用户名: 密码: 验证码:
新疆莫北油田砂砾岩储层渗流机理与油藏工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆莫北油田2010年预计可新增千万吨级规模储量、新建产能近百万吨,成为新疆油田近年来在老油田深化滚动勘探探明的最大整装稀油油藏。莫北油田老井开发过程中普遍存在水驱机理不清、无水采油期短、见水后产能急速下降、最终采收率低等问题。为保障莫北油田重点区块莫116井区开发方案的编制与高效开发,本文以渗流理论为基础,运用恒速压汞、核磁共振、高精多功能渗流平台等物理模拟与数值理论模拟计算两项关键技术,研究了砂砾岩储层的物性特征、渗流机理、有效驱替理论、井网井距,并进行了老区生产动态分析。主要成果如下:
     (1)系统地评价了砂砾岩储层的物性特征,论证了主流喉道半径、可动流体饱和度、拟启动压力梯度是表征低渗砂砾岩储层物性的关键参数,其与储层岩性具有很好的对应关系。
     (2)研究了储层的微观孔隙结构特征及其分布规律,发现储层喉道大小及其分布规律是储层渗流能力和开发效果的控制性因素,首次基于微观结构特征建立了可用于水驱开发动态预测的渗流理论模型。
     (3)揭示了莫116井区砂砾岩储层相对于其它渗透率相近的砂岩储层主流喉道半径较大、启动压力梯度较小、微观非均质性更强的特点是莫北油田注水难度较小,水驱油效率低的本质原因。
     (4)明确了莫116井区储层存在较弱的速敏与压敏及中等偏强水敏的敏感性特征;储层的束缚水饱和度较高,油水两相共渗区间窄,仅为20%,无水采出程度占最终采收率的85%以上,见水后含水率迅速上升到90%以上;具有一定的渗吸采油能力等一系列渗流特征。
     (5)推导了基于等值渗流理论并考虑启动压力梯度的两相三区水驱油渗流模型,论证了注水有效性的影响因素,编制了多因素的井网井距图版和注水有效性理论图版。
     应用上述成果并结合老区生产动态分析,揭示了砂砾岩储层水驱开发的固有特征,明确了莫116井区砂砾岩储层水驱开发动态机理及提高莫116井区油藏最终采收率的两个关键:一是通过井网、井距和生产制度优化来延长无水采油期,以提高无水期采出程度;二是在水驱后期,通过调剖等手段来改善吸水剖面,提高波及体积,以提高水驱后期的采出程度,从而达到提高莫北砂砾岩油藏最终采收率的目的。
It has been predicted that more than ten millions reserves was found in Mobei oilfield of Xinjiang in October,2010, about millions of which would be developed. And dute to that, Mobei oilfield has became one of the biggest of large piece thin reservoir with the development of rolling mode for the past few years. But the problems, such as, misunderstanding of the waterflooding mechanism, shortness of water free production period, deliverability descend hasty when water breakthrough, the low final recovery efficiency and so on, were widespread in the process of development of the old oilfield blocks. In order to insure the compilation of the development plan and the efficient development of Mo 116 well field, some critical technologies, including constant speed mercury injection, NMR, Multi-functional seepage platform and numerical simulation calculation, were applied to study physical characteristic of sand-conglomerate reservoir, percolation mechanism, effective displacement theory and pattern well spacing and so on. We also evaluated the performance of old oil field blocks. Main results are as follows:
     (1) It has been evaluated systematacially the properties of sand-conglomerate reservoir and demonstrated that the parameters of microscopic pore structure characteristics, mobile fluid saturation and trigger pressure gradient have the very good corresponding relation with reservoirs lithologies.
     (2) We also found out the characteristics of micro pore structure of Mobei oilfield. And we thought that the size and distribution of the throats was critical factor to determine the flowing capacity and development of the reservoir. Base on of micro pore structure, we have built flowing theory model, which could predict the reservoir production dynamic performance.
     (3) Compared with other low permeability reservoir, the reason why it's easy to inject water and the water displacement efficiency is low in Mo 116 well field is that the mainstream throat radius of Mobei field is wider, the trigger pressure gradient is lower and the microscopic heterogeneity is more serious.
     (4) The reservoir of Mobei field has some degree of sensitivity, including weak speed sensitivity, weak pressure sensitivity and medium water sensitivity. There has been high bound water saturation and its common seepage interval is very narrow, only 20%. Althought breakthrough recovery reach up to about 85%, it's hard to increase production when water breakthrough because water content will rise to 90% quickly. In the process of development, there exists some degree ability of imbibition oil recovery.
     (5) Base on the equivalent seepage theory, we have obtained the model of three districts, two-phase theory of seepage of water flooding which considered the trigger pressure gradient. We also demonstrated the influencing factors of water injectiom effectiveness, and gave theoretical chart boards about rationale well nets spacing and effective water injection.
     Applying the above results to actual oilfield development, there are two ways to improve the final recovery efficiency of Mo 116 well field. The first one is to optimise well network, well spacing and production system to prolong the water free recovery. The second one is to ameliorate water-injecting profile in the later stage of waterflooding, which could improve spread coefficient and brought higher recovery efficiency.
引文
[1]昝灵,王顺华,张枝焕,等.砂砾岩储层研究现状[J].长江大学学报(自然科学版),2011,8(3):63-66
    [2]W. R Purcell. Capillary pressures- Their measurement using mercury and calculation of permeability from it[J]. Trans AIME,1949,41(5):39-48
    [3]J.H.M Thomeer. Introduction of a pore geometrical factor defined by the capillary pressure curve[J]. Trans AIME,1960,52(3):354-358
    [4]N.C Wardlaw, R.P Taylor. Mercury capillary pressure curves and the interpretation of pore structure and capillary behavior in reservoir rocks[J]. B.C.P.G,1976,24(2):225-262
    [5]Shen Pingping, Li Kewin, Jia Fenshu. Quantitative description for the heterogeneity of pore structure by using mercury capillary pressure curves[C]. SPE 29996,1995,447-456
    [6]F Ferrer, M Vielma, A Lezama. Permeability model calibration and pore throat radius determination using core analysis and nuclear magnetic resonance data in mixed-lithology reservoirs, Southwestern Venezuela[C]. SPE 108078,2007,1-7.
    [7]Greg Gubelin, Austin Boyd. Total porosity and bound-fluid measurements form an NMR tool[C]. SPE 39096,1998,718-720
    [8]GC Borgia. A new unfree fluid index in sandstones through NMR studies[C]. SPE 28366, 1996,89-93
    [9]肖立志.核磁共振测井资料解释与应用导论[M].北京:石油工业出版社.2001
    [10]Hsu Wenfu, Li Xiaoyu, R.W Flumerfelt. Wettability of porous media by NMR relaxation methods[C]. SPE 24761,1992,1027-1037
    [11]R.J Zittel, D Beliveau, T. O'Sullivan. Reservoir curde-oil viscosity estimation from wireline NMR measurements-Rajasthan, India[C]. SPE 101689,2006,1-11
    [12]J.L Bryan, F.P Manalo, Y Wen. Advances in heavy oil and water property measurements using low field nuclear magnetic resonance[C]. SPE 78970,2002,1-12
    [13]R Patricia, R Pedro. Estimation of fluid properties using NMR correlations in Berea rocks[C]. SPE 69608,2001,1-7
    [14]B.L Hou, G.R Coates. Nuclear magnetic resonance logging methods for fluid typing[C]. SPE 48896,1998,593-607
    [15]P Egermann, N Doerler, M Fleury, et al. Petrophysical measurements from drill cuttings:an added value for the reservoir characterization process[C]. SPE 88684,2004,1-8
    [16]F Ferrer, M Vielma, A Lezama. Permeability model calibration and pore throat radius determination using core analysis and nuclear magnetic resonance data in mixed-lithology reservoirs, Southesttern Vennezuela[C]. SPE 108078,2007,1-7
    [17]J Ouzzane, M Okuyiga, N Gomaa. Application of NMR T2 relaxation for drainage capillary pressure in vuggy carbonate reservoirs[C]. SPE 101897,2006,1-10
    [18]G Maddinelli, C Crati, A Brancolini et al. NMR imaging of gelation processes inside rock cores[C]. SPE 25219,1993,641-650
    [19]Chen Songhua, Qin Fangfang, Kim K-H, et al. NMR imaging of multiphase flow in porous media[C]. SPE 24760,1992,1013-1026
    [20]R.J.S Brown, I. Fatt. Measurement of fractional wettability of oil fields' rocks by the nuclear magnetic relaxation method[C]. SPE 743G,1956,1-4
    [21]樊海琳,杨学君,陈武杰,等.东营凹陷北部盐22区块砂砾岩储层储集空间类型及控制因素[J].内蒙古石油化工,2010,20(14):105-107
    [22]范宜仁,葛新敏,汪海龙,等.非均质性砂砾岩储层渗透率预测方法研究[J].西南石油大学学报(自然科学版),2010,32(3):6-10
    [23]胡松,张超谟,胡瑶,等.基于主成分分析的砂砾岩储层孔隙度计算方法研究[J].石油天然气学报,2010,32(3):100-104
    [24]谢淑珍.砂砾岩有效储层主控因素研究[J].科技致富向导,2011,16(18):195-196
    [25]曲卫光.王庄地区砂砾岩储层微观特征[J].岩心油气藏,2010,22(S):18-21
    [26]李治硕,杨正明,刘学伟,等.特低渗透砂砾岩储层核磁共振可动流体参数分析[J].科技导报,2011,28(7):88-90
    [27]邹双梅,谢丛娇,涂智杰.乌里雅斯太凹陷南洼槽T27井区腾一段_油组砂砾岩储层地质建模[J].石油天然气学报,2010,32(6):363-365
    [28]王艳忠,操应长,李永新.东营凹陷北带沙四段上亚段近岸水下扇砂砾岩储集物性对比[J].油气地质与采收率,2010,17(4):9-12
    [29]S. Kawasaki, H. Ito, K. Nakagawa, et al. Quality evaluation of conglomerate core samples based on laboratory tests [C].9th ISRM Congress, August 25-28,1999, Paris, France, 619-622
    [30]Liu Hui, Jiang Zaixing, Zhang Ruifeng, et al. Gravels in the Daxing conglomerate and their effect on reservoirs in the Oligocene Langgu Depression of the Bohai Bay Basin, North China[J]. Maine and Petroleum Geology,2011,1-12
    [31]M.P Cimolal, R. M Gies, D.B Bennion, et al. Mitigating horizontal well formation damage in a low-permeability conglomerate gas reservoir[C]. SPE 26166,1993,277-287
    [32]Yang Ruiqi, Yang Shengzhen, Zou Zhengyin,et al. Tests of conversion into steam stimulation following water flooding in Karamay conglomerate oilfield[c]. SPE 50894,1998,179-185
    [33]J.M Shelby. Geologic and Economic significance of the upper Morrow Chert onglomerate reservoir of the Anadarko basin[C]. SPE 1837,1985,489-495
    [34]D.L Cook. Influence of silt zones on steam drive performance upper conglomerate zone, Yorba Linda field, California[C]. SPE 5854,1977,1397-1404
    [35]S.H Treagus, J.E Treagus. Studies of strain and rheology of conglomerates[J]. Journal of Structural Geology,2002,24(10):1541-1567
    [36]D.M Czeck, D.A Fissler, E.H Horsman, et al. Strain analysis and rheology contrasts in polymictic conglomerates:An example from the Seine metaconglomerates, Superior Province, Canada[J]. Journal of Structural Geology,2009,31(11):1365-1376
    [37]J.L Gomez, AArche. The Upper Permian BonichesConglomeratesFormation:evolution from alluvialfan to fluvial system environments and accompanying tectonic and climatic controls in the southeast Iberian Ranges, central Spain[J]. Sedimentary Geology,1997, 114(1-4):267-294
    [38]李治硕.华北特低渗透砂砾岩油藏储层特征及渗流规律实验研究[D].北京:中国科学院研究生院,2010,20-25
    [39]许宁,张方礼,王占红.巨厚层砂砾岩底水汕藏注水开发研究[J].断块油气田,2004,11(4):30-32
    [40]姚凯,催文俊,郭洪金,等.乐安油田砂砾岩稠油油藏水平井热采配套工艺技术[J].特种油气藏,2000,7(3):30-32
    [41]赵跃华,赵新军,翁大丽,等.利用动态测试资料研究砂砾岩油层物性变化特征[J].石油勘探与开发,1999,26(2):60-63
    [42]张人雄,高约友,李建民.驱替条件对砂砾岩油藏水驱油效率的影响[J].1995,9(4):32-37
    [43]庄博,刘玉琴.三维可视化技术在陈家庄地区砂砾岩储集层描述中的应用[J].2005,32(3): 64-66
    [44]李洪娟,徐宏,聂锐利.砂砾岩储层有效厚度研究[J].大庆石油地质与开发,1998,17(4):9-10
    [45]孙尚如,姜建伟.砂砾岩厚油层高含水期提高注水波及体积研究[J].中国科协2002年学术年会
    [46]杨晓蓓,冯毅,郭恩常,等.砂砾岩油藏特高含水期储层参数变化规律[J].西南是由学报,2000,22(4):22-25
    [47]高约友,张新宁,师树义.双河油田砂砾岩油藏微观水驱油机理[J].河南石油,1996,10(4):14-17
    [48]陈剑波,魏进峰,路智勇.盐家砂砾岩油藏注水开发配套技术与应用[J].油气地质与采收率,2003,10(增):28-29
    [49]邓强,侯加根,唐衔.影响低渗透砂砾岩油藏初期产能的地质因素[J].油气地质与采收率,2010,17(3):95-98
    [50]Qin Jianhua, Yang Ruiqi, Chi Jianping, et al. Application of sidetrack horizontal well in conglomerate reservoirs at mid-high waer cut stage to improve development effects[C]. SPE 50934,1998,454-550
    [51]V. N. Simlote, W. J. Ebanks, E. V. Eslinger, et al. Synergistic evaluation of a complex conglomerate reservoir for EOR, Barranca formation, Argentina[C]. SPE 11055,2011, 295-305
    [52]R.S Charles, E.A Riley. Contained injection pattern and high pumping rates solve permeability problems in a North Texas Caddo conglomerate water flood[C]. SPE 329, 1962,1104-1108
    [53]Liang Xingru, Lu Chuanbing, Du Xijiang, et al. Methods for delineation of fractured oil bearing conglomerate reservoir[C]. SPE 88466,2004,1-8
    [54]T.P O'Sullivan, K.D Kiloh, M.R Starzer. Conglomerate identification and mapping leads to development success in amature Alaskan field[C]. SPE 22163,1991,719-726
    [55]王兆峰,王彬,屈娟,等.莫北油气田三工河组油气藏油气水分布规律及油藏类型[J].新疆石油学院学报,2001,13(4):5-8
    [56]邱子刚,戴雄军,施小荣.准噶尔盆地莫北凸起侏罗系三工河组沉积相[J].石油天然气学报,2010,32(5):183-186
    [57]周文泉,王凌,姜永军,等.准噶尔盆地莫北_莫索湾凸起西斜坡油气成藏分析[J].新疆石油地质,2007,28(1):51-53
    [58]李双文,刘洛夫,张有平,等.准噶尔盆地莫北凸起侏罗系三工河组沉积演化及微相构成[J].沉积学报,2006,24(6):819-828
    [59]雷德文,唐建华,邵雨.准噶尔盆地莫北地区小断裂的正演模拟与识别[J].新疆石油地质,2002,23(2):111-113
    [60]李双文,赵建章,谷跃民,等.准噶尔盆地莫北凸起莫7_莫11井区三维地震资料构造精细解释技术[J].兰州大学学报,2008,44(1):1-5
    [61]赵建章,李双文,刘洛夫,等.准噶尔盆地莫北凸起三工河组砂体成因及组合类型[J].2007,28(5):572-575
    [62]高小康,胡文瑄,曹剑,等.准噶尔盆地莫索湾_莫北地区油气运移方向和成藏体系[J].2007,28(2):250-256
    [63]张年富,张越迁,徐常胜,等.陆梁隆起断裂系统及其对油气运聚的控制作用[J].2003,24(4):281-283
    [64]伍新和,向书政.莫北油田油藏地球化学研究[J].成都理工学院学报,2002,29(3):300-304
    [65]石新朴,王绪龙,曹剑,等.准噶尔盆地莫北——莫索湾地区原油成因分类及运聚特征[J].沉积学报,2010,28(4):380-387
    [66]李振宏,冯武军,贾建恒.准噶尔盆地莫北地区断裂活动与油气运聚[J].小型油气藏,2003,8(4):6-9
    [67]刘翠敏,廖健德,向宝力,等.莫北油田油气水成因及其分布规律[J].天然气勘探与开发,2004,27(2):57-60
    [68]陈新,孙中春,唐勇.准噶尔盆地莫北油田侏罗系储层低孔低渗成因分析[J].特种油气藏,2004,11(4):30-34
    [69]邹志文,斯春松,杨梦云.隔夹层成因、分布及其对油水分布的影响[J].岩性油气藏,2010,22(5):66-70
    [70]黄永平,夏代学.高分辨率三维地震勘探技术在莫北油田的应用[J].CT理论与应用研究,2002,11(2):5-8
    [71]冯国庆,陈军,张烈辉,等.莫北2井区侏罗系三工河组油藏数值模拟[J].2004,25(1):55-57
    [72]章敬.莫北油气田储层压裂改造及配套技术研究:[硕士学位论文].四川:西南石油学院,2004
    [73]柯贤贵,雷旭东,邹永明,等.优化莫北2井区深井低渗油藏压裂工艺[J].石油天然气学报,2010,32(2):330-332
    [74]张天翔,何园,丁克保,等.准噶尔盆地深层砂岩油藏压裂人工裂缝识别方法探讨[J].新疆石油科技,2003,13(2):9-12
    [75]谭芳,赵光勇,刘伟,等.振荡酸化技术在莫北油田莫109井区注水井上的应用[J].2008,30(2):288-290
    [76]陈晓明,梁德栋,冯莉萍.振动_酸化复合解堵增注技术在莫北油田的应用[J].钻采工艺,2006,29(5):97-101
    [77]曹红叶,王洪亮,姬嘉琦.测井技术在莫北油气田开发中的应用[J].国外测井技术,2002,17(5):39-42
    [78]罗兴平,陈忠强,周据宝,等.莫北油田低孔低渗油层的成因及测井评价方法[J].国外测井技术,2004,19(3):15-17
    [79]张明玉.极值方差聚类法在测井分层取值中的应用_以莫北油田莫005井区为例[J].新疆石油地质,2002,23(5):429-431
    [80]韩吉声,赵玲莉,努尔.莫北油田005井区三工河组MB5011井试注实践与认识[J].新疆石油科技,2004,14(3):16-18
    [81]高永利,张志国.恒速压汞技术定量评价低渗透砂岩孔喉结构差异性[J].地质科技情报,2011,30(4):73-75
    [82]徐赢,潘有军,张中劲,等.恒速压汞实验的低渗透储层孔隙结构特征研究[J].吐哈油气,2011,16(3):237-242
    [83]王翊超,王怀忠,李炼民,等.恒速压汞技术在大港油田孔南储层流动单元微观孔隙特征研究中的应用[J].天然气地球科学,2011,22(2):335-339
    [84]何顺利,焦春艳,王建国,等.恒速压汞与常规压汞的异同[J].断块油气田,2011,18(2):235-237
    [85]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储藏物性特征[J].大庆石油学院学报,2006,30(2):22-25
    [86]王金勋,杨普华,刘庆杰,等.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版),2003,27(4):66-69
    [87]高辉,解伟,杨建鹏,等.基于恒速压汞技术的特低——超低渗砂岩储层微观孔喉特征[J].2011,32(2):206-211
    [88]时宇,齐亚东,杨正明,等.基于恒速压汞法的低渗透储层分形研究[J].油气地质与采收率,2009,16(2):88-90
    [89]罗哲潭,王允诚.储层孔隙结构、润湿性和油田采收率[J].成都理工大学学报,1980,4:1-16
    [90]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J].新疆石油地质,2005,26(3):280-283
    [91]杨满平,彭彩珍,郭平,等.流纹岩储层的孔隙结构特征研究[J].试采技术,2004,25(1):11-14
    [92]庞彦明,章凤奇,邱红枫,等.酸性火山岩储层微观孔隙结构及物性参数特征[J].石油学报,2007,28(6):72-77
    [93]廖光明,付晓文,何光怀,等.陕甘宁盆地中部气田奥陶系碳酸盐岩储层孔喉大小与孔隙度和渗透率间的关系[J].西南石油学院学报,1995,17(1):1-7
    [94]涂富华,唐仁琪,韩锦文,等.砂岩孔隙结构对水驱油效率影响的研究[J].石油学报,1983,4(2):49-62
    [95]祁庆祥.砂岩储层某些孔隙结构参数与水驱油效率的对比关系[J].石油勘探与开发,1984,11(2):56-63
    [96]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-46
    [97]李振泉,候健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):6-73
    [98]李传亮.孔喉比对地层渗透率的影响[J].油气地质与采收率,2007,14(5):78-79
    [99]王瑞飞,陈明强,孙卫.特低渗透砂岩储层微观孔隙结构分类评价[J].地球学报,2008,29(2):213 220
    [100]杨正明,张英芝,郝明强,等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67
    [101]肖立志,杜有如,叶朝辉.储油岩心魔角旋转核磁共振纵向驰豫特征[J].科学通报,1994,39:478
    [102]黄延章,尚根华,陈永敏.用核磁共振成像技术研究周期注水驱油机理[J].石油学报.1995,16(4):62-64
    [103]高效曾.核磁共振孔隙度和岩性有关[J].测井技,1998,22(4):295-298
    [104]高敏,安秀荣,抵淑华等.用核磁共振测井资料评价储层的孔隙结构[J],测井技术,2000,24(3):258-293
    [105]运华云,赵文杰,刘兵开等.用T2分布进行岩石孔隙结构研究[J].测井技术,2002,26(1):15-21
    [106]唐小梅,何宗斌,张超漠等.用核磁共振T2分布定量求取孔隙结构参数的区域性对比研究[J].江汉石油学院学报,2003,25(4):75-77
    [107]刘堂宴,马在田,傅容珊.核磁共振谱的岩石孔喉结构分析[J].地球物理学进展.2003,18(4):737-742
    [108]何雨丹,毛志强,肖立志.核磁共振T:分布评价岩石孔径分布的改进方法[J],地球物理学报,2005,48(2):373-378
    [109]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700