用户名: 密码: 验证码:
喇嘛甸油田砂岩井眼扩大机理和预防技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆喇嘛甸油田(简称喇区)位于大庆长垣北端,靠近沉积物源,具有高孔隙度、高渗透率的特点。油田经多年注水开发,砂层水洗严重,孔隙胶结结构、岩石力学特征均发生了变化。近年来钻井过程中出现了井眼异常扩大、坍塌问题,严重影响油田开发。砂岩井眼扩大、坍塌是油田注水开发后期出现的新问题,在机理上,与泥岩段井眼扩大有本质的区别。研究砂岩井眼扩大机理和预防技术对于安全高效钻井,确保油田稳产具有重要意义。
     论文在统计分析的基础上,对大庆喇嘛甸油田的储层物性变化、电性变化规律、砂岩井眼扩大机理和预防技术、进行了研究。在井眼扩大机理方面,对油田采出水和注入水的化学组成进行了分析和对比,根据离子浓度、固相含量的变化判断注入水对胶结物的破坏方式,并应用X射线衍射技术(XRD)进一步探究胶结物的变化状况。在研究岩石强度变化方面,对岩芯样品进行力学分析,并把力学参数和电性参数结合起来,建立数学模型,应用测井曲线分析岩石的力学性质,通过新老井岩石力学参数的对比,分析岩石强度的变化趋势。在预测砂岩低强度区域方面,依据岩石强度破坏机理,通过计算单层平面流体渗流速度和井点渗流速度剖面划分横向和纵向上砂岩低胶结区域。在防止井眼扩大技术方案研究方面,采取优化钻具组合,规范操作程序,使用低渗透钻井液体系,应用旋流洗井、振动固井等技术保证井眼规则和固井质量。
     本文对喇区岩心进行了力学参数测定并对岩石强度纵向分布规律、变化趋势进行了分析,首次建立了砂岩力学参数与电性相关性研究及数学模型,首次提出了根据流体渗流速度预测砂岩低胶结区域的原理和方法。文章根据机理分析结果,开展了防止砂岩井眼扩大、坍塌钻井工艺及大井眼井段固井工艺技术研究工作,经30口井的现场应用,取得了良好效果。
     该技术研究过程中运用了油田开发、地球物理、油田化学等领域的理论和方法,为解决油田钻井生产实际问题发挥了重要作用,具有一定的学术价值和应用价值。
Lamadian Oil Field (shortened as La area) located at northward of Daqing placanticline, because of approaches on the deposit provenance, its reservoir has the characteristic of highly porous and high permeability. In process of well drilling recent years, many wells arises the phenomenon which borehole abnormal enlargement and borehole collapse at high permeability sand zone. The phenomenon of borehole enlargement causes the log to distortion, and exerts to interpretation of porosity and permeability and etc. Moreover borehole enlargement may arouse the complex accident during well drilling, and also the difficulty of the cementing operation will be increased, causes the hole cement quality to be worse.
     The high permeability sand zone borehole enlargement is the new question which the waterflood oilfield development in later stage, on the mechanisms, it has essential differences with mudstone borehole enlargement and collapsing. In order to study on the mechanism of borehole enlargement and protection techniques in La area, such analysis and research have been done as the following: the research on regularity for change of the formations’property and electric property, comparative analysis on the produced water and the injection water and X ray diffractive analysis on core samples from main formations of oil wells in La area, determination of mechanics parameters of sandstone cores for the first time and research on longitudinal regularities of distribution and variation trend of rock intensity in La area, research on the correlations between mechanics parameters of sandstone and electric property and the establishment of mathematical model, putting forward the theory and methods of predicting low-cementation areas according to fluid penetrating velocity and development of the predicting software, research on preventing enlargement in high-permeability sandstone, on collapse drilling techniques and on cementing techniques in big borehole intervals.
     It is concluded that the sedimentary features and exploiting mode of La area have made the injection water produce a destroying effect on formations and have caused borehole enlargement and collapse in sandstone interval of La area in Placanticline Oilfield. The contents of solid particles of the produced water are higher than those of the injection water obviously, which shows the destroying effect of the injection water on formations is mainly washing action currently and the injection water has a strong washing and schlepping effect on clay mineral. The sandstone intensity of La area is comparatively lower, and areas with strong permeation velocity are easily led to borehole enlargement and collapse. Areas with low sandstone intensity can be predicted by calculating penetrating velocity.
     According to core sample of Lamadian Oil field in this thesis, mechanics parameter determination、longitudinal distribution rule of rock intensity、change tendency have been studied. For the first time sandstone mechanics parameter、electrical relevant research and mathematical model have been established. According to fluid seepage velocity forecasting principle and method of sandstone low cemented region has been provided. In this thesis, according to mechanism analysis result, developing has been prevented the sandstone bore hole expansion、caving in well drilling craft and big bore hole section well cementation processing technology research work. After 30 well field applications, the good effect has been obtained.
     In this engineering research process has utilized domain oil-field development, geophysics, oil field chemistry theories and the methods and so on. In order to solve the oil field well drilling production actual problem to play the vital role. This technology has certain academic value and the application value.
引文
[1]王美娜,李继红,郭召杰等.注水开发对胜坨油田坨30断块沙二段储层性质的影响[J].北京大学学报(自然科学版),2004,vol.40(6):855~863.
    [2]云美厚,管志宁.油藏注水开发对储层岩石速度和密度的影响[J].石油地球物理勘探,2002,vol37(3) :280~286.
    [3]杨少春,王志欣,郭玉新,等.胜坨油田二区沙河街组二段三角洲储层微观特征[J].石油大学学报,1998,22(4) :25~29
    [4]段昌旭,冯永泉等编著.胜坨沙二段多层断块砂岩油藏[M].石油工业出版社,1997年2月.
    [5]杨少春,周建林.胜坨油田二区高含水期三角洲储层非均质特征[J].石油大学学报(自然科学版),2001,25(1).
    [6]王富华,邱正松,冯京海,陈永浩.疏松砂岩油藏油层保护评价新方法研究[J].石油勘探与开发,2001,(06).
    [7]张春阳,王长利,杨宪民.屏蔽式暂堵技术在渤海油田的现场应用[J].中国海上油气,2001,13(3).
    [8]黄修平、姜喜庆、赵伟等.喇嘛甸油田河流相储层流动单元划分方法.大庆石油地质与开发,2002; 21(2):7~8.
    [9]赵翰卿.对储层流动单元研究的认识与建议.大庆石油地质与开发,2001; 20 (3):8~10.
    [10]李兴国,孙春红,赵云飞.喇嘛甸油田储层微观结构特征变化规律研究[J].大庆石油地质与开发,2007,26(1):79~83.
    [11]王志章,蔡毅,杨蕾.开发中后期油藏参数变化规律及变化机理[M].北京:石油工业出版社,1999.
    [12]赵翰卿.松辽盆地北部大型河流三角洲体系砂体沉积模式和非均质特征研究[M].北京:石油工业出版社,1992.
    [13]张洪兴,刘青年.大庆砂岩油层水淹后岩石物性参数变化实验研究[M].北京:石油工业出版社,1995.
    [14]王连生,李佳惠,邹野等.喇嘛甸油田高渗透砂岩储层电性的变化及原因分析[J].测井技术,2008,32(6):545~548.
    [15]张守谦,李占碱著.石油地球物理测井. [M]石油工业出版社,1989.
    [16]王连生,燕守斌,沈霞.大庆油田储层自然电位曲线的变异与孔隙压力解释[J].石油地球物理勘探,2005,(08).
    [17]原海涵著.毛管理论在测井解释中的应用.[M]石油工业出版社,1995.
    [18]王辉,颜林.浅析井眼扩径对钻井工作的影响及对策[J].石油天然气学报,2005.
    [19] Shifeng Xue, and Yanguang Yuan. Sanding Mechanism and Permeability Change[C] .The Petroleum Society‘s Canadian International Petroleum ConferencePaper 2004-118. 2004.
    [20]赵群.疏松砂岩储层物性参数敏感性物理模拟实验[J].石油学报,2006,(04).
    [21]尤启东,陆先亮,栾志安.疏松砂岩中微粒迁移问题的研究[J].石油勘探与开发,2004,(06).
    [22]云美厚,管志宁.油藏注水开发对储层岩石速度和密度的影响[J].石油地球物理勘探,2002,37(3) :280~286.
    [23] Cstalder S, Raynal J. Measurement of Some Mechanical Properties of Rock and Their Relationship to Rock Drillability. JPT , Aug, 1996.
    [24]赵翰卿吕晓光等.大庆长垣大型湖盆三角洲沉积模式与砂体非均质特征,国际地质大会论文,第十三届;中国北京,1996.
    [25]刘波、赵翰卿、李广月.储层砂质辫状河的识别——以大庆喇嘛甸-萨尔图油田西部PⅠ23为例.石油学报,2002; 23 (2):43~47.
    [26]赵翰卿、付志国、吕晓光.大型河流——三角洲沉积储层精细描述方法.石油学报,2000; 21(4):109~113.
    [27]宋保全、李音、席国兴等.储层精细描述技术在杏北油田开发调整中的应用.石油学报,2001; 15 (1):72~77.
    [28]赵永胜、董富林、邵进忠等.储层流动单元的矿场试验.石油学报,1999;20 (6):43~46.
    [29]李克向.钻井手册(甲方)[M].北京:石油工业出版社,1990.
    [30]邓金根,张洪生.钻井工程中井壁失稳的力学机理[M].北京:石油工业出版社.
    [31]楼一珊,等.地层坍塌压力预测技术在钟市地区的应用[J].石油钻探技术,1999.1.
    [32]楼一珊,等.地层坍塌压力的计算及应用研究[J].河南石油,1999.61.
    [33]蔡美峰等.岩石力学与工程[M].科学出版社,2005.
    [34]陈永明,阎振来,吕金信.钻井岩心三个力学参数的测试[J].探矿工程,1997,1:41~43.
    [35]周文,高雅琴,单钰铭等.川西新场气田沙二段致密砂岩储层岩石力学性质[J].天然气工业,2008,VOL28 (2) :34~37.
    [36]高艳霞,单钰铭,刘维国等.川西坳陷深层岩石力学特征及其影响因素[J].油气地质与采收率,2007,14(6):23~25.
    [37]周新桂,陈永峤,孙宝珊等.塔里木盆地北部地层岩石力学特征及地质学意义[J].石油勘探与开发,2002,29(5):8~12.
    [38]赵军,蔡亚西,林元华.声波测井资料在岩石可钻性及钻头选型中的应用[J].测井技术,2001,25(4):305~307.
    [39]孙贻铃,王秀娟,周永炳.三肇凹陷扶杨油层岩石力学参数特征[J].大庆石油地质与开发,2001,20(4):19~21.
    [40]刘之的,夏宏泉,陈平.岩石泊松比的测井计算方法研究[J].测井技术,2004, 28(6),508~510.
    [41] Ercil R. Hunt等著,李自俊译.由测井资料分析确定岩石机械性质[J].国外钻井技术,1999 ,14(6):28~31.
    [42]李士斌,艾池,刘立军.测井资料与岩石力学参数相关性及其在井壁稳定性计算中的应用[J].石油钻采工艺,1999,21(1),:43~47.
    [43]刘之的,夏宏泉,陈平.岩石泊松比的测井计算方法研究[J].测井技术,2005,(06).
    [44]楼一珊.利用声波测井计算岩石的力学参数探[J].挖矿工程,1998,(03).
    [45]朱君,冯子明,王春许.新型防砂射孔设计方案[J].油气井测试,2004,(01).
    [46] Weissenburger K. W. and Morita N. The Engjneering Approach to Sand Production Prediction .SPE, :16 892 .
    [47] Wang Zhihua, Peden J M, Damasena E S H. The Prediction of Operating Conditions to Constrain SandProduction From a Gas Well .SPE, :21 681 .
    [48] Van den Hoek P J, Hertogh G M M, Kooi jman A P. A New Concept of Sand Production Prediction:Theory and Laboratory Experiments .SPE, :36 418 .
    [49] Cook J M,Bradford I D R,Plumb R A. A Study of the Physical Mechanisms of Sanding and Application to Sand Production Prediction .SPE, :28 852 .
    [50] Morita, Nobuo. Field and Laboratory Verifications of Sand Production Prediction Models .SPE, :27 341 .
    [51] Bruno M S, Bovberg C A, Meyer R F. Some Influences of Saturation and Fluid Flow on Sand Production: Laboratory and Discrete Element Model Investigations .SPE, :36 534 .
    [52] Tixier M P, Loveless G W, Anderson R A. Estimation strength from the mechanical properities log .JPT, 1975,273, 27(3) :283293 .
    [53] Chenevert M. E. and Thompson T. W. Perforation Stability in LOw Permeability Gas Reservoirs .SPE, :13902 .
    [54] Geertsma J. : Some Rock-Mechanical Aspects of Oil and Gas Well Completions, SPE J .Dec, 1985, :P848856 .
    [55] Peden J, M. and Yassin A. A. M. The Determination of Optimum Completion and Production Conditionsfor Sand - Free Oil Production.SPE,:15 406.
    [56]罗平亚屏蔽式暂堵技术,两院院士论文集:罗平亚分册[M].北京:石油工业出版社,1999.
    [57]张绍愧,罗平亚储集层保护技术[M].北京:石抽工业出版社.1993.
    [58]吕广忠,苏玉亮,栾志安等.油井来水方向综合识别[J].西安石油学院学报(自然科学版),2001,16(3):25~28.
    [59]吕广忠,张建乔,孙业桓.疏松砂岩油藏出砂机理物理模拟研究[J].应用基础与工程科学学报,2005,13(3):284~290.
    [60]范彻(Fanchi)著,吕新华译.油藏模拟基础与方法[M].北京:中国石化出版社,2001.
    [61]陈月明.油藏数值模拟基础[M].山东:石油大学出版社,1988.
    [62]张建国,雷光伦,张艳玉.油气层渗流力学[M].山东:石油大学出版社,1998.
    [63]葛家理.油气层渗流力学[M].北京:石油工业出版社,1982.
    [64]侯玉新,黄皓莉.试论渗流场和渗流理论[J].工程勘察,2004,6:20~24
    [65]刘元会,常安定.非线性渗流区域井流问题渗流速度的分区研究[J].西北农林科技大学学报(自然科学版),2005,33(8):157~160.
    [66]李荣华等著.微分方程数值解法.北京,高等教育出版社,1982.
    [67]刘元会,常安定,张凤银.两种流态并存区域上井流问题的渗流速度[J].纺织高校基础科学学报,2004,17(3):213~216.
    [68]练章华,孟英峰,童敏.二维有限元热流模型在射孔完井中的应用研究[J].天然气工业,2000,20(4):49~53.
    [69]李存法,刘秀婷,马自芬.地下水渗流分析问题的一种数值解法及其应用[J].水文地质工程地质,2004,(5):72~73.
    [70]袁新涛,彭仕宓,刘国威.地质条件约束下储层流动单元定量研究[J].新疆地质,2006,24(2):171~175.
    [71]赵静,刘义坤,赵泉.待钻井地层孔隙流体渗流速度预测模型及应用[J].钻井液与完井液。2006,23(3):63~67.
    [72]齐敏菊.基于MapX组件的矿井通风管理信息系统的研究[M].合肥:安徽理工大学,2008.
    [73]杨桄,张柏,边红枫.基于MapX面向对象的专题地图管理信息系统的设计与实现[J].地球信息科学,2006, 18(3):32~36.
    [74] Steven Jordan,牛力.Visual Basic 6编程宝典[M].北京:电子工业出版社。2005.
    [75]齐锐,屈韶琳,阳琳贇.用Mapx开发地理信息系统[M].北京:清华大学出版社,2003.
    [76] Michael Halvorson . Visual Basic 5[M].北京:人民邮电出版社,1998.
    [77] Jeffrey P. McManus.用Visual Basic访问数据库[M].北京:电子工业出版社,1999.
    [78]王关清,李克向等.中国陆上石油钻井科技发展回顾与展望.石油钻采工艺,2000,1.
    [79]方凌云,万新德等.砂岩油藏注水开发动态分析.石油工业出版社. 1998,7.
    [80]梅江,严世才等著.调整井钻井完井技术.石油工业出版社,1993,9 31~33.
    [81]肖志兴等.地层流体影响水泥环胶结质量的机理分析.钻采工艺,1999,2.
    [82]陈永生.油田非均质对策论[M].石油工业出版社,1993.
    [83]中国石油天然气总公司科技发展局,科技开发局编.改善高含水期油田注水开发效果实例[M].石油工业出版社,1993.
    [84]冈秦麟主编.高含水期油田改善水驱效果新技术(下)[M].石油工业出版社,1999.
    [85]方凌云,万新德等编著[M].砂岩油藏注水开发动态分析.石油工业出版社,1998.
    [86]张煜,张进平,王国壮.不稳定注水技术研究及应用[M] .江汉石油学院学报,2001,23(1).
    [87]郭雄华,冯其红,李淑霞.高含水油田堵调综合治理方法[J].石油大学学报(自然科学版).2000,24(5).
    [88]黄立新.预测井径扩大的一种方法[J].探矿工程,2001. 11.
    [89]李继红,曲志浩,陈清华.注水开发对孤岛油田储层微观结构的影响[J].石油实验地质,2001,23 (4) :424~428.
    [90]刘希圣.钻井工艺原理[M].北京:石油工业出版社,1988.
    [91] Leyendecker. E. A , Bruton J . R. Downhole Mud Properties Com2plicate Drilling Hydralics[J].Drilling Magazine , 1986 ,(10).
    [92] Maill A D. Reservoir heterogeneity in fluvial sandstones lessons from outcrop studies AAPG,June 1988;Vol.72(6):682~697.
    [93] Maill A D.Architectural element analysis a new method of facies analysis applied to fluvial deposits [J].Earth Science Review,1985;22(2):261~308.
    [94] Maill A D.Architectural element and bounding surfaces in fluvial deposits of Kayenta formation (Lower Jurassic) [J].Southwest Colorado Sedimentary Geology,1988;55:233~262.
    [95]刘冬之、乔彦军、马刚.划分砂体内部建筑结构的建模方法.大庆石油地质与开发,2003; 22(1):1~3
    [96]常学军、薛培华.辫状河三角洲储层描述.石油学报,1994;15(增刊):133~140.
    [97]张东、孙淑霞、李音等.对杏树岗油田北部主力油层流动单元的划分.大庆石油学院学报,2002; 26(3):18~21.
    [98]赵翰卿·储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨.大庆石油地质与开发,2002; 21(6):16~18.
    [99]于国庆、李大伟等.储层特征变化规律研究——红柳油田垦东6断块沙二—沙三中·断块油气田,2004; 11(2):16~18.
    [100]张继腾、李中洲、陈喜萍等.以沉积微相研究为基础结合构造部位挖潜剩余油.断块油气田,2000; 7(5):41~49.
    [101]欧阳明华、谢丛姣.精细油藏描述中的储层建模.新疆石油学院学报,2004; 16(1):47~51.
    [102]赵国忠、王曙光、尹芝林等.大庆长垣多学科油藏研究技术与应用.大庆石油地质与开发,2004; 23(5):78~81.
    [103]王行信:松辽盆地白里系砂岩储层的粘土矿物特征及其对油层产能的影响《石油勘探与开发》1991,18(2).
    [104]王行信等:《松辽盆地粘土矿物研究》黑龙江科学技术出版社,1990.
    [105]谭廷栋编.测井资料在油气田开发中的应用.北京:石油工业出版社,1991.
    [106] J. Bear, C.F. Tsang, and G. de Marsily. Flow and Contaminant Transport in Fractured Rock [M] .Canada: Academic Press, 1993, :193~222.
    [107] Behrmann.L.A. and et al. Field Implications From Full Scale Sand Production Experiments .SPE38639. the 1997 SPE Annual Technical Conference and Exhibition: San Antonio,Texas.
    [108] J.J.Sheng and et al. A Dynamic Model to Simulate Foamy Oil Flow in Porous Media .SPE 36750. 1996.
    [109] Manuel Mastmann. Predicting Foamy Oil Recovery .SPE 68860. 2001.
    [110] D.D.Joseph,A.M.Kamp,T.Ko and et al. Modeling Foamy Oil Flow in Porous Media II :Nonlinear Relaxation Time Model of Nucleation .Int.J.Multiphase Flow. 2003,29, 29 :1489~1502.
    [111] Suman Jr.G.O .,Ellis,R.C. and et al. Sand Control Handbook .2nded. Gulf Publishing Company, 1983.
    [112] Veeken,C.A.M.,Davis,D.R. and et al. Sand Production Prediction Review:Developing an Integrated Approach .SPE 22792.1991.
    [113] Y.Liu,R.G.Wan. Computing Sand Production Under Foamy Oil Flow in Porous Media Via Least-Squares Finite Elements .Finite Element in Analysis and Design. 2006,42, 42 :592~601 .
    [114] Monta,N., and P A Boyd. Typical Sand Production Problem: Case Studies and Strategies for Sand Control[P] .SPE 22739. 1991,
    [115] Papamichos, E. ,and M Stavropoulou. An Erosion-Mechanical Model for Sand Production Rate Prediction .Int. J. Rock Mech. Min Sci. & Geomech Abstr, 1998,Vol.35, Vol.35 (5) :531~532 .
    [116] Dusseault, M.B. ,and F.JSantarelli. A Conceptual Model for Large Scale Solids Production [J] .Proc. Int. Symp.Rock Mech. At Great Depth. Balkema,Rotterdam. 1989,Vol.2, Vol.2 :789~797 .
    [117]邢顺诠,姜洪启:松辽盆地砂岩储层的成岩模式与孔隙演化《石油与天然气地质》,1990,11(4).
    [118]赵翰卿:松辽盆地大型叶状三角洲沉积模式《大庆石油地质与开发》1987,6(4).
    [119]刘恒,万新德.非均质砂岩油藏高含水质期开发调整.大庆科技论文精选(续).石油工业出版社,1999,9.
    [120]王连生,金柏东等.油层孔隙压力解释与自动扫描技术.测井技术,2000,5.
    [121]陈月明.油藏数值模拟基础.石油大学出版社. 1989,9.
    [122]李福垲.油藏数值模拟原理及应用.石油工业出版社. 1990,12.
    [123] Ewy R T. North Sea Case Histories of Wellbore Stability Predictions for Successful High - angle Nelson Field Wells .SPE, :27495.
    [124] Serigio L M Freire. Application of Singular Value Decomposition to Vertical Seismic Profiling .Geophysics, 1988,536, 53(6).
    [125] Weissenburger K. W. and Morita N. The Engjneering Approach to Sand Production Prediction .SPE, :16 892.
    [126] Wang Y L, Chen C C et al. An integrated reservoir model for sand production and foamy oil flow during cold heavy oil production .SPE,69714.
    [127] Liu X H, Civan F. Characterization and prediction of formation damage in two-phase flow systems .SPE,25429.
    [128] Ahsene Bouhroum, Xinghui Liu, Faruk Civan. Predictive model and verification for sand particulates migration in gravel packs .SPE,28534.
    [129] Chenevert M. E. and Thompson T. W. Perforation Stability in Low Permeability Gas Reservoirs .SPE,13902.
    [130] Geertsma J. : Some Rock-Mechanical Aspects of Oil and Gas Well Completions, SPE J .Dec, 1985,P848~856.
    [131] Peden J, M. and Yassin A. A. M. The Determination of Optimum Completion and Production Conditionsfor Sand - Free Oil Production .SPE,15 406.
    [132] Stein N. Calculate Drawdown That Will Cause Sand Production .World Oil, 1988,4, 4 :48~49.
    [133] Khilar K C, Fogler H S. Water sensitivity of sandstones .SPEJ, 1983,231, 23(1):55~64.
    [134] Sharma M M, Yortsos Y C. Transport of paniculate suspensionsin porous media: model formulation .AICHE J, 1987,3310, 33(10) :1636~1643.
    [135] Maurice B Dusseault. Skin Self-Cleaning in High-RateOil Well Using Sand Management .SPE 58786. 2000.
    [136] Khilar K C, Fogler H S. Water sensitivity of sandstones .SPEJ, 1983,231, 23(1) :55~64.
    [137] Sharma M M, Yortsos Y C. Transport of paniculate suspensionsin porous media: model formulation .AICHE J, 1987,3310, 33(10) :1636~1643.
    [139] Geilikman, M. B, Dusseault, M. B, and Dulien, F. A. L. Dynamic Effects of Foamy Fluid Flow in Sand Production Instability .SPE 30251.1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700