用户名: 密码: 验证码:
番茄灰霉病菌和油菜菌核病菌对嘧霉胺的敏感性基线及番茄灰霉病菌抗药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嘧霉胺(pyrimethanil)为苯胺基嘧啶类杀菌剂,对由灰葡萄孢霉(Botrytis cinerea)引起的灰霉病有良好的防效。这类杀菌剂可抑制灰葡萄孢霉菌丝内甲硫氨酸的生物合成,并可抑制病菌胞外蛋白酶(包括水解酶)的分泌,减少病菌侵入位点寄主细胞的死亡。中国于20世纪90年代末开始推广使用嘧霉胺,由于其作用位点单一,加之灰葡萄孢霉具有繁殖速度快,遗传变异大和适合度高的特点,所以对嘧霉胺的抗药性风险较高,因此研究嘧霉胺对中国植物病原真菌的生物活性以及抗药性有重要的现实意义。
     室内离体条件下采用菌落生长抑制法,选用马铃薯葡萄糖培养基(PDA)、麦芽浸膏培养基(MEA)和L-天冬酰氨合成培养基(L-asp)三种培养基测定油菜菌核病菌(Sclerotinia sclerotiorum)A2和A5菌株对嘧霉胺的敏感性,结果表明合成培养基L-asp测定嘧霉胺活性灵敏度高,10μg·mL~(-1)对A2和A5的抑制率分别为78.43%和87.50%;而相同药剂浓度下在PDA上测定的对A2和A5的抑制率分别为和56.54%和61.00%,在MEA培养基上测定的对A2和A5的抑制率则仅为38.25%和47.67%。
     嘧霉胺对不同种真菌的毒力差异显著,具有专化性。在L-asp培养基上测试的12种真菌中,嘧霉胺对灰葡萄孢霉、番茄早疫病菌(Alternaria solani)和苹果轮斑病菌(A.solani)菌丝生长有强烈的抑制作用,EC_(50)值分别0.177、0.274和0.278μg·mL~(-1)。对芦笋茎枯病菌(Phoma asparagi)、辣椒炭疽病菌(Colletotrichum gloeosporioides)、油菜菌核病菌(Sclerotinia sclerotiorum)和水稻纹枯病菌(Rhizoctonia solani)的菌丝生长也有较高活性,EC_(50)值分别为1.444、1.623、2.017和4.106μg·mL~(-1)。对梨腐烂病菌(Cytospora carphosperma)、辣椒疫霉病菌(Phytophthora capsici)、白绢病菌(Sclerotium rolfsii)、稻瘟病菌(Magnaporthe grisea)和小麦赤霉病菌(Gibberella zeae)活性较差。
     嘧霉胺处理灰霉分生孢子,在12h内表现对孢子萌发有强烈的抑制作用(处理12h时对灰葡萄孢霉h18菌株的EC_(50)为0.248μg·mL~(-1)),但随着培养时间延长,对孢子萌芽抑制率下降,而表现为抑制芽管的发育。因此,嘧霉胺的作用方式是抑制灰葡萄孢霉菌丝生长,而不是抑制孢子萌发。
    
     2000年从未用过喀霉胺等苯胺基嚓吮类杀菌剂的江苏盐城地区番茄上采集、单袍
    分离得到灰葡萄袍霉菌22个;2001年从未用过啥霉胺等苯胺基啥吮类杀苗剂的江苏
    南通市郊区、通州市等地区采集、分离得到油菜菌核病菌50个。采用菌落生长抑制
    法在L一asp培养基上测定这两种病原菌对峪霉胺的敏感性,测定结果表明,22个灰葡
    萄袍霉菌株的ECSO值变化范围在0.038一0.418拼g·mL一,之间,平均ECS。值为0.174
    。g’ mL一,,95%置信区间为0.125一0.222JJg·mL一‘。50个油菜菌核病菌ECS。值变化
    范围在0.303一5986 09·mL一,之间,平均ECS。值为1 .779 09·mL一‘,95%置信区间为
    l,738一2296似g·mL一l。
     2002年从已使用过嚓霉胺药剂的江苏淮阴地区日光温室或塑料大棚中采集、分离
    获得55个番茄灰葡萄袍霉病菌,在L一asp培养基上采用菌丝生长抑制法测定各菌株对
    喀霉胺的敏感性,结果表明该地区灰葡萄袍霉菌对喀霉胺的敏感性ECs。值变化范围
    在0.108一22.94。g·mL一’,平均ECS。值为3.217。g·mL一‘;淮阴地区的灰葡萄袍霉对嚓
    霉胺已产生杭药性,抗药比例为4364%。抗性群体中83.33%的菌株表现中杭水平,
    1667%表现高杭水平。
     室内紫外诱导获得高杭喀霉胺的菌株Huv16,ECS。值为24.95 09·mL一,,比亲本
    菌株高162倍。对田间敏感菌株、中杭菌株及紫外诱导的高抗菌株离体条件下的测定
    结果表明,三种类型的菌株在生长速率、产袍量和袍子萌芽率方面,菌株之间存在很
    大的差异,这些不同生物学性状与对嚓霉胺的抗性水平之间无明显相关性。田间中杭
    菌株和室内诱导的高杭菌株Huvl6均具有较好的遗传稳定性。在番茄叶片上测定的敏
    感性与在L一asp培养基上测得的敏感性之间存在相关性。交互杭性结果表明,苯胺基
    嚓咤类杀菌剂间存在正交互杭性,而与其他药剂如多菌灵(苯并咪吐类)、乙霉威(N-
    苯胺基甲酸醋类)和速克灵(二甲酞亚胺类)等不存在交互抗性。
     将喀霉胺与多菌灵、异菌脉和福美双分别按1:l,3:1,6:1比例复配,离体
    条件下采用菌落生长抑制法测定各复配剂对灰葡萄袍霉菌株YS和Hyl6的毒力,结
    果表明,各复配剂对灰葡萄抱霉均表现相加作用。其中,啥霉胺和多菌灵3个比例的
    复配剂对Hyl6菌株(对多菌灵高杭,EC50习oo仁g·mL一,)具有优异的抑制作用。嚓
    霉胺与异菌豚3:1,6:1的复配剂比例对苹果轮斑病菌和番茄早疫病菌也表现相加
    作用。
Pyrimethanil is a new fungicide within the group of anilinopyrimidines (APs) with high activity against grey mould mainly caused by Botrytis cinerea. The modes of action of APs include inhibiting methionine biosynthesis, secreting hydrolytic enzymes and reducing host cell death at the site of fungal infection. Pyrimethanil had been widely used sine the end of the 1990s in China. Due to pyrimethanil with a single site of action and B. cinerea with the capacity of reproduction and mutation with high fitness, the combination of grey mould and pyrimehtanil is high risk of resistance; therefore, it is essential to embark on biological activity and resistance of pytimethanil to pathogenic fungi in China.
    Sensitivities of isolates A2 and A5 of Sclerotinia sclerotiorum to pyrimethanil were determined on potato dextrose agar (PDA) medium, malt extract agar (MEA) medium and chemically defined L-asparagine agar (L-asp) medium with mycelial growth test. The results revealed that L-asp medium is more sensitive for testing activity of pyrimethanil inhibiting mycelium growth of isolates A2 and A5. Growth inhibition rates were 78.43% and 87.50% at 10 u g mL-1 respectively for the both isolates. While, inhibition of mycelium growth was measured with 56.54% and 61.00% on PDA, 38.25% and 47.67% on MEA, respectively for the isolates A2 and A5.
    Of total 12 plant pathogens species tested on L-asp medium, pyrimethanil strongly inhibited the mycelium growth of B. cinerea, Alternaria solani and A.solani with EC50 values of 0.177, 0.274 and 0.278 u g mL-1 respectively. It also had high inhibition effect on the mycelium growth of Phoma asparagi, Colletotrichum gloeosporioid.es, Sclerotinia sclerotiorum and Rhizoctonia solani with EC50 values of 1.444, 1.623, 2.017 4.106 u g mL-1 respectively. With no or little effect on Gibberella zeae, Magnaporthe grisea, Sclerotium rolfsii, Phytophthora capsici and Cytospora carphosperma.
    Pyrimethanil strongly inhibited the germination of conidia of B.cinera within 12h treatment (EC50 value was 0.248 u g mL-1 of isolate h18). However, inhibition effect of germination of conidia of B.cinera descended with the treatment time gone on, but the development of germ tube was strongly inhibited. Therefore, the mode of action of
    
    
    
    pyrimethanil was inhibiting the mycelium growth of B.cinerea and not the germination of conidia of B.cinera.
    22 isolates of B.cinrea were isolated from tomatoes sampling from Yancheng, Jiangsu Province in 2000 and 50 isolates of S. sclerotiorum were collected from Nantong, Tongzhou etc in 2001 where pyrimethanil had never been used before. The sensitivities to pyrimethanil were determined by the method of mycelial growth test on L-asp agar medium. The results showed that the EC50 value of B.cinrea was ranged from 0.038 0.418 u g mL-1 with the mean EC50 value of 0.174 ug mL-1 and 95% confidence interval was ranged from 0.125-0.222 u g mL-1. The EC50 value of S. sclerotiorum was ranged from 0.303-5.986 ug mL-1 with the mean EC50 value of 1.779ug mL-1 and 95% confidence interval was ranged from 1.738-2.296 u g mL-1.
    55 isolates of B.cinrea were collected from greenhouses or plastic tunnels in Huaiyin, Jiangsu Province in 2002 where pyrimethanil had been used for about 3 years. The sensitivities of these isolates to pyrimethanil were determined by the method of mycelial growth test on L-asp agar medium. The results showed that the EC50 value were ranged from 0.108-22.94 u g mL- 1with the mean EC50 value of 3.217 u g mL-1. Some isolates of B.cinrea in Huaiyin showed resistance to pyrimethanil and the proportion of resistant isolates was 43.64%. Among this resistant sub-population, 83.33% was moderate resistance and 16.67% was high resistantce.
    High resistance mutant Huvl6 to pyrimethanil was obtained by ultraviolet irradiation. EC50 of pyrimethanil to Huvl6 was 24.95 u g mL-1,162 times as that of its original isolate H16. Significant differences in growth rate, sporulation and conidium germination rate were found among isolates of B.cinerea. However, no correlation co
引文
1. Babij J, Zhu Q, Brain P, et al. Resistance risk assessment of cereal eyespot, Tapesia yallundae and Tapesia acuformis, to the anilinopyrimidine fungicide, cyprodinil. European Journal of Plant Pathology. 2000,106: 9, 895-905
    2. Baroffio C A, Siegfried W, Hilber U W. Long-term monitoring for resistance of Boreyotinia fuckeliana to anilinopyrimidine, phenylpyrrole, and hydroxyanilide fungicide in Switzerland. Plant Dis. 2003,87:662~666
    3. Beever R E, Laracy E P, Park, H A. Strain of Botrytis cinerea resistant to dicarboximide and benzimidaole fungdicides in New Zealand vineyards. Plant Pathology. 1989,38:427~437
    4. Bellen G. J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen Neth. P1.Path. 1971,77:83~90
    5. Birchmore R J, Williams R J, Russell P E. A baseline for the sensitivity of Botrytis cinerea to pyrimethanil. Pests and Diseases. 1996, 2, 713-718
    6. Cabras P. Pesticide residues in wine. Informatore-Fitopatologico. 2001,51: 4, 41-43
    7. Capella A, Guarnone A, Domenichini P, et al. new botryticide for grapevine, strawberry and tomato. Informatore Fitopatologico. 2001,51 : 6, 28-32
    8. Chapeland F, Fritz R, Lanen C, et al. Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pesiticide Biochemistry and Physiology. 1999,64: 2, 85-100
    9. Clabassi I, Toffolutti B, Efficiency of new preparations for control of apple scab. Notiziario-ERSA. 2000,13: 6, 45-48
    10. Clough M J, Godfery R A C. The strobilurin Fungicides. In: Fungicidal Activity. Edited by Hutson H.D. and Miyamoto J., John Wiley & Sons Ltd., 1998, Chapter 5:109~148
    11. Daniel A, Birchmore R J, Winter E H. Activity of pyrimethanil on Venturia inaequalis. Pests and Diseases. 1994, 2, 525-532
    12. Daniel A, Lucas J A. Mode of action of the anilinopyrimidine fungicide pyrimethanil.I.In vivo activity against Botrytis fabae on broad bean (Vicia faba) leaves, Pesticide Science. 1995, 45,33~41
    13. Davides L C. Benzimidazole fungicides mechanism of action and biological impact. Phytopathol. 1985,24:43~45
    14. Dianez F, Santos M, Blanco R., et al. Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (Southwestern Spain). Phytoparasitica. 2002, 30: 5, 529-534
    15. Doohan F M, Nicholson P, Parry D W. Efficacy of the fungicides prochloraz and pyrimethanil
    
    against Fusarium culmorum ear blight of wheat. Pests and Diseases. 1996, 1,409-410
    16. Doohan F M, Parry D W, Nicholson P. Fusarium ear blight of wheat: the use of quantitative PCR and visual disease assessment in studies of disease control. Plant Pathology. 1999, 48: 2, 209-217
    17. Faretra F, Pollastro S, Di Tonno A P. New natural variants of Botrytis cinerea coupling benzimidazole-resistant to insensitivity toward the N-phenylcarbamate diothofencarb. Phytopathologia Mediterranea. 1989, 28:98 104
    18. Faretra F, Pollastro S. Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana (Botrytis cinerea) from some countries. Plant Pathol. 1993,42~48
    19. Florence C, René F, Catherine L, et al. Inheritance and Mechanisms of Resistance to Anilinopyrimidine Fungicides in Botrytis Cinerea (Botryotinia Fuckeliana). Pesticide Biochemistry and Physiology. 1999, 64(2): 85-100
    20. Forster B, Staub T. Basis for use strategies of anilinopyrimidine and phenylpyrrole fungicides against Botrytis cinerea. Crop Protection. 1996,15(6): 529-537
    21. Fritz R., Lanen C, Florence C L, et al. Effect of the anilinopyrimidine fungicide pyrimethanil on the cystathionine -lyase of Botrytis cinerea. Pesticide Biochemistry and Physiology. 2003, 77(2): 54-65
    22. Fritz R, Lanen C, Colas V, et al. inhibition of methionine biosynthesis in Botrytis cinerea by the anilinopyrimidine fungicide pyrimethanil. Pestic.Sci. 1997,49,40~46
    23. Gorgolous S G, Dekker J. Detection and measurement of fungicide resistance general principles. FAO PL.Prot.Bull, 1982,30 (2):39~71
    24. Graziani N, Scannavini M, Offredi P. Selectivity of the fungicide pyrimethanil and its effect on the maturation process and vinification of grapes for wine. Vignevini. 2001, 28: 9, 88-94.
    25. Green S A, Williams R J, Stock D. Influence of formulants and salt formation on volatilization and activity of pyrimethanil. Pesticide. Science. 1998, 54 (3):313~314
    26. Gullino M L, Leroux P, Smith C M. Uses and challenges of novel compounds for plant disease control. Crop Protection. 2000, 19 (1): 1~11
    27. Gullino M L, Sisler H D. Anagonism of iprodione toxicity to Botrytic cinerea by mixed funetion oxidase inhibitors. Pesticide Sci. 1986, 17:143~149
    28. Hammer P E, Evensen K B, Janisiewica W J. Postharvest control of Botrytis cinerea on cut rose flowers with pyrrolnitrin. Plant Dis. 1993, 77:283~286
    29. Hans J, Rosslenbroich D S. Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Protection. 2000, 19(8-10): 557-561
    30. Heye U J, Speich J, Siegle H, et al. Cyprodinil: a novel broad-spectrum fungicide. Crop Protection.
    
    1994, 13,541~549
    31. Hilber U W, Hilber B M. Genetic Basis and Monitoring of Resistance of Botryotinia fuckeliana to Anilinopyrimidines. Plant Disease. 1998, 82:496~500
    32. Hillber U W, Schüepp H. A reliable method for testing the sensitivity of Botryotinia fuckeliana to anilinopyrimidines in vitro. Pesiticide Science. 1996, 47:3,241-2
    33. Jalil C, Latorre B A, Apablaza G.. Sensitivity of Botrytis cinerea to pyrimethanil and cross resistace tests to iprodione. Fitopatologia. 1998, 33 (3): 141~145
    34. Jaspers M V. Effect of fungicides, in vitro, on germination and growth of Phaeomoniella chlamydospora. Proceedings of the 2~(nd) international Workshop on Esca and Grapevine Declines,Lisbon,Portugal 14-15
    35. Katan T. Resistance to 3,5-dochlorophenyl-N-cylicimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea on protected crops. Plant Pathology. 1983, 31:133~141
    36. Katan T, Elad Y, Yunis H. Resistance to diethoencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathology. 1989, 38:86 92
    37. Kato Y. Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-(3,5-dichlorophenyl) carbamate. Pesticide Science. 1984, 9:489~495
    38. Kirstin V W, Peter G. L, Keith R S, et al. The potential for resistance to Botrytis cinerea by kiwifruit, Crop Protection. 1999, 18(7): 427-435
    39. Kunz S, Lutz B, Deising H., et al. Assessment of sensitivities to anilinopyrimidine and strobilurin fungicide in population of the apple scab fungus Venturia inaequalis. Phytopathology. 1998, 146 (5-6): 231~238
    40. Latorre B A, Flores V, Sara A, et al. Dicarboximide-resistant isolates of Botrytis cinerea from table grapes in Chile: survey and characterization. Plant Dis. 1994, 78:990~994
    41. Latorre B A, Spadaro I, Rioja M E. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Protection. 2002, 21 (10):957-961
    42. Leroux P. Effect of pH, amino acids and various organic compounds on the fungitoxicity of pyrimethanil, glufosinate, captafol, cymoxanil and fenpiclonil in Botrytis cinerea. Agronomie. 1994,14, 541~544
    43. Leroux P, Chapeland F, Desbrosses D, et al. Patterns of cross-resistance to fungicide in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Protection. 1999,18 (10): 687~697
    44. Leroux P, Descotes A. Resistance of Botrytis cinerea to fungicides and strategies for its control in the Champagne vineyards. Brighton Crop Prot. Conf. Pests and Diseases. 1996, 1,131
    
    
    45. Leroux P. Fritz R, Gredt M. Etudes en laboratoire de souches de Botrytis cinerea pets., resistantes a ia dichlozoline au dicloran, au quintozene, a la vinchlozolin et au 260 19RP, 1997 (ou glycophene)
    46. Leroux P, Gredt M. Evolution of fungicide resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis in France. Pesticide-Science. 1997,51:3,321-327
    47. Leroux P, Gredt M. In vitro study of resistance to anilinopyrimidine fungdicides in Botrytis cinerea. Agronomie. 1995, 15 (6): 367~370
    48. Leroux P, Gredt M, Fritz R. Meded. Fac. Land bouwwet Rijksuniv. Gent 1979,43,881~889
    49. Leroux E Recent developments in the mode of fungicides, Pestic.Sci. 1996, 47,191~197
    50. Leroux P, Fritz R, Debieu D, et al. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest. Manag. Sci. 2002, 58,876
    51. Leroux P, Lanen C, Fritz R. Similarities in the antifungal activities of fenpiclonil, iprodione and toclofos-methyl against Botryris cinerea and Fusarium nivale. Pestic. Sci. 1992,36,255~261
    52. Liguori R, Bassi R. Cyprodinil (Chorus\registered\): new fungicide for the defence of fruit trees from scab and Monilinia spp. Informatore Fitopatologico. 1998, 48: 4, 43-47
    53. Lodovica G. M, Leroux P, Constance M S. Uses and challenges of novel compounds for plant disease control. Crop Protection. 2000,19(1): 1-11
    54. Maeno S, Miura I., Masuda K, et al. Mepanipyrim (KF-3535), a new pyrimidine fungicide. Brithton Crop Prot. Conf-Pests and Dis. 1990, 2:415~422
    55. Masner P, Muster P, Schmid J. Possible methionine biosynthesis inhibition by pyrimidinamine fungicides in Botrytis cinerea. Pestic. Sci. 1994,42,163~166
    56. Milling R J, Richardson C J. Mode of action of the anilinopyrimidine fungicide pyrimethanil 2.Effects on enzyme secretion in Botrytis cinerea. Pesticide Science. 1995, 45, 43~48
    57. Mindt G. Pyrimethanil sprays improve wine quality. Gesunde-Pflanzen. 2000,52: 5, 157-159
    58. Miura I., Kamakura T, Maeno S, et al. Inhibition of enzyme secretion in plant pathogens by mepanipyrim, a novel fungicide. Pestic. Biochem. Physiol.1994, 48,222~228
    59. Miura, Kamakura T, Maeno S, et al. Effect of mepanipyrim on uptake of various substrates and macromolecutar biosynthesis in Botryris cinerea. Pestic. Sci. 1994,19,103
    60. Montemurro N, Palma A, Grieco F, et al. Persistence of procymidone and pyrimethanil on strawberry cultivated in greenhouse. GF 2000 Atti, Giornate Fitopatologiche, Perugia 16-20-aprile-2000, volume primo. 2000,155-160
    61. Morgen W M. The effect of night temperature and glasshouse ventilation on the incidence of Botrytic cinerea in a late-planted tomato crop. Crop Protection. 1984, 3:243~251
    62. Muramatsu N. FRUPICA (mepanipyrim), a new anilinopyrimidine fungicide. Agrochemicals Japan.
    
    1996, 69, 20-21.
    63. Neumann G L, Winter E H, Pittis J E. Pyrimethanil: A new fungicide, Brighton Crop Protection Conference-Pests and Diseases. 1992, 395~404
    64. Noethover J, Matteoni J A. Resistance of Botrytis cinerea to benomyl and iprodione in vineyards and green houses after exposure to the fungicides along or mixed with captan. Plant Disease. 70:398~402
    65. Pappas A C. Evolution of fungicide resistance in Botrytis cinerea in protected crops in Greece. Crop Protection. 1997, 16(3): 257-263
    66. Pillonel Ch, Meyer T. Effect of phenylpyrroles on glycerol accumulation and protein kinase activity of Neurospora crassa. Pestic. Sci. 1997, 49:229~236
    67. Rosslenbroich H J, Brands W, Kruer B W, et al. Fenhexamid (KBR2738): A novel fungicide for control of Botrytis cinerea and related pathogens. The 1998 Brighton Conference. Pests and Diseases, 1998, 327~334
    68. Sergeeva V, Nair N G., Verdanega J R, et al. First report of anilinopyrimidine-resistant phenotypes in Botrytis cinerea on grapevines in Australia. Ausrealasian-Plant-Pathology. 2002, 31 : 3,299-300
    69. Sisler H D. Dicarboximide fungicides: mechamisms of action and resistance. America Phytopathol. Soc. 1988, 51~53
    70. Smith C M. History of benzimidazole use and resistance. America Phytopathol. Soc. 1988, 23~25
    71. Stensvand A. Evaluation of three fungicides against Drepanopeziza ribis in black currants. Tests of Agrochemicals and Cultivars 19. Annals of Applied Biology, Supplement 1998, 132 (3): 10-11
    72. Stensvand A, Borve J. Evaluation of four new fungicides against brown rot and grey mould in sweet cherries. Tests of Agrochemicals and Cultivars. 1999,20, 14-15
    73. Tortora U A, Ciampi P L, Conzalez M S. Cultural and biological characteristic of Botrytis cinerea Pers. obtained from the Ⅸ and Ⅹ Regions. Agriculture técnic(Santiago). 1994, 54(3): 243~251
    74. Yarden O, Katan T. Mutation in the beta-tublin gene of benomyl-resistant phenotypes of Botrytis cinerea. BCPC Monograph. 1994, No.60: fungicide resistance
    75. Yarden O, Katan T. Mutation leading to substitutions at aminoacids 198 and 200 of beta-tubulin that correlates with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology. 1993, 83 (12): 1478~1483
    76. Yigal E. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Protection. 1988, 7(6): 361-366
    77.北京农业大学编.农业植物病理学.北京:农业出版社,1982
    78.丁中,刘峰,慕立义.不同抗性型灰葡萄孢菌Botrytis cinerea对不同作用机制杀菌剂的敏感性
    
    研究.农药学学报,2002,3(4):59~63
    79.丁中,刘峰,王会利等.番茄灰霉菌的多重抗药性研究.山东农业大学学报,2001,32(4):452~456
    80.董金皋.农业植物病理学(北方本).北京:中国农业出版社.2001,183~185
    81.韩巨才,闫秀琴,刘慧平等.灰霉病原菌对速克灵的抗性监测.山西农业大学学报,2003,23(4):299~302
    82.胡伟群,陈杰.灰霉病的化学防治进展.现代农药,2002,4:8~11
    83.纪明山,程根武,张益先等.灰霉病菌对多菌灵和乙霉威抗性研究.沈阳农业大学学报,1998,29(3):213~216
    84.纪明山,祁之秋,赵平等.番茄灰霉病对嘧霉胺抗药性的试验.沈阳农业大学学报,2002,33(5):345~347
    85.纪兆林,童蕴慧,张建军等.灰葡萄孢对速克灵抗性的研究.扬州大学学报,2003,24(3):60~63
    86.刘波.硕士学位论文,南京农业大学,1990
    87.刘波,苗容,刘经芬等.灰霉病菌对二甲酰亚胺类药剂的田间抗药性检测.莱阳农学院学报,1997,14(1):47~51
    88.刘波,叶钟音等.对多菌灵、速克灵具有多重抗性的灰霉病菌菌株性质的研究.南京农业大学学报,1993,16(3):50~54
    89.刘长令.农用杀菌剂开发的新进展.农药科学与管理,2000,21(3):20~26
    90.刘长令,张运晓,黄兆信等.防治灰霉病用杀菌剂的开发.农药,2000,39(3):1~6
    91.刘慧平,韩巨才,阎秀琴等.灰霉病菌对多菌灵的抗性监测.山西农业大学学报,2003,23(2):93~97
    92.陆家云主编.植物病害诊断.北京:中国农业出版社,1995,132~133
    93.马忠华,叶钟音.1997.嘧啶胺类杀菌剂的作用机制.农药译丛,19(3):11~13
    94.尚尔才,刘长令,杜英娟.1995.嘧啶类农药的研究进展.化工进展,5:8~15
    95.深见顺一,上杉康彦等编.农药实验法——杀菌剂篇.李正树等译.农业出版社,1990
    96.王春艳.草莓灰霉病发生为害及防治研究初报.植物保护,1997,23(3):32~33
    97.王万立,王勇,刘耕春等.天津市茄子灰霉病菌的抗药性检测.华北农学报,1998,13(4):107~111
    98.魏景超.真菌鉴定手册.上海科学技术出版社,1979,515
    99.杨燕涛.国内保护地蔬菜灰霉病侵染规律与防治技术研究进展.见:周明国主编.中国植物病害化学防治研究,2002,249~255
    100.袁章虎,张小风,韩秀英.灰霉菌抗药性研究进展.河北农业大学学报,1996,19(3):107~111
    101.张国生.甲氧基丙烯酸酯类杀菌剂的应用、开发现状及展望.农药科学管理,2003,24(12):30~34
    
    
    102.张舒亚.硕士学位论文,南京农业大学,2002
    103.张夕林,张谷丰,孙雪梅等.防治抗性油菜菌核病新药剂的筛选.江苏农业科学.1999,2:43~44
    104.张永杰,闫秀琴,韩巨才.山西省灰霉病菌对乙霉成的抗性监测.山西农业大学学报,2003,308~327
    105.赵海棠,胡芝莲,安学君.春大棚茄瓜类蔬菜灰霉病等病害的发生与防治.植保技术推广,2000,20(6):17~18
    106.赵善欢主编.植物化学保护.北京:农业出版社,1992
    107.郑晓莲,董金皋,齐秋锁等.灰葡萄孢毒素的组分分析和生物测定.植物病理学报,1998,28(3):269~274
    108.郑晓莲,李萍,仁建国.葱鳞葡萄孢与灰葡萄孢毒素及其致病性的探索.植物保护,1993,191(1):20~21
    100 朱建兰.番茄灰霉病菌的生物学特性研究.甘肃农业大学学报,1995,31(1):73~78
    101.朱建兰.番茄灰霉病菌毒素对种子发芽和组织生长的毒害作用.甘肃农业大学学报,1997,32(2):181-185
    102.朱丽华.田间灰葡萄孢菌株对杀菌剂抗性的机理(上).世界农药,2003,25(2):32~35
    103.朱丽华.田间灰葡萄孢菌株对杀菌剂抗性的机理(下).世界农药,2003,25(3):39~44
    104.周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性.植物保护,1987,18(2):31~33
    105.周明国,叶钟音,刘经芬.杀菌剂抗性研究进展.南京农业大学学报,1994,17(3):33~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700