,分别于照射后6、24、72小时予西藏小型猪分别处死实验组中的三只小型猪,光镜及电镜观察不同剂量不同时间点下西藏小型猪小肠及淋巴结的形态学变化。根据临床现有的辐射病分级标准,比较不同剂量辐射后小型猪的症状与人类急性放射病模型的特点,确定西藏小型猪急性辐射病模型的成功建立。数据分析采用析因法对外周血淋巴细胞计数,淋巴结淋巴细胞凋亡率进行分析。如剂量、时间因素的交互效应及主效应p值小于0.05,则应分别固定时间因素及剂量因素,并用单因素方差分析法对两者的简单效应进行分析。组内多重比较根据方差齐性结果,分别用最小差值法(LSD)或Games-Howell法进行分析。小肠病理评分结果主要采用K-INDEPENDENT Samples非参数检验法进行检测。所有数据处理均用Statistical Product and Service Solutions13.0(SPSS13.0)软件完成。
     第二章PET/CT在急性辐射病中的应用探索
     实验动物分组及辐照条件参照第一章,PET/CT扫描方法如下:麻醉后,西藏小型猪静脉注射造影剂一小时后开始扫描。扫描所获图像及数据均通过Xeleris工作站系统进行处理。对FDG摄取的定量主要通过:1)划定目的区域(regions of interest, ROIs),本章目的脏器为小肠。2)通过Xeleris工作站系统自动计算注入的FDG剂量与ROIs之间的比值(%ID)。数据的标准化均由电脑自动完成并以SUV值的形式输出。为使图像更为直观的表现出SUV值的差距,本研究主要应用rainbow伪彩模式并将所生成图片的颜色参照彩图条进行设定。为保证结果的客观真实性,我们做了下列措施:1)注入FDG的量统一以0.11-0.13millicurie/kg/猪进行计算;2)所有的实验用猪在进行PET/CT扫描前,至少禁食8小时保证血糖水平的均一和稳定;3)同时对三个相邻层面的SUV最大值进行扫描收集并用以统计学分析;4)小型猪统一于FDG注射后1小时进行扫描。统计方法如下:数据均以均数±标准差的形式进行表示。用析因分析法对小肠SUV值进行分析。如剂量、时间因素的交互效应及主效应p值小于0.05,则应分别固定时间因素及剂量因素,并用单因素方差分析法对两者的简单效应进行分析。组内多重比较根据方差齐性结果,分别用最小差值法(LSD)或Games-Howell法进行分析。P值小于0.05被视为具有统计学差异(双尾)。
     第三章急性辐射病的能量代谢损伤机制
     本实验所用的18只成年雄性西藏小型猪来自第一章动物分组中2,5,8,11,14Gy的72小时组及对照组。对照组3只,实验组每组3只,静脉注射速眠新麻醉(0.05ml/kg)后分别接收2,5,8,11,14Gy单次X线照射。于辐射72小时麻醉处死前,进行各项能量代谢指标的测定。能量代谢的观察指标包括线粒体超微结构观察、线粒体呼吸链酶复合物活力的测定、线粒体呼吸功能的测定、高效液相色谱法测定不同类型辐射病小肠腺苷酸含量、不同类型急性辐射病蛋白质编码基因的测定。统计方法均采用单因素方差分析。单位湿重能量物质与单位DNA能量物质与病理积分的相关性采用Spearman法,统计软件为SPSS13.0。
     结果
     第一章西藏小型猪急性辐射病模型的建立
     西藏小型猪在辐射后24小时,72小时的腹泻,呕吐及大便隐血评分均无统计学差异(P值>0.05)。各时间点外周血淋巴细胞计数均随着辐照剂量的增加而降低。与对照组相比,各剂量组之间的差异在72h组最为明显。从形态学来看,各实验组随着剂量的增加,淋巴结的体积缩小,出血明显,淋巴细胞数明显下降。西藏小型猪各剂量组辐射6h淋巴结内每个淋巴小结区域的淋巴细胞数目与对照组无明显差异,但在24h和72h,淋巴结内淋巴细胞的数目随着剂量的升高明显降低,且显示出剂量效应。淋巴结淋巴细胞的凋亡率在各时间点都与对照组有统计学差异(P<0.05),2Gy-11Gy之间随着辐射剂量上升,凋亡率也明显上升。72h时,细胞凋亡率在8Gy-14Gy区间内无统计学差异。除了11Gy,同一剂量6h、24h和72h的凋亡率相比,没有统计学差异。各时间点,11Gy组的凋亡率是最高的。辐射后,分别于6小时,24小时和72小时处死不同剂量组的3只西藏小型猪,肉眼观察到不同剂量组各时间点小肠组织变化没有明显差异。照射后6小时即能观察到小肠组织的损伤,但总体来说72小时病变更为明显直接。2Gy组和对照组的小肠组织没有明显不同,5Gy组观察到小肠黏膜面基本平滑,绒毛和皱襞消失,肠壁变薄,小血管扩张、水肿和充血、出血、血淤滞、微血栓、有散在小片状或点状出血。8Gy及11Gy出血多呈斑点状,发生广泛或弥漫性出血,有1只动物观察到肠道大量出血性积聚和血凝块。14Gy组所有动物都出现肠黏膜面大范围的弥漫性出血或肠腔内积血,绒毛上皮发生广泛坏死,黏膜枯萎,肠绒毛裸露。病理结果的半定量积分评估分析,发现病理积分随着剂量的增加明显增加,剂量效应大于时间效应。电镜观察淋巴结细胞的超微结构在11Gy之前组均显示典型的凋亡细胞形态结构。例如,浓缩的染色质及早期染色质边缘集中,中期典型的新月体和环状染色质,细胞质细胞器紧贴,晚期细胞皱缩及凋亡小体。电镜下可见其变化主要表现为细胞核异常(核固缩;核破裂、核溶解等改变,异染色质边缘化,异染色质增多或减少)、小肠绒毛缺失。且变化程度均随放射剂量的增加而增加。11-14Gy的形态学结果显示除了凋亡,组织主要显示出坏死的典型特征。
     第二章PET/CT在急性辐射病中的应用探索
     照射剂量因素及观察时间点因素对小肠FDG摄取的影响具有显著性。剂量因素、时间因素及两者的交互效应p值均小于0.05)固定时间因素可知:放射后6小时,2Gy组(1.15±0.16)、5Gy组(1.36±0.18)SUV值相较于对照组(1.16±0.26)无统计学差异(2、5Gy组vs对照组,p值均>0.05),8Gy组(2.56±0.38)、11Gy组(2.81±0.28)、14Gy组(1.47±0.31)SUV值均高于对照组(1.16±0.26)有统计学差异,11Gy时达到最高点。
     放射后24小时,2Gy组(1。19±0.15)、5Gy组(2.25±0.16)、8Gy组(4.25±0.32)SUV值较对照组是依次升高的趋势(5、8Gy组vs对照组,p值均小于0.05),这个时间点SUV值的最高点出现在8Gy,11Gy组(2.20±0.12)开始低于8Gy、14Gy组(0.76±0.14)SUV值更下降到低于对照组(11Gy组、14Gy组vs对照组p值均小于0.05)。各剂量组之间比较有统计学差异(2Gy组vs5Gy组、5Gy组vs8Gy组、8Gy组vs11Gy组,所有p值均小于0.01),但11Gy组及14Gy组间并无统计学差异(11Gy组vs14Gy组,p值大于0.05);总体来说24h时间点,SUV值的最高点出现在8Gy,低于8Gy时SUV值随剂量的增加而升高,高于8Gy随着剂量的升高而降低。
     放射后72小时,2Gy组(1.84±0.24)、5Gy组(2.93±0.43)SUV值较对照组(1.16±0.10)明显升高(2、5Gy组vs对照组,p值均<0.05),8Gy组(7.03±0.91)、11Gy组(4.09±0.43)SUV值高于对照组且有统计学差异,反之,14Gy组(0.42±0.09)SUV值明显低于对照组(11、14Gy组vs对照组,p值均<0.05),但11、14Gy组SUV值无统计学差异(11Gy vs.14Gy, p>0.05).固定剂量因素可知:放射剂量为2、5、8Gy时,FDG摄取在放射后24及72小时均高于放射后6小时。其变化趋势为放射后24小时FDG摄取>72小时>6小时。放射剂量为11、14Gy时,FDG摄取随观察时间的延长而进行性降低。
     第三章急性辐射病的能量代谢损伤
     电镜下放射后72小时小肠超微结构进行观察,其变化主要表现为细胞核异常(核固缩;异染色质边缘化;异染色质增多或减少)、线粒体扩张及空泡化。酶活结果表明,复合酶物Ⅰ,Ⅱ,Ⅲ,Ⅳ辐射后72小时的趋势大致相同。复合物酶Ⅰ各实验组与对照组均有显著性差异(P值<0.05),在2-8Gy酶活性明显降低,2Gy,5Gy,8Gy组之间有显著性差异(P值<0.05),8Gy,11Gy,14Gy组之间无差异;复合物酶Ⅱ2Gy与对照组无显著性差异,2G,5Gy,8Gy组之间有显著性差异(P值<0.05),8Gy,11Gy,14Gy组之间无差异;复合物酶Ⅲ2Gy与对照组有显著性差异(P值<0.05),其余组与对照组的显著性P值<0.01,2Gy与5Gy之间的差异P值小于0.01,5Gy和8Gy组之间有显著性差异(P<0.05),8Gy,11Gy,14Gy组之间无差异;复合物酶Ⅳ的变化与复合酶Ⅱ相似,低剂量辐射时,无显著性变化,从5Gy开始有明显下降,最明显的变化出现在2-5Gy之间(P<0.01)。与对照组比较,实验组两条呼吸链R3、P/0及RCR均随着剂量的增加显著降低,R4随着剂量增加而增加,说明辐射导致小型猪小肠线粒体呼吸功能下降,氧化磷酸化偶联作用松弛。8Gy以下,各组组间变化明显,超过8Gy之后,呼吸功能无明显变化。不同放射剂量X线辐射后72小时小肠ATP、ADP、AMP和TAN含量(nmol/g湿重)均有显著变化且变化各具特点。(p值均小于0.01)我们发现ATP、ADP和TAN含量在2Gy到8Gy之间随着辐射剂量的增加而降低,显示出剂量效应,而8Gy之后各组腺苷酸含量之间的无统计差异。小肠线粒体能量物质与DNA的比值与单位湿重能量物质的含量趋势一致,表明能量代谢是细胞损伤的机制之一。单位湿重小肠能量物质含量与单位DNA能量物质含量与病理积分的相关性比单位湿重能量物质的变化和病理改变更加紧密。各能量物质中,TAN含量的改变和病理变化相关性最高。RT-PCR结果表明,与线粒体相关的13个基因在辐射后72小时的趋势大致相同。各实验组的表达量均与对照组显著差异,低于8Gy,各剂量组之间显著性差异,各基因的表达量明显大幅度降低,显示出剂量效应。8Gy组的表达量仅为正常组的20%左右,而高于8Gy的实验组之间无显著性差异。
     结论:
     第一章西藏小型猪急性辐射病模型的建立
     1、我们在2Gy-14Gy的辐射区间内成功复制出西藏小型猪不同剂量的急性辐射病模型,小型猪辐射后外周血淋巴细胞计数、细胞凋亡率、病理变化和人类急性辐射病症状非常相似,可以作为急性辐射病的动物模型。
     2、根据病理和超显微结构的观察,西藏小型猪不同剂量的急性辐射病的损伤机制存在不同,有待进一步的探索。
     第二章PET/CT在急性辐射病中的应用探索
     1、不同时间点,PET/CT检测不同剂量组西藏小型猪急性辐射病模型,SUV值的趋势相同,均为先上升,再下降。拐点位置在8Gy。结合患者的临床症状,SUV值可作为急性辐射病诊断和预后的参考。
     2、低剂量辐射后SUV值升高可能由于机体的炎症反应导致,高剂量辐射后SUV值降低主要原因为机体遭到极大损伤,组织结构破坏严重,出现坏死,生物体能量代谢障碍。
     第三章急性辐射病的能量代谢损伤
     辐射导致小肠线粒体能量生成障碍的发生是多环节、多组分共同作用的结果,辐射剂量低时,能量代谢仍能维持一定水平时,但没有完全失衡,细胞功能仍有恢复的可能;当能量物质下降到一定程度时,恢复的几率大大降低。呼吸链复合物酶活性的降低、氧化与磷酸化脱偶联加强、呼吸功能降低,mt DNA的损伤以及能量物质的改变等,均起一定的作用,这些组分均可能成为提高辐射后线粒体能量生成效率的有效干预靶点。
Purpose and background:
     The influence of nuclear terrorism, nuclear contamination and nuclear radiation therapy to human survival,safety and health has become a hot topic of current medical research. Large-scale nuclear accident or nuclear terrorist incident may result in a large number of casualties in a short time. The victims radiated by high-dose in a short time are often accompanied by symptoms of systemic reaction, such as systemic, inflammation, nausea, vomiting, septicemia, and skin burns. Due to there is no obvious features of these symptoms, coupled with the clinical work by the personnel nuclear radiation damage is not very common, when in the situation of dealing with such a victim, most of clinical staff dose not have a clear understanding on how to diagnosis the patient's injury and take what kind of active treatment measures. In addition, there are still over200,000cancer patients undergoing radiotherapy all over the world annually, even more than about1.5million of the survival of patients with symptoms of intestinal radiation damage after radiotherapy. Small intestinal tissue radiation toxicity remains a major obstacle to the treatment of abdominal and pelvic tumors, limiting the use of high therapeutic doses. In view of this, a detailed understanding of the intestinal tract to ionizing radiation damage mechanisms and diagnostic methods is very necessary to help taking the effective means to reduce the intestinal damage caused by the clinical course of treatment and improve quality of life in patients.
     18-fluoro glucose positron emission tomography/computed tomography X-ray photographic method.(([18F]-FDG-PET/CT) is an advanced molecular imaging diagnostic techniques. This machine combines molecular mechanism,functional analysis, metabolic imaging with classic anatomy, shape, density not only retains the classic role of the anatomical images, and also joined the functionality of advanced molecular imaging, is of great significance for clinical diagnosis. At present, oncology diagnosis in its clinical applications occupied more than90%in this field, mainly used for early detection or exclusion of tumor. However, However, whether [18F]-FDG-PET/CT can be useful in the diagnosis in acute radiation injury is rarely reported. In theory, when the body expose to varying degrees of ionizing radiation, systemic inflammatory response may occur and energy metabolism pathways would be change to some extent, thus will inevitably lead to the change of [18F]-FDG uptake. But is this changes in[18F]-FDG uptake in TBI-induced radiation damage with regularity? Can it be used for rapid diagnosis of exposure doses and reflect the extent of the damage of the body? Which is one of the subject to solve the problem.
     The principle on PET/CT for the diagnosis of acute radiation sickness is closely related to the pathogenesis of acute radiation sickness and energy metabolism abnormalities. Mitochondria are the structural basis of the small intestine energy metabolism, the most important part of cell aerobic oxidation in the process for the synthesis of ATP, and also the most radiation sensitive organelles. Through the measurement of small intestine mitochondrial complex activity, respiratory function, the contents of the energy substances and the quantitative PCR determination of expression of the mitochondrial protein coding, gene, we plan to show a radiation-induced changes in indicators of the small intestine, on the basis of the above assumption we can also bring out some hypothesis of the possible molecular mechanism of energy metabolism damage further.
     Methods:
     Chapter one:The establishment of Tibet mini pig model
     The establishment of acute radiation disease model of Tibet mini-pigs. Not castrated male Tibetan mini pig was chose as an animal model (n=54), the radiation groups were exposed to the of2,5,8,11,14Gy of single dose of irradiation (n=9/group) with a linear accelerator, the dose rate was255cGy/min.9of the control group were not irradiated. We recorded vomiting, diarrhea, fecal occult blood, peripheral blood lymphocyte count and lymph node lymphocyte apoptosis index of Tibet mini pigs. Three Tibet mini pigs of the experimental group were sacrificed at6,24,72hours after irradiation respectively, we ovserved the morphological changes of small intestine and lymph nodes by light and electron microscope at different time points. Based on the existing clinical grading standards of acute radiation disease, we classified the symptoms of mini pigs in the different doses of radiation corresponds to a different classification of human acute radiation sickness model, and determine the successful establishment of the
     Tibet mini pigs of acute radiation disease model.
     The data of peripheral blood lymphocyte count, lymph node and lymphocyte apoptosis were analyzed by repeated measure variance analysis. When interaction effects of factors such as dose, time and the main effect of p-value were less than0.05, variance such as time factors, dose factors or the simple effect of both single-factor should be fixed to analysis.According to multiple comparisons of the homogeneity of variance results within the groups,the minimum difference method (LSD) or Games-Howell method was used for further analysis. K-INDEPENDENT the samples of non-parametric test was applied in intestinal pathological findings. All the data have to deal with are using the Statistical the Product and Service Solutions13.0(SPSS13.0) software.
     ChapterⅡ The exploration of diagnosis value of PET/CT in acute radiation disease in Tibet mini pig model
     Experimental animal group and the irradiation conditions were the same as the chapter one mentioned. PET/CT scanning methods as follows:After anesthesia, PET/CT begin scanning one hour after intravenous contrast agent to mini pigs. Images and data obtained from scanning further processed through Xeleris work station system. Quantitative FDG uptake mainly through:1, Deline the regions of interest (regions of interest, ROIs), this chapter is mainly for the small intestine.2, Xeleris workstation system can automatically calculates the ratio (%ID) of the injected dose between regions of interest.Standardization and correction of data was automatically performed by computer and output in the form of SUV values..In order to make the image more vividly present the gap between different SUV values,we set up rainbow pseudo-color mode and transferred the PET/CT image into color reference according to the color pictures bar. To ensure the objectiveness and authenticity of results, following measures had been done:1) the amount of FDG injected into Tibet mini pig is0.11-0.13millicurie/kg/pig,2) In order to control blood sugar levels all experimental pigs at least faste eight hours before the PET/CT scan,3) We recorded maximum SUV value of three adjacent scanning levels for further statistical analysis.4) All mini pigs are scanned one hour after the injection of FDG. Statistical methods are as follows:The data are presented as mean±standard deviation. SUV value were analyzed by repeated measure variance analysis. When interaction effects of factors such as dose, time and the main effect of p-value were less than0.05, variance such as time factors, dose factors or the simple effect of both single-factor should be fixed to analysis.
     According to multiple comparisons of the homogeneity of variance results within the groups,the minimum difference method (LSD) or Games-Howell method was used for further analysis. P values less than0.05was considered statistically significant (two-tailed). The small intestine SUV and pathological damage degree of correlation analysis using Spearman method.
     Chapter III Injury mechanisms of energy metabolism in acute radiation sickness
     18adult male Tibet mini pigs used in this experiment came from the72hours subgroup in groups of2,5,8,11,14Gy and control group which were used in chapter one. The experimental group were3pigs while the control one is the same.72hours after radiation pigs were sacrificed, we determine the related energy metabolism indicators. The energy metabolism indicators includes the observations of mitochondrial ultrastructural, the mitochondrial respiratory chain enzyme complex activity,mitochondrial respiratory function,adenylate content of the small intestine by high performance liquid chromatography (HPLC) method,the copies of protein-coding genes.
     Results
     Chapter I:The establishment of Tibet mini pig model
     24hours and72hours after radiation, the data of diarrhea, vomiting and fecal occult blood score Tibet mini pig were not statistically different (P>0.05). At all time points in peripheral blood lymphocyte counts were reduced with increasing radiation dose. Compared with the control group, the differences between each dose group is most obvious in the72h group. Overall, in all experimental groups with increasing dose, lymph nodes became smaller in size, bleeding was more severe, the lymphocyte count decreased significantly. The number of lymphocytes ineach lymphoid nodule area in the Tibet mini pig6h after radiation has no significant difference. At24h and72h, the number of
     lymphocytes in lymph nodes decreased significantly with the increasing dose, and showed a dose-response. Lymphocytes apoptosis rate in lymph node and the control group at each time point has significant difference (P<0.05), with the increase in radiation dose between the2Gy-11Gy, the apoptosis rate increase signicicantly. At72h, the apoptosis rate has no significant different between the range of8Gy-14Gy. Except for11Gy, the same dose at6h,24h and72h, the apoptosis rate has no statistical significance. At each time point, the apoptosis rate of11Gy group is the highest,6hours,24hours and72hours after radiation, three Tibet mini pigs from different dose groups were sacrificed respectively, there is no significantly difference in different time point of the same dose in visual observation of the intestinal tissue.
     visual observation to the intestinal tissue changes of the different dose groups at each time point has no significant difference., We can observe small intestinal tissue injury as early as6hours after irradiation, however, on the whole, lesions in72hours was more obvious and direct. Intestinal tissue of2Gy group and control group was not significantly different. We found that the small intestine mucosa surface was basically smooth in5Gy group,but we can also found the villi became sparse and short, the small vascular expanded and there was dot like bleeding.8Gy and11Gy bleeding became more severe and found blood blot extensively. In14Gy group, all animal showed extensive bleeding, blood blot and diffuse hemorrhage in the mucosal surface of intestine, chorioepithelium appeared extensive necrosis, hardly no villi can be saw and intestinal villi hardly gone. The semi-quantity score of pathology showed an increase trend with dose increase, and the dose effect was more obvious than time effect. The ultrastructure of intestine and lymph note showed typical apoptosis cell state before dose of11Gy, we can see the typical apoptosis cell indicators such as concentrated and edging of chromatin at early phase, Crescent and ring chromatin at the media phase and apoptotic bodies at the late phase. While at14Gy the ultrastructure showed typical necrosis in the both organs.
     ChapterⅡ The exploration of diagnosis value of PET/CT in acute radiation disease in Tibet mini pig model
     Factors such as radiation dose and observation time both have significant influence on FDG uptake of intestine. The main-effects of time and radiation dose, and their cross-over effect were less than0.05. To the simple effect of radiation dose, at6h post-TBI, small-intestinal FDG uptake in2and5Gy showed no difference from control group, while those in8,11and14Gy were higher than control group. At24h post-TBI, small-intestinal FDG uptake showed no difference between2Gy-group and control group. Those in5,8and11Gy-group were higher than control group, while those in14Gy-group was lower than control group. It should be noted that on the time-points of6and24h post-TBI, FDG uptake in2,5and8Gy increased with the increase of radiation doses, while the reverse trend were shown in the following doses. At72h post-TBI, small-intestinal FDG uptake showed a radiation dose-dependent increase in the dose range of2to8Gy, while the rapid and marked decreases were shown in11and14Gy-group. To the simple effect of time-points, small-intestinal FDG uptake increased with the time prolonging in2,5and8Gy-group, while the reversed trend was shown in11and14Gy-group.
     Chapter III Injury mechanisms of energy metabolism in acute radiation sickness
     The main morphology of intestine under TEM was the abnormal of nuclear.(the condensed nucleus, the edging of heterochromatin, increased or reduced heterochromatin),the expand and vacuolization of mitochondria. The results of enzyme complexes activities showed, enzyme complex Ⅰ,Ⅱ,Ⅲ and IV at72h after radiation almost the same trend. The complex I in all experiment group has significant difference with the control group.(P<0.05), its activity decreased sharply at2-9Gy and there are significant differences between dose group2-8Gy, while from8-14Gy there was no significant different among them. Complex II has no significant difference between2Gy group and control group, however, there were significant difference in the range of2-8Gy,the later dose group show the same trend with complex I.The P value of complex III in2Gy and control is less than0.05,while the other group was0.01. The change of complex IV was almost the same as complex II, which didn't change until5Gy, then there is a sudden drop from5Gy.
     Compared with control group, the value of R3,P/O, and RCR is decreasing with increase dose, which means the dysfunction of mitochondrial respiratory chain and relaxation of oxidative Phosphorylation.8Gy is the key point, that prior to 8Gy the following change is evident, while no significant changes in respiratory function when the dose is more than8Gy.72hours after X-ray radiation, the ATP, the ADP, AMP, and TAN content (nmol/gwet weight) of different doses of radiation in small intestine are significantly changing and has its own change characteristics respectively.(P-value is less than0.01). We found that ATP, ADP, and TAN content decreases with increasing radiation dose in2Gy to8Gy, showing a dose effect, but after8Gy, no statistical difference between the group of adenylate content. The ratio of mitochondrial energy substances and DNA in small intestine and energy substances trends, indicating that energy metabolism is one of the mechanisms of cell injury. Compared with the energy of the unit wet weight of the small intestine material content, the relationship of unit DNA-energy matter content with pathological integral unit wet weight of energy material changes and pathological changes was more closely. Of all energy materials, the changes of TAN content has the closest relationship with pathological changes. RT-PCR results showed that the trend of the13genes associated with mitochondria encoding protein in the72hours after irradiation were almost the same. Significant differences existed in expression levels for each experimental group and control group less than8Gy, there are significant differences between each dose group, the amount of gene expression is obviously reduced, showing a dose effect. The expression of8Gy group only about20%of the normal group, but higher than8Gy, there is no significant difference among the experimental group.
     Conclusions:
     Chapter I:The establishment of Tibet mini pig model
     1、We successfully established different stages of acute radiation sickness in Tibet mini pig model at range of2Gy-14Gy radiation
     2、Based on pathology and ultrastructure observation, there is different injury mechanism in Tibet mini pig at different stages of acute radiation sickness, we need to further explore.
     Chapter Ⅱ:The exploration of diagnosis value of PET/CT in acute radiation disease in Tibet mini pig model
     1、At different time points, we use PET/CT to detect the different dose groups in Tibet mini pigs with acute radiation sickness model, the same trend of SUV values were first increased and then decreased. Inflection point location is about5Gy to8Gy. It proves that PET/CTdoes not apply to the determination of the radiation dose acute radiation sickness.
     2、We speculated that in the case of the presence of inflammation, the reason that the SUV value even decrease may be the possibility of reduced glucose metabolism due to obstacle in organism energy metabolism is much greater than the increased glucose metabolism trigered by inflammation.
     Chapter Ⅲ Injury mechanisms of energy metabolism in acute radiation sickness
     Radiation-induced intestinal mitochondrial energy generation obstacle is the result of multi-link, multi-component. If the radiation dose is not lethal, energy metabolism can still maintain a certain level, but not completely off balance, cell function may recover. When the energy of the material drop to a certain extent, the chance of recovery is greatly reduced. The decrease of respiratory chain complex activity, the strengthen uncoupling of oxidative phosphorylation,the reduction of respiratory function and mtDNA damage as well as the energy changes of substance, all play a role in mitochondrial energy production, which to improve to be an effective intervention target.
引文
1. Donnelly EH, Nemhauser JB, Smith JM, et al. Acute radiation syndrome:assessment and management. South Med J 2010,103(6):541-546.
    2. Kuniak M, Azizova T, Day R, et al. The Radiation Injury Severity Classification system: an early injury assessment tool for the frontline health-care provider. Br J Radiol 2008, 81(963):232-243.
    3. Bebeshko VG, Chumak AA, Bruslova EM, et al. Assessment of the immunohematological status of children exposed to low doses of ionizing radiation in the early and late periods after the Chernobyl AES accident]. Pediatriia 1991(12):16-20.
    4. Vignaux F, Hitte C, Priat C, et al. Cons truction and optimization of a dog whole-genome radiation hybrid panel. Mamm Genome 1999,10(9):888-894.
    5. Radfar L, Sirois DA. Structural and functional injury in minipig salivary glands following fractionated exposure to 70 Gy of ionizing radiation:an animal model for human radiation-induced salivary gland injury. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003,96(3):267-274.
    6. Fris M, Cejkova J, Midelfart A. The effect of single and repeated UVB radiation on rabbit lens. Graefes Arch Clin Exp Ophthalmol 2008,246(4):551-558.
    7. Brown AK, Fujita M, Fujimura Y, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28:a PET radioligand to image inflammation. J Nucl Med 2007,48(12):2072-2079.
    8. Anno GH, Young RW, Bloom RM, et al. Dose response relationships for acute ionizing-radiation lethality. Health Phys 2003,84(5):565-575.
    9. Liu SZ. Radiation-induced change in lymphocyte proliferation and its neuroendocrine regulation:dose-response relationship and pathophysiological implications. Nonlinearity Biol Toxicol Med 2004,2(3):233-243.
    10. Filannino A, Stout TA, Gadella BM, et al. Dose-response effects of estrogenic mycotoxins (zearalenone, alpha-and beta-zearalenol) on motility, hyperactivation and the acrosome reaction of stallion sperm. Reprod Biol Endocrinol 2011,9:134.
    11. Kim JS, Yang M, Kim J, Lee D, et al. Comparison of the dose-response relationship of radiation-induced apoptosis in the hippocampal dentate gyrus and intestinal crypt of adult mice. Radiat Prot Dosimetry 2012,148(4):492-497.
    12. Cronkite EP. The Diagnosis, Treatment, and Prognosis of Human Radiation Injury from Whole-Body Exposure. Ann N Y Acad Sci 1964,114:341-355.
    13. 吴波、周小军.小肠移植后急性排斥反应的病理诊断标准[J].肠外与肠内营养,2005.12(6):378-381
    14. Martel P, Deslandes M, Dugue L, et al. Radiation injuries of the small intestine. Surgical treatment] Ann Chir 1996,50(4):312-317.
    15. Wilson CM, Gaber MW, Sabek OM, et al. Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 2009,74(3):934-941.
    16. Mishima N, Tamiya T, Matsumoto K, et al. Radiation damage to the normal monkey brain:experimental study induced by interstitial irradiation. Acta Med Okayama 2003, 57(3):123-131.
    17. Parker DD, Parker JC. Estimating radiation dose from time to emesis and lymphocyte depletion. Health Phys 2007,93(6):701-704.
    18. Liu SZ, Han ZB, Liu WH. Changes in lymphocyte reactivity to modulatory factors following low dose ionizing radiation. Biomed Environ Sci 1994,7(2):130-135.
    19. Chang WP, Hwang JS, Hung MC, et al. Chronic low-dose gamma-radiation exposure and the alteration of the distribution of lymphocyte subpopulations in residents of radioactive buildings. Int J Radiat Biol 1999,75(10):1231-1239.
    20. Dewit L, Oussoren Y, Hart G Modification by cis-diamminedichloroplatinum (II) of the radiation dose-response curve for intestinal crypt cells in mice. Radiat Res 1987, 111(3):445-456.
    21. [Functioning of the antioxidant system in epithelial cells of small intestine under the influence of ionizing radiation of low dose rate]. Radiats Biol Radioecol 2011, 51(6):684-688.
    22. Meineke V, Fliedner TM. Radiation-induced multi-organ involvement and failure: challenges for radiation accident medical management and future research. BJR Suppl 2005,27:196-200.
    23. Winton DJ, Peacock JH, Ponder BA. Effect of gamma radiation at high-and low-dose rate on a novel in vivo mutation assay in mouse intestine. Mutagenesis 1989, 4(5):404-406.
    24. Hauer Jensen M, Sauer T, Reitan JB, et al. Late radiation enteropathy following split-dose irradiation of rat small intestine. Acta Radiol Oncol 1986,25(3):203-206.
    25. Shibamoto Y, Otsuka S, Iwata H, et al. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy:effect of prolonged delivery time and applicability of the linear-quadratic model. J Radiat Res 2012,53(1):1-9.
    26. Changlin Y, Genyao Y. Multi-organ failure in a radiation accident:the Chinese experience of 1990. BJR Suppl 2005,27:47-54.
    27. Konchalovsky MV, Baranov AE, Kolganov AV. Multiple organ involvement and failure: selected Russian radiation accident cases re-visited. BJR Suppl 2005,27:26-29.
    28. Genyao Y, Changlin Y. Multi-organ involvement and failure in a radiation accident:the Chinese experience of 1963. BJR Suppl 2005,27:55-61.
    29. Conard RA. Cholinesterase activity, weight, water content and pathology of small intestine of rats subjected to x-radiation. Am J Physiol 1952,170(2):418-425.
    30. Wright JL, Gollub MJ, Weiser MR, et al. Surgery and high-dose-rate intraoperative radiation therapy for recurrent squamous-cell carcinoma of the anal canal. Dis Colon Rectum 2011,54(9):1090-1097.
    31. Pujol M, Puig R, Caballin MR et al. The Use of Caffeine to Assess High Dose Exposures to Ionising Radiation by Dicentric Analysis. Radiat Prot Dosimetry 2011.
    32. Azizova TV, Semenikhina NG, Druzhinina MB. Multi-organ involvement and failure in selected accident cases with acute radiation syndrome observed at the Mayak Nuclear Facility. BJR Suppl 2005,27:30-35.
    33. Coppes RP, van der Goot A, Lombaert IM. Stem cell therapy to reduce radiation-induced normal tissue damage. Semin Radiat Oncol 2009,19(2):112-121.
    34. Herodin F, Mayol JF, Mourcin F,et al. Which place for stem cell therapy in the treatment of acute radiation syndrome? Folia Histochem Cytobiol 2005,43(4):223-227.
    35. Biswas T, Culakova E, Friedberg JW, et al. Involved field radiation therapy following high dose chemotherapy and autologous stem cell transplant benefits local control and survival in refractory or recurrent Hodgkin lymphoma. Radiother Oncol 2012.
    36. Akita S, Akino K, Hirano A et al. Mesenchymal stem cell therapy for cutaneous radiation syndrome. Health Phys 2010,98(6):858-862.
    37. McGhee RK, Praetzel DC, Medley CC.Radiation injuries, triage, and treatment after a nuclear terrorist attack. Oral Maxillofac Surg Clin North Am 2005,17(3):289-298, vi.
    38. Alexander DA, Klein S. The challenge of preparation for a chemical, biological, radiological or nuclear terrorist attack. J Postgrad Med 2006,52(2):126-131.
    39. Porrovecchio J, Mauro J. First responders and nuclear terrorist attacks. Health Phys 2005,89(2 Suppl):S35-39.
    40. 闵锐、李雨、潘真.辐射损伤的分类及诊断----介绍美国国家战略储备辐射工作组关于急性放射病治疗的建议之一[J].国外医学放射医学核医学分册,2005.29(4):179-185
    41. Holdstock D, Waterston E. Response to radiation incidents and radionuclear threats: renunciation of nuclear weapons could lessen the threat. BMJ 2004,328(7447):1074; author reply 1075.
    42. Vdovenko V. Physical development of the teenagers who were exposed to radiation in utero after the accident on the Chernobyl Nuclear Power Plant. Lik Sprava 2008(3-4):34-38.
    43. Romanyukha A, King DL, Kennemur LK. Impact of the fukushima nuclear accident on background radiation doses measured by control dosimeters in Japan. Health Phys 2012, 102(5):535-541.
    44. Grodzinskii DM, Gudkov IN. Radiation injury of the plants in the zone of influence of the accident on Chernobyl Nuclear Power Station (NPS). Radiats Biol Radioecol 2006, 46(2):189-199.
    45. Bykova AA, Sedinina NS. The neuromediatory system in liquidators of the radiation accident at the Chernobyl nuclear power station. Klin Lab Diagn 2005(3):17-18.
    46.李国民、李晓兵、邵云/急性放射病的病理诊断与分型诊断[J].中国放射医学与防护杂志2007.27(1):46-48
    47. Bertho JM, Roy L, Souidi M, Benderitter M et al. New biological indicators to evaluate and monitor radiation-induced damage:an accident case report. Radiat Res 2008, 169(5):543-550.
    48. Bauchinger M, Schmid E, Braselmann H. Time-course of translocation and dicentric frequencies in a radiation accident case. Int J Radiat Biol 2001,77(5):553-557.
    49. Fujii K. Acute radiation death of mice with massive total body irradiation with 60-Co gamma rays]. Nihon Igaku Hoshasen Gakkai Zasshi 1965,25(1):30-46.
    50. Gonzalez R, Edlich RF, Bredemeier HC et al. Rapid control of massive hepatic hemorrhage by laser radiation. Surg Gynecol Obstet 1970,131(2):198-200.
    51. Wilson SG, Jr. Radiation-induced central nervous system death. A study of the pathologic findings in monkeys irradiated with massive doses of cobalt-60 (gamma) radiation. Tech Doc Rep SAMTDR USAF Sch Aerosp Med 1959,59-58:1-18.
    52. Hahn PF, Jackson AH, Staggers FE, et al. Acute radiation death of dogs receiving a single massive dose of intravenous radioactive gold. Am J Roentgenol Radium Ther Nucl Med 1956,75(6):1139-1143.
    53. Ariel IM..The effect of single massive doses of roentgen radiation upon the liver; an experimental study. Radiology 1951,57(4):561-575.
    54. Takeshima T, Chamoto K, Wakita D, et al. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL:its potentiation by combination with Thl cell therapy. Cancer Res 2010,70(7):2697-2706.
    55. Han SK, Song JY, Yun YS, et al. Ginsan improved Thl immune response inhibited by gamma radiation. Arch Pharm Res 2005,28(3):343-350.
    56. Ryan LK, Copeland LR, Daniels MJ, et al. Proinflammatory and Thl cytokine alterations following ultraviolet radiation enhancement of disease due to influenza infection in mice. Toxicol Sci 2002,67(1):88-97.
    57. Klosner G, Trautinger F, Knobler R,et al.Treatment of peripheral blood mononuclear cells with 8-methoxypsoralen plus ultraviolet A radiation induces a shift in cytokine expression from a Thl to a Th2 response. J Invest Dermatol 2001,116(3):459-462.
    58. Roses RE, Xu M, Koski GK, et al. Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer. Oncogene 2008,27(2):200-207.
    59. Seong KM, Kim CS, Lee BS,, et al. Low-dose Radiation Induces Drosophila Innate Immunity through Toll Pathway Activation. J Radiat Res 2012.
    60. Lewis W, Simanyi E, Li H, et al. Regulation of ultraviolet radiation induced cutaneous photoimmunosuppression by toll-like receptor-4. Arch Biochem Biophys 2011, 508(2):171-177.
    61. Connor EE, Cates EA, Williams JL, et al. Cloning and radiation hybrid mapping of bovine toll-like receptor-4 (TLR-4) signaling molecules. Vet Immunol Immunopathol 2006,112(3-4):302-308.
    62. Harrington NP, Chambers KA, Ross WM, et al.Radiation damage and immune suppression in splenic mononuclear cell populations. Clin Exp Immunol 1997, 107(2):417-424.
    63. Hasegawa Y, Nakashima I, Ando K, et al. Dynamics of cytotoxic T lymphocyte precursors in vivo assessed by change in the radiation sensitivity. Evidence for development of radiation-sensitive memory cells without clonal expansion. Scand J Immunol 1988,28(1):43-53.
    64. Pietrangeli CE, Hayashi S, Kincade PW. Stromal cell lines which support lymphocyte growth:characterization, sensitivity to radiation and responsiveness to growth factors. Eur J Immunol 1988,18(6):863-872.
    65. Webb C, Sheldon P. A method for the selective beta-irradiation of individual lymphocyte microcultures and its application in a preliminary study of radiation sensitivity. J Immunol Methods 1984,71(1):49-59.
    66. Renner H. Radiation sensitivity of lymphocyte stimulation.1. Experiments on in-vitro sensitivity of cell number and mitosis activity. Strahlentherapie 1977,153(l):21-34.
    67. Hartweg H, Renner H, Renner K. Eosinophilic granulocytes in lymphocyte culture after stimulation with antilymphocyte serum or phytohemagglutinin and their radiation sensitivity. Strahlentherapie 1970,139(1):37-39.
    68. Ward MD, Sailstad DM, Andrews DL, et al. Ultraviolet radiation downregulates allergy in BALB/c mice. J Toxicol Environ Health A 2004,67(1):73-85.
    69. Ponnaiya B, Cornforth MN, Ullrich RL. Radiation-induced chromosomal instability in BALB/c and C57BL/6 mice:the difference is as clear as black and white. Radiat Res 1997,147(2):121-125.
    70. Lao CS. Survival and projection analyses of the effect of radiation on beagle dogs. J Biopharm Stat 1998,8(4):619-633.
    71. Jaenke RS, Phemister RD, Angleton GM. Characterization of renal damage following perinatal gamma radiation in the beagle. Radiat Res 1977,72(2):277-290.
    72. Norris WP, Fritz TE, Rehfeld CE, et al.The response of the beagle dog to cobalt-60 gamma radiation:determination of the LD50(30) and description of associated changes. Radiat Res 1968,35(3):681-708.
    73. Maillie HD, Krasavage W, Mermagen H. The distribution of dose and energy among the major organs of a beagle cadaver exposed to whole-body 1000 kVp x-radiation. Health Phys 1965,11(11):1155-1162.
    74. Eldred E, Trowbridge WV. Radiation sickness in the monkey. Radiology 1954, 62(1):65-73.
    75. Hunter CG, Munson RJ, Court Brown WM, et al.The general radiation syndrome:initial reaction in the monkey. Nature 1957,180(4600):1466.
    76. Wilson SG, Jr..Radiation-induced gastrointestinal death in the monkey. Tech Doc Rep SAMTDR USAF Sch Aerosp Med 1959,59-77:1-17.
    77. Bases R, Hamori I, Piazza L, et al. DNA base and strand damage in X-irradiated monkey CV-1 cells:influence of pretreatment using small doses of radiation. Int J Radiat Biol 1990,58(1):35-54.
    78. Price RE, Langford LA, Jackson EF, et al. Radiation-induced morphologic changes in the rhesus monkey (Macaca mulatta) brain. J Med Primatol 2001,30(2):81-87.
    79. Bair WJ, Willard DH, Nelson IC, et al. Comparative distribution and excretion of 237-Pu and 239-Pu nitrates and beagle dogs. Health Phys 1974,27(4):392-396.
    80. Kreyling WG, Ferron GA, Haider B. Metabolic fate of inhaled Co aerosols in beagle dogs. Health Phys 1986,51(6):773-795.
    81. Handford SW, Johnson PW, Scholtes RJ, et al.The small intestine in acute radiation death in the dog. Radiat Res 1961,15:734-744.
    82. Freeman SL, Hossain M, MacNaughton WK. Radiation-induced acute intestinal inflammation differs following total-body versus abdominopelvic irradiation in the ferret. Int J Radiat Biol 2001,77(3):389-395.
    83. MacNaughton WK, Leach KE, Prud'homme-Lalonde L, et al. Exposure to ionizing radiation increases responsiveness to neural secretory stimuli in the ferret jejunum in vitro. Int J Radiat Biol 1997,72(2):219-226.
    84. King GL. Characterization of radiation-induced emesis in the ferret. Radiat Res 1988, 114(3):599-612.
    85. Mody Jr VC, Kakar M, Soderberg PG, et al. High lenticular tolerance to ultraviolet radiation-B by pigmented guinea-pig; application of a safety limit strategy for UVR-induced cataract. Acta Ophthalmol 2010.
    86. Sundaram C, Koster W, Schallreuter KU. The effect of UV radiation and sun blockers on free radical defence in human and guinea pig epidermis. Arch Dermatol Res 1990, 282(8):526-531.
    87. Walters EM, Agca Y, Ganjam V, et al. Animal models got you puzzled?:think pig. Ann NY Acad Sci 2011,1245:63-64.
    88. Vodicka P, Smetana K, Jr., Dvorankova B, et al.The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 2005,1049:161-171.
    89. Swindle MM, Makin A, Herron AJ, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol 2012,49(2):344-356.
    90. Shulman RJ, Henning SJ, Nichols BL. The miniature pig as an animal model for the study of intestinal enzyme development. Pediatr Res 1988,23(3):311-315.
    91. Donnadieu-Claraz M, Benderitter M, Joubert C, et al. Biochemical indicators of whole-body gamma-radiation effects in the pig. Int J Radiat Biol 1999,75(2):165-174.
    92. New internal radiation dose and modeling software; FDA approves commercial MIRDOSE successor. J Nucl Med 2004,45(11):26N,28N.
    93. Rezvani M, Hopewell JW. The response of the pig lung to fractionated doses of X rays. Br J Radiol 1990,63(745):41-50.
    1. Otterson MF, Leming SC, Fox CJ, et al. Propagation of giant migrating contractions between the small intestine, cecum and colon during radiation. Neurogastroenterol Motil 2010,22(8):919-926.
    2. Nieder C, Molls M, et al. Is there an "primary lesion" in the pathogenesis of radiation-induced damage to the small intestine?. Strahlenther Onkol 2001, 177(11):629-630.
    3. Jahnson S, Holtz A, Gerdin B. Anastomotic blood-flow reduction in rat small intestine with chronic radiation damage. Digestion 1998,59(2):134-141.
    4. Lim YB, Pyun BJ, Lee HJ, et al. Proteomic identification of radiation response markers in mouse intestine and brain. Proteomics 2011,11 (7):1254-1263.
    5. Wang J, Zheng H, Hollenberg MD, et al. Up-regulation and activation of proteinase-activated receptor 2 in early and delayed radiation injury in the rat intestine: influence of biological activators of proteinase-activated receptor 2. Radiat Res 2003, 160(5):524-535.
    6. Zhizhniak SV, Kovalenko IE, Voitsitskii VM. Effect of ionizing radiation on calcium-transporting ability of brush-border membranes of small intestine enterocytes]. Ukr Biokhim Zh 1997,69(1):60-64.
    7. Linke R, Schroeder M, Helmberger T, et al. Antibody-positive paraneoplastic neurologic syndromes:value of CT and PET for tumor diagnosis. Neurology 2004,63(2):282-286.
    8. Aras Y, Akcakaya MO, Unal SN, et al. Bone marrow necrosis secondary to imatinib usage, mimicking spinal metastasis on magnetic resonance imaging and FDG-PET/CT. J Neurosurg Spine 2012,16(1):57-60.
    9. Cherry SR, Dahlbom M, Hoffman EJ. Evaluation of a 3D reconstruction algorithm for multi-slice PET scanners. Phys Med Biol 1992,37(3):779-790.
    10. Nehmeh SA, Erdi YE, Kalaigian H, et al.Correction for oral contrast artifacts in CT attenuation-corrected PET images obtained by combined PET/CT. J Nucl Med 2003, 44(12):1940-1944.
    11. Chin BB, Patel PV, Nakamoto Y, et al. Quantitative evaluation of 2-deoxy-2-[18F] fluoro-D-glucose uptake in hepatic metastases with combined PET-CT:iterative reconstruction with CT attenuation correction versus filtered back projection with 68Germanium attenuation correction. Mol Imaging Biol 2002,4(6):399-409.
    12. Kinahan PE, Townsend DW, Beyer T, et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998,25(10):2046-2053.
    13. Ramos CD, Erdi YE, Gonen M, Riedel E, et al. FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection. Eur J Nucl Med 2001,28(2):155-164.
    14. Lonneux M, Borbath I, Bol A, et al.Attenuation correction in whole-body FDG oncological studies:the role of statistical reconstruction. Eur J Nucl Med 1999, 26(6):591-598.
    15. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000,41(8):1369-1379.
    16. Sun X, Lan AK, Bircher C, et al. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications:Principle and Validation with Discrete Circuit Components. Nucl Instrum Methods Phys Res A 2011,641(1):128-135.
    17. Henriksen G, Schottelius M, Poethko T, et al.Proof of principle for the use of 11C-labelled peptides in tumour diagnosis with PET. Eur J Nucl Med Mol Imaging 2004, 31(12):1653-1657.
    18. 张红远、张祖进、郭召平.PET-CT的显像原理及临床应用.[J].医疗卫生装备,2008,29(10):101-103
    19. Mahmood S, Martinez de Llano SR, et al. False positive FDG-PET extensive diffuse abdominal tracer activity in a patient with CLL on whole-body 18FDG-PET/CT indicative of Ritcher's transformation. Nuklearmedizin 2009,48(6):N69-70.
    20. Han HS, Escalon MP, Hsiao B, et al.High incidence of false-positive PET scans in patients with aggressive non-Hodgkin's lymphoma treated with rituximab-containing regimens. Ann Oncol 2009,20(2):309-318.
    21. Ramtahalsing R, Arens AI, Vliegen RF, et al.False positive 18F-FDG PET/CT due to gynaecomastia. Eur J Nucl Med Mol Imaging 2007,34(4):614.
    22. Chang JM, Lee HJ, Goo JM, et al. False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol 2006,7(1):57-69.
    23. Reyes Ojeda MD, Lopez Aznar DJ, Abreu Sanchez P, et al.Bronchioloalveolar carcinoma as potencial cause of false negative with PET-FDG Rev Esp Med Nucl 2005, 24(4):254.
    24. Hara M, Shiraki N, Itoh M, et al. A problem in diagnosing N3 disease using FDG-PET in patients with lung cancer--high false positive rate with visual assessment. Ann Nucl Med 2004,18(6):483-488.
    25. Redondo P, Boan JF. Lymph node false-positive FDG-PET after recent surgery in primary melanoma. Acta Derm Venereol 2004,84(1):84-85.
    26. Zimny M, Buell U, Diederichs CG, et al. False-positive FDG PET in patients with pancreatic masses:an issue of proper patient selection? Eur J Nucl Med 1998, 25(9):1352.
    27. Sathekge MM, Maes A, Pottel H, et al. Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J 2010,100(9):598-601.
    28. Matthies A, Hickeson M, Cuchiara A, et al. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002,43(7):871-875.
    29. Karras R, Ricci M, Salerno TA, et al. Motion artifact resulting in a false positive CT angiogram for a presumed aortic dissection. J Card Surg 2011,26(2):223-224.
    30. Stengel JW, Webb EM, Poder L, et al. Acute appendicitis:clinical outcome in patients with an initial false-positive CT diagnosis. Radiology 2010,256(1):119-126.
    31. Taylor SA, Greenhalgh R, Ilangovan R, et al. CT colonography and computer-aided detection:effect of false-positive results on reader specificity and reading efficiency in a low-prevalence screening population. Radiology 2008,247(1):133-140.
    32. Nyman UR, Jacobsson B. Routine CT venography after CT for pulmonary embolism: evidence-based radiology or hemorrhage from anticoagulation of false-positive deep venous thrombosis? Radiology 2006,241(3):945-946; author reply 946-947.
    33. Tian J, Smith MF, Chinnadurai P, et al. Clinical Application of PET/CT Fusion Imaging for Three-Dimensional Myocardial Scar and Left Ventricular Anatomy during Ventricular Tachycardia Ablation. J Cardiovasc Electrophysiol 2008.
    34. Boss DS, Olmos RV, Sinaasappel M, et al.Application of PET/CT in the development of novel anticancer drugs. Oncologist 2008,13(1):25-38.
    35. Feichtinger M, Aigner RM, Santler G, et al. Case report:fusion of positron emission tomography (PET) and computed tomography (CT) images for image-guided endoscopic navigation in maxillofacial surgery:clinical application of a new technique. J Craniomaxillofac Surg 2007,35(6-7):322-328.
    36. Nishio M, Kawahara K, Tamaki T. Application of PET-CT for diagnosis of cancer. Gan To Kagaku Ryoho 2005,32(8):1091-1095.
    37. Nguyen VH, Verdurand M, Dedeurwaerdere S, et al. Increased brain metabolism after acute administration of the synthetic cannabinoid HU210:a small animal PET imaging study with 18F-FDG. Brain Res Bull 2012,87(2-3):172-179.
    38. Cantore M, Capparelli E, Berardi F, et al. Clinical pharmacokinetic and metabolism of PET radiotracers for imaging P-glycoprotein in chemoresistant tumor of colorectal cancer. Curr Drug Metab 2011,12(10):985-988.
    39. Wu X, Korkola P, Pertovaara H, et al. No correlation between glucose metabolism and apparent diffusion coefficient in diffuse large B-cell lymphoma:a PET/CT and DW-MRI study. Eur J Radiol 2011,79(2):e117-121.
    40. Sun A, Johansson S, Turesson I, Dasu A, et al. Imaging tumor perfusion and oxidative metabolism in patients with head-and-neck cancer using 1-[11C]-acetate PET during radiotherapy:preliminary results. Int J Radiat Oncol Biol Phys 2012,82(2):554-560.
    41. Albin RL, Koeppe RA, Burke JF, et al. Comparing fludeoxyglucose F18-PET assessment of regional cerebral glucose metabolism and [11C]dihydrotetrabenazine-PET in evaluation of early dementia and mild cognitive impairment. Arch Neurol 2010, 67(4):440-446.
    42. Song SH, Kim IJ, Kim SJ, et al. Cerebral glucose metabolism abnormalities in patients with major depressive symptoms in pre-dialytic chronic kidney disease:statistical parametric mapping analysis of F-18-FDG PET, a preliminary study. Psychiatry Clin Neurosci 2008,62(5):554-561.
    43. Lee SM, Park CM, Paeng JC, et al. Accuracy and predictive features of FDG-PET/CT and CT for diagnosis of lymph node metastasis of T1 non-small-cell lung cancer manifesting as a subsolid nodule. Eur Radiol 2012.
    44. Osawa A, Takiguchi T, Tamura S, et al. Respiratory management of CT-transmission for accuracy fusion in PET/CT:a comparison between normal expiration and free breathing in 600 experiences. Nihon Hoshasen Gijutsu Gakkai Zasshi 2010,66(7):743-748.
    45. Boland GW, Blake MA, Holalkere NS, et al. PET/CT for the characterization of adrenal masses in patients with cancer:qualitative versus quantitative accuracy in 150 consecutive patients. AJR Am J Roentgenol 2009,192(4):956-962.
    46. Inoue K, Sato T, Kitamura H, Ito M, et al. Improvement of the diagnostic accuracy of lymph node metastases of colorectal cancer in 18F-FDG-PET/CT by optimizing the iteration number for the image reconstruction. Ann Nucl Med 2008,22(6):465-473.
    47. Castellucci P, Perrone AM, Picchio M, et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer:correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun 2007,28(8):589-595.
    48. Li LF, Zhou SH, Zhao K, et al. Clinical significance of FDG single-photon emission computed tomography:Computed tomography in the diagnosis of head and neck cancers and study of its mechanism. Cancer Biother Radiopharm 2008,23(6):701-714.
    49. Zhou SH, Wu QL, Wang SQ, et al. Value of 18F-FDG metabolic imaging in diagnosis and treatment of head and neck tumors and its mechanism study. Zhonghua Yi Xue Za Zhi2007,87(2):109-113.
    50. Hatt M, Le Pogam A, Visvikis D, et al. Impact of partial-volume effect correction on the predictive and prognostic value of baseline 18F-FDG PET images in esophageal cancer. J Nucl Med 2012,53(1):12-20.
    51. Brush J, Boyd K, Chappell F, et al. The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer:a systematic review and economic evaluation. Health Technol Assess 2011, 15(35):1-192, iii-iv.
    52. Takanami K, Hiraide T, Tsuda M, et al. Additional value of FDG PET/CT to contrast-enhanced CT in the differentiation between benign and malignant intraductal papillary mucinous neoplasms of the pancreas with mural nodules. Ann Nucl Med 2011, 25(7):501-510.
    53. Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A Comparative analysis. J Nucl Med 2010,51(7):1015-1020.
    54. Yoon SN, Park CH, Kim MK, et al.False-positive F-18 FDG gamma camera positron emission tomographic imaging resulting from inflammation of an anterior mediastinal mass in a patient with non-Hodgkin's lymphoma. Clin Nucl Med 2001,26(5):461-462.
    55. 李林法.(18)F-氟代脱氧葡萄糖正电子发射体层显像在感染与炎症病变中的应用.[J].国际放射医学核医学杂志,2006(01):26-29
    56. Lannoo L, Smets S, Steenkiste E, et al. Intravascular large B-cell lymphoma of the uterus presenting as fever of unknown origin (FUO) and revealed by FDG-PET. Acta Clin Belg 2007,62(3):187-190.
    57. Amberger CC, Dittmann H, Overkamp D, et al. Large vessel vasculitis as cause of fever of unknown origin (FUO) or systemic inflammation. Diagnosis using 18-F-fluor-2-deoxy-D-glucose positron emission tomography ((18)F-FDG-PET). Z Rheumatol 2005,64(1):32-39.
    58. Chun EJ, Lee HJ, Kang WJ, et al. Differentiation between malignancy and inflammation in pulmonary ground-glass nodules:The feasibility of integrated (18)F-FDG PET/CT. Lung Cancer 2009,65(2):180-186.
    59. Perez M, Lobo FM, Yamane Y, et al.Inhibition of antiskin allograft immunity induced by infusions with photoinactivated effector T lymphocytes (PET cells). Is in vivo cell transferrable?Ann N Y Acad Sci 1991,636:95-112.
    60. Ma DW, Wang QY, Ma XY, et al. The effect of fasudil via Rho/ROCK signaling pathway on the inflammation and fibrosis in human mesangial cells in high glucose medium. Zhonghua Nei Ke Za Zhi 2011,50(7):580-584.
    61. Liu R, Zhang L, Lan X, et al. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion:involvement of anti-oxidation and anti-inflammation through nuclear transcription factor kappaappaB signaling pathway. Neuroscience 2011,176:408-419.
    62. Liu Y. Bone marrow granulomatous inflammation:FDG PET findings mimicking hematopoietic malignancy. Clin Nucl Med 2008,33(10):707-708.
    63. Wendling D, Blagosklonov O, Streit G, et al. FDG-PET/CT scan of inflammatory spondylodiscitis lesions in ankylosing spondylitis, and short term evolution during anti-tumour necrosis factor treatment. Ann Rheum Dis 2005,64(11):1663-1665.
    64. Delank KS, Schmidt M, Michael JW, et al. The implications of 18F-FDG PET for the diagnosis of endoprosthetic loosening and infection in hip and knee arthroplasty:results from a prospective, blinded study. BMC Musculoskelet Disord 2006,7:20.
    65. Chen SH, Ho KC, Hsieh PH, et al. Potential clinical role of [(18)F]FDG-PET/CT in detecting hip prosthesis infection:a study in patients undergoing two-stage revision arthroplasty with an interim spacer. Q J Nucl Med Mol Imaging 2009.
    66. Dunleavy K, Little RF, Pittaluga S, et al. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated difiuse large B-cell lymphoma. Blood 2010,115(15):3017-3024.
    67. Zaknun JJ, Zangerle R, Gabriel M, et al.18FDG-PET for monitoring disease activity in an HIV-1 positive patient with disseminated chronic osteomyelitic brucellosis due to Brucella melitensis. Eur J Nucl Med Mol Imaging 2005,32(5):630.
    68. Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis:a systematic review and metaanalysis including the Ontario experience. J Nucl Med 2012,53(2):241-248.
    69. Aide N, Benayoun M, Kerrou K, et al. Impact of [18F]-fluorodeoxyglucose ([18F]-FDG) imaging in sarcoidosis:unsuspected neurosarcoidosis discovered by [18F]-FDG PET and early metabolic response to corticosteroid therapy. Br J Radiol 2007, 80(951):e67-71.
    70. Meller J, Altenvoerde G, Munzel U, et al. Fever of unknown origin:prospective comparison of [18F]FDG imaging with a double-head coincidence camera and gallium-67 citrate SPET. Eur J Nucl Med 2000,27(11):1617-1625.
    71. Cyran CC, Sourbron S, Bochmann K, et al. Quantification of supra-aortic arterial wall inflammation in patients with arteritis using high resolution dynamic contrast-enhanced magnetic resonance imaging:initial results in correlation to [18F]-FDG PET/CT. Invest Radiol 2011,46(9):594-599.
    72. 侯光哲、李淑荣、齐景伟.小肠恶性淋巴瘤F-FDG PET/CT显像1例报告[J].吉林医学,2007(05):601-602
    73. Hintner H, Rauh G. Radiotherapy of acute inflammation processes with a diagnostic roentgen apparatus using postoperative parotitis as an example. Radiobiol Radiother (Berl) 1982,23(5):547-550.
    74. Marinkovic D. Inflammation and radiotherapy [proceedings]. Radiol Clin (Basel) 1978, 47(4):315-316.
    [1]Wang PL, Hu LN, Yang XJ, Li J, Sun CX, Xiong L, Yao CG, Wang SB:[Pathological studies of tissue damage in experimental rabbit liver cancer induced by energy controllable steep pulses]. Zhonghua Gan Zang Bing Za Zhi 2005,13(7):516-519.
    [2]Kamat JP, Boloor KK, Devasagayam TP, Venkatachalam SR:Antioxidant properties of Asparagus racemosus against damage induced by gamma-radiation in rat liver mitochondria. J Ethnopharmacol 2000,71 (3):425-435.
    [3]邱宏、金国琴、张学礼.调心方对氧化损伤型类AD大鼠能量代谢的影响.[J].中药药理与临床,2002,01:18-22
    [4]Antipova VN, Lomaeva MG:[Study of a mtDNA deletion in BALB/c mice exposed to ionizing radiation]. Genetika 2011,47(3):425-427.
    [5]Lenaz G, Baracca A, Fato R, Genova ML, Solaini G:New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 2006, 8(3-4):417-437.
    [6]Hayashi T, Tanaka S, Hori Y, Hirayama F, Sato EF, Inoue M:Role of mitochondria in the maintenance of platelet function during in vitro storage. Transfus Med 2011, 21(3):166-174.
    [7]Cervinkova Z, Lotkova H, Krivakova P, Rousar T, Kucera O, Tichy L, Cervinka M, Drahota Z:Evaluation of mitochondrial function in isolated rat hepatocytes and mitochondria during oxidative stress. Altern Lab Anim 2007,35(3):353-361.
    [8]王叔华.癫痫持续状态大鼠海马神经元程序性死亡与μ-calpain相关机制的实验研究.学位论文.山东大学.2008
    [9]Glancy B, Balaban RS:Role of Mitochondrial Ca(2+) in the Regulation of Cellular Energetics. Biochemistry 2012.
    [10]邵爱华.暗纹东方鲀(Takifugu fasciatus)线粒体DNA的分离纯化及其几个重要基因的克隆与序列分析.学术论文.苏州大学.2005
    [11]Wang ZB, Liu YQ, Zhang Y, Li Y, An XX, Xu H, Guo Y, Jin W, Jiang ZJ, Cui YF: Reactive oxygen species, but not mitochondrial membrane potential, is associated with radiation-induced apoptosis of AHH-1 human lymphoblastoid cells. Cell Biol Int 2007, 31(11):1353-1358.
    [12]Epperly MW, Sikora CA, DeFilippi SJ, Gretton JA, Zhan Q, Kufe DW, Greenberger JS: Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res 2002,157(5):568-577.
    [13]Ogawa Y, Nishioka A, Kobayashi T, Kariya S, Hamasato S, Saibara T, Seguchi H, Yoshida S:Radiation-induced apoptosis of human peripheral T cells:analyses with cDNA expression arrays and mitochondrial membrane potential assay. Int J Mol Med 2001, 7(6):603-607.
    [14]Pacher P, Csordas G, Hajnoczky G:Mitochondrial ca(2+) signaling and cardiac apoptosis. Biol Signals Recept 2001,10(3-4):200-223.
    [15]Falzone N, Huyser C, Fourie F, Toivo T, Leszczynski D, Franken D:In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa. Bioelectromagnetics 2008,29(4):268-276.
    [16]Pandey BN, Gordon DM, De Toledo SM, Pain D, Azzam EI:Normal human fibroblasts exposed to high-or low-dose ionizing radiation:differential effects on mitochondrial protein import and membrane potential. Antioxid Redox Signal 2006,8(7-8):1253-1261.
    [17]Denning MF, Wang Y, Tibudan S, Alkan S, Nickoloff BJ, Qin JZ:Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C. Cell Death Differ 2002, 9(1):40-52.
    [18]徐府奇.低剂量辐射预处理对放射性脑损伤保护作用的研究.学位论文.苏州大学.2005
    [19]Nakano M, Imamura H, Nagai T, Noji H:Ca(2) regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem Biol 2011,6(7):709-715.
    [20]Hao ZD, Liu S, Wu Y, Wan PC, Cui MS, Chen H, Zeng SM:Abnormal changes in mitochondria, lipid droplets, ATP and glutathione content, and Ca(2+) release after electro-activation contribute to poor developmental competence of porcine oocyte during in vitro ageing. Reprod Fertil Dev 2009,21 (2):323-332.
    [21]Zhang H, Zhang J, Chen Y, Zhu Y:Influence of intracellular Ca(2+), mitochondria membrane potential, reactive oxygen species, and intracellular ATP on the mechanism of microcystin-LR induced apoptosis in Carassius auratus lymphocytes in vitro. Environ Toxicol 2007,22(6):559-564.
    [22]Takayama E, Guo LL, Digerness SB, Pike MM:Early reperfusion levels of Na(+) and Ca(2+) are strongly associated with postischemic functional recovery but are disassociated from K(ATP) channel-induced cardioprotection. JMol Cell Cardiol 2004,37(2):483-496.
    [23]黄丽英、翁锡全、林文弢.间歇低氧对线粒体钙转运及能量代谢的影响.[J].中国临床康复2003,7(27):3778-3779
    [24]Zima AV, Copello JA, Blatter LA:Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes. J Physiol 2004,555(Pt 3):727-741.
    [25]Eto K, Suga S, Wakui M, Tsubamoto Y, Terauchi Y, Taka J, Aizawa S, Noda M, Kimura S, Kasai H et al:NADH shuttle system regulates K(ATP) channel-dependent pathway and steps distal to cytosolic Ca(2+) concentration elevation in glucose-induced insulin secretion. JBiol Chem 1999,274(36):25386-25392.
    [26]Lee S, Park M, So I, Earm YE:NADH and NAD modulates Ca(2+)-activated K+channels in small pulmonary arterial smooth muscle cells of the rabbit. Pflugers Arch 1994, 427(3-4):378-380.
    [27]Adisa RA, Ajewole I, Omolohunnu I, Olorunsogo OO:Induction of membrane permeability transition (MPT) pore opening by Buccholzia coriacea (Engl.) seeds in vitro in rat liver mitochondria. Afr J Med Med Sci 2010,39 Suppl:129-138.
    [28]Petrosillo G, Ruggiero FM, Pistolese M, Paradies G:Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms:role of cardiolipin. JBiol Chem 2004,279(51):53103-53108.
    [29]Ramos I, Cisint SB, Crespo CA, Medina MF, Fernandez SN:Subcellular localization of calcium and Ca-ATPase activity during nuclear maturation in Bufo arenarum oocytes. Zygote 2009,17(3):253-260.
    [30]林健.橄榄总黄酮的提取及其对大鼠脑缺血再灌注损伤的保护作用的研究.学位论文.福建医科大学.2007
    [31]Seidel K, Andronesi OC, Krebs J, Griesinger C, Young HS, Becker S, Baldus M: Structural characterization of Ca(2+)-ATPase-bound phospholamban in lipid bilayers by solid-state nuclear magnetic resonance (NMR) spectroscopy. Biochemistry 2008, 47(15):4369-4376.
    [32]Quesada I, Rovira JM, Martin F, Roche E, Nadal A, Soria B:Nuclear KATP channels trigger nuclear Ca(2+) transients that modulate nuclear function. Proc Natl Acad Sci USA 2002,99(14):9544-9549.
    [33]Wei X, Si MS, Imagawa DK, Ji P, Tromberg BJ, Cahalan MD:Perillyl alcohol inhibits TCR-mediated [Ca(2+)](i) signaling, alters cell shape and motility, and induces apoptosis in T lymphocytes. Cell Immunol 2000,201(1):6-13.
    [34]Shitashige M, Shibasaki F:[The role of calcineurin in Ca(2+)-mediated apoptosis]. Tanpakushitsu Kakusan Koso 1998,43(12 Suppl):1877-1883.
    [35]Lohmann RD, Beyersmann D:Cadmium and zinc mediated changes of the Ca(2+)-dependent endonuclease in apoptosis. Biochem Biophys Res Commun 1993, 190(3):1097-1103.
    [36]Sugi H:[Electron microscopic visualization of the myosin head dynamics to ATP in myosin filaments using the gas environmental chamber. II novel approach for movement of myosin head with ATP hydrolysis]. Nihon Seirigaku Zasshi 2011,73(6):150-162.
    [37]Brocker MJ, Watzlich D, Saggu M, Lendzian F, Moser J, Jahn D:Biosynthesis of (bacterio)chlorophylls:ATP-dependent transient subunit interaction and electron transfer of dark operative protochlorophyllide oxidoreductase. J Biol Chem 2010, 285(11):8268-8277.
    [38]Opanasenko VK, Vasyukhina LA:Synergism of ammonium and palmitic acid in uncoupling of electron transfer and ATP synthesis in chloroplasts. Biochemistry (Mosc) 2009,74(6):643-647.
    [39]Yang M, Ge Y, Wu J, Xiao J, Yu J:Coevolution study of mitochondria respiratory chain proteins:toward the understanding of protein--protein interaction. J Genet Genomics 2011, 38(5):201-207.
    [40]张莉.针刺对大鼠脑缺血再灌注后线粒体损伤相关因素影响的研究.学位论文.北京中医药大学.2004
    [41]Hacioglu E, Demir AB, Koc A:Identification of respiratory chain gene mutations that shorten replicative life span in yeast. Exp Gerontol 2012,47(2):149-153.
    [42]Choi KM, Kang CM, Cho ES, Kang SM, Lee SB, Um HD:Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Noxl, and JNK. Oncol Rep 2007',17(5):1183-1188.
    [43]Scheubel RJ, Tostlebe M, Simm A, Rohrbach S, Prondzinsky R, Gellerich FN, Silber RE, Holtz J:Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol 2002,40(12):2174-2181.
    [44]Piekna D, Sikorski M, Augustyniak H:The gene encoding the PSST subunit of respiratory chain complex I is present in more than one copy in yellow lupine. Biochim Biophys Acta 2002,1577(1):144-148.
    [45]Suzuki H, Hosokawa Y, Toda H, Nishikimi M, Ozawa T:Isolation of a single nuclear gene encoding human ubiquinone-binding protein in complex III of mitochondrial respiratory chain. Biochem Biophys Res Commun 1989,161(l):371-378.
    [46]Su Y, Meador JA, Geard CR, Balajee AS:Analysis of ionizing radiation-induced DNA damage and repair in three-dimensional human skin model system. Exp Dermatol 2010, 19(8):e16-22.
    [47]Frankenberg-Schwager M, Gebauer A, Koppe C, Wolf H, Pralle E, Frankenberg D: Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation. Radiat Res 2009,171(3):265-273.
    [48]Mitchell DL, Adams-Deutsch T, Olson MH:Dose dependence of DNA repair in rainbow trout (Oncorhynchus mykiss) larvae exposed to UV-B radiation. Photochem Photobiol Sci 2009,8(1):75-81.
    [49]Coelho D, Holl V, Weltin D, Lacornerie T, Magnenet P, Dufour P, Bischoff P: Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells. Br J Cancer 2000,83(5):642-649.
    [50]Specht ED, Walker FJ, Liu W:X-ray microdiffraction analysis of radiation-induced defects in single grains of polycrystalline Fe. J Synchrotron Radiat 2010,17(2):250-256.
    [51]Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB:Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001,61(10):3894-3901.
    [52]Koga Y, Ueki I:[Respiratory chain enzyme complex I]. Nihon Rinsho 2002,60 Suppl 4:478-481.
    [53]Cheam EW, Critchley LA:Anesthesia for a child with complex I respiratory chain enzyme deficiency. JClinAnesth 1998,10(6):524-527.
    [54]范德生、孙宁.线粒体与电离辐射损伤的关系研究现状.[J].现代肿瘤医学,2005,(06):843-847
    [55]Ma YY, Wu TF, Liu YP, Wang Q, Song JQ, Xiao JX, Jiang YW, Yang YL:[Enzyme analysis of isolated mitochondrial respiratory chain complex III deficiency]. Zhonghua Er Ke Za Zhi 2011,49(11):848-852.
    [56]Fox RG, Magness ST, Kujoth GC, Prolla TA, Maeda N:Mitochondrial DNA Polymerase Editing Mutation, Polgd257a, Disturbs Stem-Progenitor Cell Cycling in the Small Intestine and Restricts Excess Fat Absorption. Am J Physiol Gastrointest Liver Physiol 2012.
    [57]Ulrich DL, Lynch J, Wang Y, Fukuda Y, Nachagari D, Du G, Sun D, Fan Y, Tsurkan L, Potter PM et al:The ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity. JBiol Chem 2012.
    [58]Lieberthal W, Zhang L, Patel VA, Levine JS:AMPK protects proximal tubular cells from stress-induced apoptosis by an ATP-independent mechanism:potential role of Akt activation. Am JPhysiol Renal Physiol 2011,301(6):F1177-1192.
    [59]Yang Z, Cheng W, Hong L, Chen W, Wang Y, Lin S, Han J, Zhou H, Gu J:Adenine nucleotide (ADP/ATP) translocase 3 participates in the tumor necrosis factor induced apoptosis of MCF-7 cells. Mol Biol Cell 2001,18(11):4681-4689.
    [60]柳君泽.低压缺氧大鼠脑线粒体内腺苷酸含量及能荷的变化.[J].高原医学杂志.2004,1:44
    [61]Litovchenko IN:[Rat liver adenylate deaminase in radiation sickness and the administration of ATP]. Radiobiologiia 1980,20(3):432-435.
    [62]Liu C, Liang B, Wang Q, Wu J, Zou MH:Activation of AMP-activated protein kinase alphal alleviates endothelial cell apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin. JBiol Chem 2010,285(20):15346-15355.
    [63]Dominguez A, Gomez C, Garcia-Kass AI, Garcia-Nunez JA:IL-lbeta, TNF-alpha, total antioxidative status and microbiological findings in chronic periodontitis treated with fluorescence-controlled Er:YAG laser radiation. Lasers Surg Med 2010,42(1):24-31.
    [64]Wang RJ, Peng RY, Gao YB, Chang GM, Xu XP, Fu KF, Luo QL:[Jak/STAT signaling pathway of IL-11 in the protection of intestinal epithelial cells from neutron radiation]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2009,25(1):27-30.
    [65]Gal K, Bertok L:The effect of X-radiation on reticulo-endothelial system and its treatment with radiodetoxified-endotoxin and trace elements in rats. Acta Microbiol Immunol Hung 1994,41(4):457-463.
    [66]Csako G, Suba EA, Tsai CM, Mocca LF, Elin RJ:Dose-dependent changes in the antigenicity of bacterial endotoxin exposed to ionizing radiation. J Clin Lab Immunol 1987, 24(4):193-198.
    [67]Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI:Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy:reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed Laser Surg 2008, 26(6):593-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700