用户名: 密码: 验证码:
齐40块中深层稠油蒸汽驱技术研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽河油田齐40区块于1987年投入蒸汽吞吐开发,随着吞吐采出程度的加深,油层压力下降较快,老井产量呈下降趋势,吞吐效果和经济效益逐渐变差。为进一步提高油藏采收率,增加经济可采储量,有必要转换开发方式。国内外其它油田一般将蒸汽驱开采作为蒸汽吞吐后的接续技术,但是,齐40块油层埋深超过1000m,在此种油藏进行蒸汽驱试验在国内外是首次,无成熟的经验可以借鉴。为此,本文针对齐40块油藏特征和前期蒸气吞吐开发生产实际,采用理论分析、室内实验、现场应用试验及数值模拟等方法,深入研究了中深层稠油油藏蒸汽驱理论和现场应用技术。
     本文对齐40块油藏地质特征、前期吞吐开发状况和剩余油分布规律进行了系统研究,结果表明:试验区莲I、II油层组间隔层相对较好,油层孔渗特征能够满足蒸汽驱的要求。试验区经过蒸汽吞吐开发,平面上已全部动用,但动用程度不均。由于纵向上储层的非均质性、蒸汽在地层内的超覆等因素,造成纵向上动用存在差异。因此,齐40区块继续蒸汽吞吐的开发潜力较小,井间、纵向油层己没有继续调整的余地,转蒸汽驱是动用剩余地质储量的有效方法,预计通过转蒸汽驱可以提高采收率20%以上。
     针对齐40块油藏地质特征,通过岩芯驱替实验,进行了蒸汽驱提高采收率机理研究。将微观驱替机理细化,得到了各种机理对驱油效率的定量的贡献值。研究表明:常规水驱作用是原始油带中蒸汽驱的重要驱油机理,其对驱油效率的贡献值为41.60%~46.42%;降粘+热膨胀作用是热水带中的重要驱油机理,200℃热水驱降粘+热膨胀作用对驱油效率贡献值为15%以上,热膨胀作用提高的驱油效率最低值为3.30%;原油在油藏多孔介质内的蒸汽蒸馏作用对提高驱油效率的作用机理比较复杂,主要受到油层孔隙结构、含油饱和度、蒸汽温度、地层压力、蒸汽注入速度的影响;高温对相对渗透率的影响也是蒸汽驱提高稠油采收率的重要机理之一。
     从齐40块的地质因素出发论证了对其实施蒸汽驱的可行性,研究了油层厚度、原油粘度、含油饱和度、油层非均质性、油藏净总厚度比、油藏埋深等主要油藏参数对开发效果的影响,在此基础上提出了蒸汽驱油藏的筛选标准。本文还研究并提出了目标区块的蒸汽驱操作条件:齐40块蒸汽驱的合理开发井网为70m反九点井网;数值模拟得出齐40块蒸汽驱最优注采参数为:注汽速率≥1.6t/ d·ha·m;采注比>1.0;井底蒸汽干度>0.4。提出了蒸汽驱工程优化设计思路、方法及具体实施步骤,对齐40块蒸汽驱单井采液能力及注入能力、井网井距优选、蒸汽驱操作参数、射孔方式进行了优化优选,并据此提出了齐40块蒸汽驱先导试验和扩大试验方案要点和关键工艺技术。
     以先导试验4个汽驱井组、扩大试验9个井组和外围19口井作为模拟区,并进行平面网格及纵向模拟层的划分,从而建立了齐40块蒸汽驱跟踪数值模拟地质模型。在所建立的模拟模型上进行历史拟合,给定每口井各周期的最大产液量和最小井底流压,拟合产液量、产油量和平均油藏压力等指标,结果表明模拟计算的生产动态与实际动态吻合较好,为蒸汽驱跟踪模拟和动态预测提供了可靠的基础。在注汽参数、产量、压力、温度得到较好拟合的基础上,通过跟踪数值模拟得到了对于油藏的新认识:①蒸汽吞吐使油层压力已较低;②吞吐后剩余油饱和度满足蒸汽驱要求;③蒸汽吞吐预热了油层;④先导试验蒸汽驱对扩大试验区外溢油量为3.8×10~4t,外溢水量达到9.9×10~4m3;⑤采注比未达到1.2的要求,影响汽驱效果;⑥井底蒸汽干度低,影响蒸汽驱开发效果;⑦蒸汽突破主要为单层突破。
     在油藏管理、注汽和采油三个方面,本文提出了今后高效蒸汽驱新的有效调整措施:①油藏管理方面,充分利用数值模拟手段,研究蒸汽驱过程中温度场和压力场的变化,在蒸汽驱初期提出了吞吐引效加强注采井间热连通,在驱替阶段及时更新生产井,保证完善的注采井网及足够的排液量,提高采注比。在蒸汽突破后提出降低注汽速度、转注水等措施,实施后效果很好。②注汽方面,在注汽井定期进行环空补氮,加强井筒隔热,提高井底蒸汽质量。③采油方面,根据生产动态及时调参,换大机、大泵,尽量降低动液面,使生产井具有较大的生产压差。同时针对油层纵向动用不均的实际,及时进行剖面调整研究工作。主要进行注汽井的限流射孔,对新完钻生产井进行深穿透射孔,吞吐引效过程中加入调剖剂;蒸汽突破阶段对生产井汽窜层进行高温机械封堵。
     依据上述各项前期研究成果,在齐40块油藏进行了世界首次中深层普通稠油蒸汽驱先导试验与扩大试验:先导试验区累积注入蒸汽140.81×10~4t,累积产液124.96×10~4t,阶段采注比0.89,阶段油汽比0.18,阶段采出程度28.68%;扩大试验区累积注汽111.12×10~4t,累积产油10.75×10~4t,累积产液75.53×10~4t,阶段采注比0.68,阶段油汽比0.10,阶段采出程度8.39%。先导试验结果表明,试验区实现了蒸汽带的形成、扩大和突破,符合蒸汽驱开采机理,井组生产动态表现出了典型的汽驱生产特征。试验井组的蒸汽体积波及系数达到了52%,与世界成功蒸汽驱指标相比处于领先水平,因而是非常成功的。这证明本文提出的蒸汽驱技术、优化设计方案及调整措施具有先进性和实用价值。扩大试验井组评价周期尚未结束,其油汽比仅为0.10,而方案设计油汽比为0.23,随着生产年份的增加,预计汽驱效果会有明显改善。分别对先导试验和扩大试验进行了经济评价。评价结果表明,先导试验井组平均单位操作成本562.62元/吨,4个先导试验井组投入产出比为1:1.44。扩大井组平均单位操作成本958.89元/吨。随着汽驱工业化进程的深入,预计未来单位操作成本可以稳定在600元/吨~700元/吨左右,7个扩大试验井组投入产出比为1:1.39。与世界成功蒸汽驱指标对比,齐40块蒸汽驱开发难度大,其技术水平和试验效果居世界蒸汽驱油田前列。对稠油生产而言,这是成功的可参照的蒸汽驱开采范例。
Qi40 block located in LiaoHe oilfield began to steam soaking in 1987. With the degree of steam soaking increasing, the pressure in reservoir and the annual yield of old wells have decreased, the development effect and economic benefit becoming bad .To improve crude oil recovery and increase economic recoverable reserves, we have to convert to steam flooding. In general other domestic and international oil field view the steam flooding as the continuation of steam stimulation technology, but the depth of Qi40 reservoir is more than 1000 m. Steam flooding applied to such a reservoir is the first test at home and abroad, without the experience of mature can be referenced. Therefore, in view of reservoir characteristics and pre-throughput development and production of steam flooding in Qi 40 block. This article used theoretical analysis, lab experiments, field test and application of numerical simulation and other methods, and studied on steam flooding theory applied to the mid-deepth heavy oil reservoir and its field applicable technology.
     The reservoir geological features, situation of pre-development and the distribution of the remaining oil have been studied systematic.The results showed that, propriety of barrier between LianⅠlayer and LianⅡl ayer is good, the porosity and permeability characteristics in the reservoir can meet the requirements of steam flooding. Go through development of steam soaking, the whole horizontal plane has been swept but not even. Vertical heterogeneity of oil reservoir, steam overlay in oil layers and other factors caused sweeping not even in vertical direction The result of data statistics show that, herefore, the potential of continuing steam soaking in Qi40 block is limited, and there is no room for adjusting wells and vertical reservoirs to enhance oil recovery, converting to steam flooding is an useful mean of improving oil recovery. And we forecasting that converting to steam flooding can enhance oil recovery more than 20%.
     In view of reservoir geological characteristic, through the core displacement experiment,we carried out research on mechanism of enhancing oil recovery by steam flooding. The micro-displacement mechanism have been refined, having obtained the result of the value of the contribution caused by a variety of displacement efficiency. The function of conventional water drive is one of most important oil displacement mechanism in process of steam flooding and it contribute to oil displacement efficiency is 41.60%~46.42%; The function of viscosity reduction and thermal expansion is one of most important oil displacement mechanism in process of thermal water zone. The function of viscosity reduction and thermal expansion of 200℃thermal water flooding contribute to oil displacement efficiency is more than 15%;Effect of steam distillation of crude oil in porous medium is complex mechanism of improving oil displacement efficiency, which is influenced by reservoir pore structure, oil saturation, temperature of steam, formation pressure, steam injection rate; The influence to relative permeability also is important mechanism of improving heavy oil recovery.
     Base on geological factors of Qi40 block, we demonstrated that it is feasible to carried out steam flooding test, studying on the influence of the oil layers thickness, viscosity of crude oil, oil saturation, reservoir heterogeneity, the net thickness ratio of reservoir, the depth of oil layers to development effect. On this basis, we put forward the screening standards of the reservoir for the steam flooding . The study show operating conditions of steam flooding :we demonstrated that inversed 9 point pattern whose well distance is 70m is feasible to be applied to steam flooding; numerical simulation abtained steam flooding optimal parameters for the injection-production in Qi 40 block: Steam injection rate≥1.6t/ d·ha·m; injection production-injection ratio>1.0; dryness fraction in bottom hole>0.4. We put forward optimal design , methods and the implementation of specific steps of the steam flooding, and we got the capacity of injection and production of single well flooded by steam, well pattern and spacing ,perforation model to optimize and Optimization.
     Four well groups of steam flooding have been chosen in pilot test area, nine well groups of steam flooding in enlarged scale area and nine wells in peripheral as simulation area, carrying out planer mesh and division of vertical simulation layers, so that we set up geological model for tracking Simulation for steam flooding in Qi 40 block. We do history matching on reservoir model which have beren set up. Given the biggest periodic output and the smallest BHP, matching the liquid yield, the oil yield and the average reservoir pressure index, and the result show that the simulation calculation of development performance are fit well for the actual performance. Providing a basic for tracking simulation and dynamic forecast for steam flooding. On the basis of better fitting of the steam injection parameters, output, pressure, temperature, getting the new understanding of the reservoir by the numerical simulation. We proposed new effective adjustment measures for steam driving in the reservoir management, steam injection and oil production.
     Based on these preliminary research results, carrying on in the mid-depth reservoir for the first time in world .We carried out the pilot test and enlarged scale test of steam flooding: the cumulant of injection steam is 140.81×10~4t, cumulant of liquid output is 111.12×10~4t, the production injection ratio is 0.89 at present stage, the oil gas ratio is 0.18 at present stage, the recovery percent is 28.68% at present stage in pilot test area; the cumulant of injection steam is 111.12×10~4t, e cumulant of liquid output is 75.53×10~4t, the production injection ratio is 0.68 at present stage, the oil gas ratio is 0.10 at present stage, the recovery percent is 8.39% at present stage in enlarged scale test area. The results of test show that: the test area go through formation, enlargement, breakthrough of steam zone, which is fit for mechanism of steam flooding applied to oilfield development, and production performance of well groups present the typical production characteristics of steam flooding. The volumetric sweep efficiency of well groups driven by steam reach 52%, which shows that pilot test compared with index of success steam flooding in world is very successful. This proves that the steam drive technology, optimize design and adjustment measures have advanced and practical value proposed by this paper. At present stage, the oil gas ratio is 0.10 but that in designed program is 0.23. And with yeas of production increasing, the effect of steam flooding will be improved obviously. We made the economic evaluation for the pilot test and enlarged scale test The results of economic evaluation show that, the average unit operational cost of well groups in pilot test is 562.62 Yuan/t, four pilot test wells group input-output ratio is 1:1.44.And that in enlarged scale test is 958.89 Yuan/t, nine wells group input-output ratio is 1:1.39. Contrasting with indicators of success steam flooding in world, Steam Flooding in Qi 40 block is very difficult. Its technical level and test results are forefront of steam flooding field in the world. As mention to production of heavy oil, this is successful and the light of the examples of steam flooding exploitation
引文
[1] Hong. K. C.蒸汽驱油藏管理[M].北京:石油工业出版社,1996.
    [2] Faroug. Ali S M,Meldau R F.Current Steamflood Technology[J].JPT.1979,(10).
    [3]岳清山,李平科.对蒸汽驱几个问题的探讨[J].特种油气藏,1997,4(2):10~13.
    [4]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,2001,8(2):98~103.
    [5]关德师,牛嘉玉,郭丽娜,等.中国非常规油气地质[M].北京:石油工业出版社, 1995.
    [6] Matheny S L Jr. EOR methods Help Ultimate Recovery[J]. Oil and Gas .1980.
    [7]顿铁军.中国石油勘探发展趋向及展望——兼论稠油油藏[J].西安工程学院学报,1998,20(增):3~5.
    [8]魏桂萍.蒸汽驱油机理[J].特种油气藏[增刊].1996,第3卷.
    [9] Willman B T, Vallery V V, Runbery G W, et. al. Laboratory Studies of Oil Recovery by Steam Injection[J]. JPT, 1961:681~690.
    [10] Johnson F S, Walker C J, Bayazeed A.F. Oil Vaporization duing Steam Floooding[J]. Pet. Tech, June,1971:731~742.
    [11] Ching H Wu, Robert B Elder. Correlation of Crude Oil Steam Distillation Yields with Basic Crude Oil Properties[J]. SPEJ, 1982:937~945.
    [12] Ching H Wu, Alfred Brown. A Laboratory Study on Steam Distillation in Porous Media[C]. SPE 5569,1975:681~690.
    [13] Farouq Ali, S.M. Jr. Practical Considerations in Steamflooding Producers Monthly[J], Jan, 1968:13~16.
    [14] Volek. C.W, Pryor. J.A. Steam Distillation Drive-Brea Field California. [J]. Pet. Tech. 1970(10):1225~1231.
    [15] K.C.Hong,翻译:赵炜。蒸汽驱的工程技术新进展[J]国外油田工程2000,1:1~6.
    [16]李平科,张侠,岳清山.蒸汽驱开发采收率预测新方法[J].石油勘探与开发.1996,23(1):14~17.
    [17]李平科,张侠,岳清山.蒸汽驱中主要工艺参数对开发效果的影响[J].特种油气藏,1996,3(2):13~17.
    [18] Baker, P.E. Effect of Pressure and Rate on Steam Zone Development in Steam flooding [J].Soc.of Pet.Engrs.Journal. 1973, 12: 274~84.
    [19] MyhillN.A, Stegemeier, G.L. Steam-DriveCorrelationand Prediction [J].J.Pet. Tech (February): 1978,173~82.
    [20] Ma.V, Maini, B.B., and Okazawa, T. Laboratory Simulation of Steam Drive Process[C]. Proceedings of the Petroleum Society of CIM Meeting, Calgary, Canada, June 10-3, Paper CIM 1984,84-35-32.
    [21] Bursell, C.G.and Pittman, G.M. Performance of Steam Displacement in the Kern RiverField [J]. J.Pet.Tech. 1995,(8):997~1004.
    [22]刘文章等(编):国际重质原油开采会议论文选集[C].北京:石油工业出版社,1984.
    [23] Chu, C. State of the art review of steamflood field projects [C], SPE 11733, 1983.
    [24] Powers, M.L, et.al. Commercial application of steamflooding in an oil field comprised of multiple thin-sand reservoirs [C].SPE 13035.
    [25] Smith, R.V, et.al.Recovery of oil by steam injection in the Samackover field [J], Arkansas, J.Pet.Aug.1973, 833~889.
    [26] Doscher, T.M, Huang, W. Steam Drive Performance Judged Quickly from Use of Physical Models [J].Oil and Gas Journal. 1979,(12):52.
    [27] Shen, C.W. Application of a Scaled, Three-Dimensional High-Pressure Physical Model to Steamflooding[C].Proceedings of the 17th Annual Convention of the Indonesian Petroleum Association, Jakarta, Indonesia. 1988,(12):109-128.
    [28] Gonna, E.E. Correlations for Prediction Oil Recovery by Steamflood [J].JPT. 1980, (2):325~332.
    [29] Chu, C. Prediction of Steamflood Performance in Heavy oil Reservoirs Using presented at the 60thCalifornia Regional Meeting of SPE[C].Ventura, CA, April1990,4~6.
    [30] M. Tamin et al,翻译:宋付权.热采数值模拟技术的最新进展[J]国外油田工程2002,18(2):1~3.
    [30] Rodrigues, J.R.P. and Dickstein, F.:“A Multigrid Procedure for Local Grid Refinement in Oil Reservoir Simulation,”paper SPE 27049, SPE Advanced Technology Series, Vol. 4, No. 1, (May1996) 157.
    [31] Hiebert, A.D., Fung, L.S.-K, Oballa, V. and Mourits, F.M.:“Comparison of Discretization Methods for Modeling Near-wellPhenomena in Thermal Processes,”JCPT (March 1993) 46.
    [32] Abou-Kassem, J.H.:“Practical Considerations in Developing Numerical Simulators for Thermal Recovery,”J. Pet. Sci. Eng.,15 (1996) 281.6.
    [33] Chen, W.H., Durlofsky, L.J., Engquist, B. and Osher, S.:“Minimization of Grid-orientation Effects Through Use of Higher-Order Finite Difference Methods,”paper 22887 presented at the 1991 SPE Annual Technical Conference andExhibition, Dallas, Oct. 6-9.7.
    [34] Wolcott, D.S., Kazemi, H. and Dean, R.H.:“A Practical Method for Minimizing the Grid-orientation Effect in Reservoir Simulation,”paper SPE 36723 presented at the 1996 SPEAnnual Technical Conference and Exhibition, Denver, Oct. 6-9.
    [35] Kumar, M. and Do, T.N.:“Effects of End Point Saturations and Relative Permeability Models on Predicted Steamflood Performance,”paper SPE/DOE 20202 presented at the 1990SPE/DOE Symposium on Enhanced Oil Recovery, Tulsa, April 22-25.
    [36] Dietrich, J.K.:“Relative Permeability During Cyclic Steam Stimulation of Heavy-Oil,”JPT (Oct. 1981) 1987
    [37] Vinsome, P.K.W. and Shook, G.M.:“Multi-purpose Simulation,”J. Pet. Sci. Eng., 9 (1993) 29
    [38] B.Rubin, W.L.Buchanan. A General Purpose Thermal Model[C].SPE 11713.
    [39] A.Behie, P.A.Forsythe. Practical Considerations for Incompiete Factorization Methods in Reservoir Simulation[C].SPE 12263.
    [40] A.Behie, P.K.W.Vinsome.Block Iterative Methods for Fully Implicit Reservoir Simulation[C]. Society of Petroleum Engineers of AIME.1982.
    [41] R.C.Shah. A Nine-Point Finite Difference Operator for Reduction of the Grid Orientation Effect[C].SPE 12251.
    [42] V.Ramlal,金佩强编译. Cruse E扩展蒸汽驱:技术、经济和环境前景[J]。国外油田工程,2004,20(10):8~12 ,SPE81063.
    [43] E J Hanzlik D.S.Mims. Forty Years of steam Injection California——The Evolution of Heat Management [C]. SPE 84848. 2004年
    [44]吕立华,李明华,苏岳丽.稠油开采方法综述[J].内蒙古石油化工,2005(3):110~112.
    [45]王志国,马一太,李东明,等.井筒传热过程分析及热损计算方法研究.钻采工艺[J],2005,28(2):17~19.
    [46] Carl Curtis, Robert Kopper. Heavy-Oil Reservoirs [J]. Oilfield Review. 2002:30~51.
    [47]高学仕,张立新,潘迪超,等.热采井筒瞬态温度场的数值模拟分析[J].石油大学报(自然科学版),2001,25(2):67~69.
    [48]孙蕊,陈静,张荣,王锦堂.原油及重油强化蒸馏研究进展.江苏化工,2005,Vol.33(1):18~21
    [49] K.C.Hong,翻译:赵炜。蒸汽驱的工程技术新进展[J]国外油田工程,2000,1:1~6
    [50]肖文强,赵德智.原油强化蒸馏技术现状及其进展.当代化工,2004,Vol.33(1):31~34
    [51] Fokeev V M,Kapyrin Y V. Calculation of Wellbore Heat Losses, and the Effect of Injection of Large Quantities of Water on the Temperature Distribution in the Romashkin Rerervoir(in Russian)[J], Neftyanoe Khozaistvo.1961,12:33.
    [52] Ramey H J. Wellbore Heat Transmission [J], JPT, 1962, 14(4):427~435.
    [53] Squier D P, Smith D D,Dougherty E L. Calculated Temperature Behavior of Hot—Water Injection Wells[M], JPT.April, 1962:436~440.
    [54] Setter A. Heat losses During Flow of Steam down a Wellbore [J]. JPT, 1965, 17(7): 845~851.
    [55] Huygen H A, Huitt J L. Wellbore Heat Losses and Casing Temperatures during Steam Injection [J], Prod. Montlily.1966,30(8) :2.
    [56] Holst P H, Flock D L. Wellbore Behavior during Saturated Steam Injection [J], J. Cdn.Pert. Tech. 1966,5(4):184.
    [57] Earlougher R C Jr. Some Practical Considerations in the Design of Steam Iniection Wells [J], JPT. 1969, 1:79~86.
    [58]Eickmeier J R, Ersoy D, Ramey H J Jr. Wellbore Temperatures and Heat Losses DuringProduction or Injection [J], J. Cdn.Pet. Tech.1970,9(2):115.
    [59] Hasan A R, Kabir C S. Aspects of Wellbore Heat Transfer during Two—Phase Flow [C]. SPE 22948, 1994.
    [60] Li jingqing, Chen yanhua, Xiang xinyao. Rational Distribution of Heat loss in well bore [J]. China Oil & Gas, 1994, 19(3):217~217.
    [61] Beggs ,Brill. A Study of Two Phase Flow in Inclined Pipes [J]. JPT. May 1973.
    [62] Carl Curtis, Robert Kopper. Heavy-Oil Reservoirs [J]. Oilfield Review. 2002:30~51.
    [63] G. Mandl and C.W.Volek. Heat and Mass Transport in Steam Drive Processes [J]. SPEJ, 1969.
    [64] J. Van lookeren. Calculation Methods for Linear and Radial Steam Flow in Oil Reservoirs [C]. SPE6788, 1977.
    [65] N.A.Myhill, G.L.Stegemeier. Steam Drive Correlation and Prediction [J].JPT, 1978.
    [66] R.S.Aydelotte, G.A.Pope. A Simplified Predictive Model for Steam Drive Performance [J]. JPT, 1983.
    [67] Chu, C. Prediction of Steamflood Performance in Heavy oil Reservoirs Using presented at the 60thCalifornia Regional Meeting of SPE[C].Ventura, CA, Apr il 1990, 4~6.
    [68] U.S. EOR Production [M].Oil and Gas Journal Apr.20 1992.
    [69] B.T. Willman et al. Laboratory Studies of Oil Recovery by Steam Injection [J]. JPT. July 1961.
    [70] G. Paul willhite. Over-all Heat Transfer Coefficients in Steam and Hot Water Injection Wells [J], JPT,1967,5.
    [71]岳清山等著.稠油油藏注蒸汽开发技术[M].北京:石油工业出版社,1998.
    [72]刘文章.热采稠油油藏开发模式[M].第一版.北京:石油工业出版社,1998.10~41.
    [73]叶仲斌等.提高采收率原理[M].北京:石油工业出版社,2000.125~131.
    [74]李照峰,张黎鹏.原油强化蒸馏技术的工业应用.石油与天然气化工,2004,Vol.33(2):98~101
    [75] Coats K H, George W D and Chu C. Three-Dimensional Simulation of Steam Flooding[J]. SPEJ, 1974:573~592.
    [76] D.J. MacAllister, R.A. DdRuiter. Further Development and Application of Simulated Distillation for Enhanced Oil Recovery[C]. SPE14335, 1985:486~498.
    [77] Rhee S.W. A Method of Predicting Oil Recovery by Steamflooding Including the Effects of Distillation and Gravity Override PhD dissertation[J]. U. of Southern California , 1979:72~83.
    [78] Wu. C.H, Fulton. P.F. Experimental Simulation of the Zones Proceeding the combustion Front of an In-Situ Combustion Process[J]. Soc. Pet. Eng. J., 1971,(3):38~46.
    [79]国际稠油开采技术论文集.吴齐等编译.第一版.北京:石油工业出版社,2004.369~379
    [80] Hsueh L, Hong K.C, and Duerksen J.H. Simulation of High Pressure and highTemperature Steam Distillation of Crude Oils. Venezuela. The Unitar Second International Conference on Heavy Crude and Tar Sands[J], Caracas, 1982,(1):7~17.
    [81]张桂盈,孙碧兰,杨鲜.强化蒸馏助剂的应用研究.工业催化,2004,Vol.12(6):51~53
    [82]马远乐,马德胜,马新民.大型稠油油藏整体数值模拟方法.特种油气藏,2001,8 (3):32~36.
    [83]蒲海泽,苏文江,张锐.蒸汽驱模型的特征分析及合理模型的选择方法[J].石油大学学报(自然科学版),2002,26 (5):60~66.
    [84] R. J. Marshall, A.B. Metzner. Flow of Viscoelastic Fluids through Porous Media. I&EC Fundamentals, 1967:393~400.
    [85]梁文杰.石油化学[M].第一版.山东东营:石油大学出版社,1995,58~66.
    [86]李湘洲.降低蒸馏热力学不可逆性减少有效能损失方法的探讨[J].中南林学院学报,1996,16(1):72~77.
    [87]李文辉,蔡日新.蒸馏过程热力学效率的分析[J].化工设计通讯,1996, 22(2):60~64.
    [88]陈志奎.用虚拟组分临界温度提高原油模拟蒸馏精度[J].石油炼制与化工,1997, 28(2):64~66.
    [89]汤吉梅,马飞飞,魏瑞平.原油蒸馏过程的模拟与分析[J].南京工业大学学报,2004, 26(1):83~88.
    [90]马友光,张卫江,白鹏.蒸馏过程动力学研究进展[J].化工设计,1995 ,(5):14~17.
    [91]妙兴,韩怀,闫少武,吴群丽.稠油油藏注汽前后物性变化规律研究.西部探矿工程,2004,No.98:68~71
    [92]马林,方文军,宋汉兴,等.连续热力学方法计算石油馏分饱和蒸汽压[J].炼油设计,1998, 28(5):41~43.
    [93]梁文杰.重质油化学[M].第一版.山东东营:石油大学出版社,2000,146~161.
    [94]吴齐等编译.国际稠油开采技术论文集[C].第一版.北京:石油工业出版社,2004,369~379.
    [95]罗杰M.巴特勒.重油和沥青的热力开采工艺[M].第一版.北京:石油工业出版社,1994,124~135.
    [96]沈德煌,夏凌云,杨生榛.多孔介质中原油蒸汽蒸馏实验研究[J].特种油气藏,1999,6(4):48~53. [97吴淑红,李秀娈,于立君.原油蒸汽蒸馏作用对蒸汽驱开发效果的影响[J].特种油气藏,2002,9(1):27~30.
    [98]岳清山,沈德煌.有关稠油油藏驱油效率的讨论[J].2002,9(1):28~30.
    [99]李拥安,刘建平,毛卫荣,等.断块油藏蒸汽驱数值模拟优化研究[J].油气田地面工程,2002,21(2):40~41.
    [100]郎兆新主编.油藏工程基础[M].东营:石油大学出版社,1994,35~47.
    [101]王鸿勋,等.采油工艺原理[M].北京:石油工业出版社,1989,55~60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700