用户名: 密码: 验证码:
木质纤维素转化为生物乙醇过程中关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素转化为乙醇是生物质能源转化过程中研究的热点。本文对秸秆转化为生物乙醇过程中的预处理、酶水解和发酵以及乙醇的分离等关键问题进行了研究。
     通过对低温条件下玉米秸秆中半纤维素水解动力学的研究,得到了半纤维素的最佳水解条件。应用Seaman模型对实验数据进行分析,得到80-121℃下木糖的生成和降解速率,以及葡萄糖和糠醛的生成速率。通过对所得响应曲面进行分析得出各温度下的最佳水解条件分别为:在80℃下,硫酸浓度5%,反应时间240 min,最终木糖浓度为13.21 g/L;在100℃下,硫酸浓度5.5%,反应时间60 min,最终木糖浓度为18.73 g/L;在121℃下,硫酸浓度2%,反应时间60 min,最终木糖浓度为17.95 g/L。并应用阿累尼乌斯方程计算得到该温度范围内秸秆预处理过程的活化能为56.3 kJ/mol。
     采用稀酸预处理方法对油菜秸秆进行预处理,通过中心组合实验设计方法设计实验,对影响油菜秸秆预处理过程的硫酸浓度,预处理时间以及固体浓度等因素进行优化。结果发现,在180℃预处理条件下,硫酸浓度为1%,预处理时间为10 min,固体浓度为20%时,木糖产率为68.4%,木糖浓度达到27.3 g/L,较固体浓度为10%增大了一倍。而在121℃预处理条件下,固体浓度对预处理结果影响较大,当硫酸浓度为2%,预处理时间为60 min,固体浓度为10%时,木糖产率为73.6%,而此条件下木糖浓度只有14.7 g/L。扫描电镜结果进一步证明纤维素的结构在高温条件下更容易破坏。
     考察了固体浓度对油菜秸秆酶水解和发酵过程的影响。结果发现适当地增大固体浓度,对酶水解和发酵过程影响不显著,而葡萄糖和乙醇的最终浓度却显著增大。180℃预处理后的秸秆可以在25%的固体浓度下进行酶水解和发酵过程,最终的乙醇浓度可以达到4.6%,与10%固体浓度比较,乙醇浓度提高了2.05倍;而在低温预处理后的秸秆可以在20%的固体浓度下进行酶水解和发酵过程,最终的乙醇浓度达到了3.5%,与10%固体浓度所得的结果比较,乙醇浓度提高了1.76倍。
     选用膜蒸馏装置同时发酵和分离乙醇,考察了不同发酵方式对乙醇的生产速率、最终浓度以及乙醇产率。结果表明,与常规发酵过程比较,选用膜蒸馏装置同时发酵和分离乙醇,可以消除发酵过程中产生的乙醇对后续发酵过程的抑制,这样不仅可以提高乙醇的生产效率,同时乙醇生成速率也显著增大,最终乙醇的浓度也有了一定程度的提高。
Lignocellulose converted to bioethanol is currently a hot subject in bioenergy conversion research. In this thesis, the key problems included pretreatment; enzymatic hydrolysis; fermentation and ethanol distillation in bioethanol conversion from straw were studied.
     Kinetic studies of hemicellulose hydrolysis of corn stover at low temperature were investigated in this thesis. Seaman model was used to analyze the experiments data and the kinetic parameters for xylose, glucose and furfural were obtained at different temperatures. The optimal conditions at different temperatures were obtained from the analysis of response surfaces, which were 5% H2SO4 at 80℃for 240 min with 13.21 g/L xylose; 5.5% H2SO4 at 100℃for 60 min with 18.73 g/L xylose and 2% H2SO4 at 121℃for 60min with 17.95 g/L xylose. Arrhenius equation was used to calculate the activity energy which was 56.3 kJ/mol.
     The central composite design was used to optimize the effect of acid concentration, treatment time and solid content on dilted sulfuric acid pretreatment of rapeseed strw at two temperatures. The results showed that the solid content was not significant on pretreatment at high temperature. After pretreated at 180℃, the xylose yield reached 68.4% and the concentration of xylose was 27.3 g/L at 1% sulfuric acid for 10 min, which was one time hiher than that of 10% solid content. However, the pretreatment was great affected by solid content at low temperature. After pretreated at 121℃, the xylose yield got to 73.6% at 10% solid content and the xylose concentration was 14.7 g/L at 2% sulfuric acid for 60 min. Scanning electron microscope(SEM) results showed that cellulose structure was more easily destroyed at high temperature than at low temperature.
     The effects of solid content on enzymatic hydrolysis and fermentation were studied in this thesis. The results showed that an acceptably higher solid content coul not prevent the enzymatic hydrolysis and fermentation process and on the contrary it could improve the final concentration of glucose and ethanol. The enzymatic hydrolysis and fermentation of rapeseed straw could be carried out at 25% solid content after pretreated at high temperature. And the final concentration of ethanol could get to 4.6% which was 2.07 times higher than that of 10% solid content. Moreover, the solid content could also reached 20% during enzymatic hydrolysis and fermentation after pretreated at low temperature and the final ethanol concentration was 3.5% which was 1.76 times higher than that of 10% solid content.
     Simultaneous ethanol fermentation and separation was carried out in a membrane distillation reactor. The ethanol production efficency, production rate and final ethanol concentration were compared between different fermentation mode, with membrane distillation and without membrane distillation. The results showed that fermentation with membrane distillation could separate ethanol from the broth which eliminated the inhibition of high ethanol concentration on fermentation. And the production efficency, production rate and final ethanol concentration were greatly improved in the fermentation with membrane distillation.
引文
[1]Wyman C E, Dale B E, Elander R T, et al., Coordinated Development of Leading Biomass Pretreatment Technologies, Bioresource Technology, 2005, 96(18):1959~1966
    [2]Mosier N, Wyman C, Dale B, et al., Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass, Bioresource Technology, 2005, 96(6):673~686
    [3]Saha B C, Hemicellulose Bioconversion, Journal of industrial microbiology and biotechnology, 2003, 30(5):279~291
    [4]Sun Y, Cheng J, Hydrolysis of Lignocellulosic Materials for Ethanol Production:A Review, Bioresource Technology, 2002, 83(1):1~11
    [5]Vega J L, Clausen E C, Gaddy J L, Biofilm Reactors for Ethanol Production, Enzyme and Microbial Technology, 1988, 10(7):390~402
    [6]Garrote G, Domínguez H, ParajóJ C, Hydrothermal Processing of Lignocellulosic Materials, Holz Als Roh-Und Werkstoff, 1999, 57(3):191~202
    [7]Saha B C, Iten L B, Cotta M A, et al., Dilute Acid Pretreatment, Enzymatic Saccharification and Fermentation of Rice Hulls to Ethanol, Biotechnology Progress, 2005, 21(3):816~822
    [8]Nagle N, Ibsen K, Jennings E, A process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass, Applied Biochemistry and Biotechnology, 1999, 77-79:595~607
    [9]Jacobsen S E, Wyman C E, Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes, Applied Biochemistry and Biotechnology, 2000, 84-86:81~96
    [10]Wood W A, Kellogg S T, Biomass, Academic Press, San Diego 1988
    [11]Dadi A P, Varanasi S, Schall C A, Enhancement of Cellulose Saccharification Kinetics Using An Ionic Liquid Pretreatment Step, Biotechnology and Bioengineering, 2006, 95(5):904~910
    [12]Yu Z S, Zhang H X, Pretreatments of Cellulose Pyrolysate for Ethanol Production by Saccharomyces cerevisiae, Pichia sp YZ-1 and Zymomonas mobilis, Biomass & Bioenergy, 2003, 24(3):257~262
    [13]Varga E, Schmidt A S, Reczey K, Thomsen A B, Pretreatment of Corn Stover Using Wet Oxidation to Enhance Enzymatic Digestibility, Applied Biochemistry and Biotechnology, 2003, 104(1):37~50
    [14]Kurakake M, Kisaka W, Ouchi K, Komaki T, Pretreatment with Ammonia Water for Enzymatic Hydrolysis of Corn Husk, Bagasse, and Switchgrass, Applied Biochemistry and Biotechnology, 2001, 90(3):251~259
    [15]Schmidt A S, Thomsen A B, Optimization of Wet Oxidation Pretreatment of Wheat Straw, Bioresource Technology, 1998, 64(2):139~151
    [16]朱道飞,生物质在超临界水中液化转化的实验研究,[硕士学位论文],昆明:昆明理工大学,2004
    [17]高洁,汤烈贵,纤维素科学,科学出版社,1996, 183~189
    [18]Haynes W, Cellulose, the Chemical that Grows, Doubleday press, New York, 1953, 386
    [19]Gunnarsson S, Marstorp H, Dahlin A S, Witter E, Influence of Non-cellulose Structural Carbohydrate Composition on Plant Material Decomposition in Soil, Biology and Fertility of Soils, 2008, 45(1):27~36
    [20]Kuyper M, Hartog M M P, Toirkens M J, et al., Metabolic Engineering of A Xylose-isomerase-expressing Saccharomyces cerevisiae Strain for Rapid Anaerobic Xylose Fermentation, Fems Yeast Research, 2005, 5(4-5):399~409
    [21]Parajo J C, Dominguez H, Dominguez J M, Biotechnological Production of Xylitol Part 3: Operation in Culture Media Made from Lignocellulose Hydrolysates, Bioresource Technology, 1998, 66(1):25~40
    [22]Marton J, Lignin Structure and Reactions, American Chemical Society, Washington, 1966
    [23]陈育如,夏黎明,吴棉斌等,植物纤维素原料预处理基础的研究进展.化工进展,1999, 18(4):24~26
    [24]Pimentel D, Pimentel M, Food, Energy, and Society, University Press of Colorado, Niwot, Colo, 1996
    [25]Nersesian R L, Energy for the 21st Century: A Comprehensive Guide to Conventional and Alternative Sources, M.E. Sharpe, Armonk, N.Y. 2007
    [26]于斌,齐鲁,木质纤维素生产燃料乙醇的研究现状,化工进展,2006, 25(3):244~249
    [27]王述彬,袁利明,张小宁等,木质纤维素生产生物乙醇的研究进展,化工科技市场,2007, 30(2):32-34
    [28]孙君社,苏东海,刘莉,秸秆生产乙醇预处理关键技术,化学进展,2007,19(7/8):1122-1128
    [29]Liu C G, Wyman C E, Impact of Fluid Velocity on Hot Water only Pretreatment of Corn Stover in a Flowthrough Reactor, Applied Biochemistry and Biotechnology, 2004, 113-116:977~987
    [30]宋玉春,生物燃料的发展现状及趋势,日用化学品科学,2007,30(7):16~18
    [31]Galbe M, Zacchi G, Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production, Biofuels, 2007, 108:41~65
    [32]Van Groenestijn J, Hazewinkel O, Bakker R, Pretreatment of Lignocellulose with Biological Acid Recycling (Biosulfurol process), Zuckerindustrie, 2006, 131(9):639~641
    [33]Katahira S, Mizuike A, Fukuda H, Kondo A, Ethanol Fermentation from Lignocellulosic Hydrolysate by a Recombinant xylose and Cellooligosaccharide-assimilating Yeast Strain, Applied Microbiology and Biotechnology, 2006, 72(6):1136~1143
    [34]Kroner T, Prechtl S, Igelspacher R, et al., Bioethanol Production from Lignocellulose, Bwk, 2006, 58(3):50~54
    [35]Senthilkumar V, Gunasekaran P, Bioethanol Production from Cellulosic Substrates: Engineered Bacteria and Process Integration Challenges, Journal of Scientific & Industrial Research, 2005, 64(11):845~853
    [36]Hendriks A T W M, Zeeman G, Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass, Bioresource Technology, 2009, 100(1):10~18
    [37]Ballesteros I, Ballesteros M, Manzanares P, et al., Dilute Sulfuric Acid Pretreatment of Cardoon for Ethanol Production, Biochemical Engineering Journal, 2008, 42(1):84~91
    [38]Linde M, Galbe M, Zacchi G, Bioethanol Production from Non-starch Carbohydrate Residues in Process Streams from a Dry-mill Ethanol Plant, Bioresource Technology, 2008, 99(14):6505~6511
    [39]Lu X B, Zhang Y M, Liang Y, et al., Kinetic Studies of Hemicellulose Hydrolysis of Corn Stover at Atmospheric Pressure, Korean Journal of Chemical Engineering, 2008, 25(2):302~307
    [40]Qureshi N, Saha B C, Cotta M A, Butanol Production from Wheat Straw by Simultaneous Saccharification and Fermentation Using Clostridium beijerinckii Part II- Fed-batch Fermentation, Biomass & Bioenergy, 2008, 32(2):176~183
    [41]McMillan J D, Pretreatment of Lignocellulosic Biomass, ACS Symposium Series, 1994, 292~324
    [42]Wyman C E, Biomass Ethanol: Technical Progress, Opportunities, and Commercial Challenges, Annual Review of Energy and the Environment, 1999, 24:189~226
    [43]Grethlein H E, Converse A O, Common Aspects of Acid Prehydrolysis and Steam Explosion for Pretreating Wood , Bioresource Technology, 1991, 36(1):77~82
    [44]Torget R, Teh-An , H, Two-temperature Dilute-acid Prehydrolysis of Hardwood Xylan Using a Percolation Process , Applied Biochemistry and Biotechnology, 1994, 45-46(1):5~23
    [45]Fan L T, Lee Y H, Gharpuray M M, The Nature of Lignocellulosics and Their Pretreatments for Enzymatic Hydrolysis , Advances in Biochemical Engineering, 1982, 23:158~187
    [46]Palmqvist E, Hahn-Hagerdal B, Fermentation of Lignocellulosic Hydrolysates II: Inhibitors and Mechanisms of Inhibition, Bioresource Technology, 2000, 74(1):25~33
    [47]Wilson J J, Deschatelets L, Nishikawa N K, Comparative Fermentability of Enzymatic and Acid Hydrolysates of Steam-pretreated Aspenwood Hemicellulose by Pichia stipitis CBS 5776 , Applied Microbiology and Biotechnology, 1989, 31(5-6):592~596
    [48]Ballesteros I, Ballesteros M, Manzanares P, et al., Dilute Sulfuric Acid Pretreatment of Cardoon for Ethanol Production, Biochemical Engineering Journal, 2008, 42(1):84~91
    [49]Herrera A, Tellez-Luis S J, Gonzalez-Cabriales J J, et al., Effect of the Hydrochloric Acid Concentration on the Hydrolysis of Sorghum Straw at Atmospheric Pressure, Journal of Food Engineering, 2004, 63(1):103~109
    [50]Rodriguez-Chong A, Ramirez J A, Garrote G, et al., Hydrolysis of Sugar Cane Bagasse Using Nitric Acid:A Kinetic Assessment, Journal of Food Engineering, 2004, 61(2):143~152
    [51]Carvalho W, Batista M A, Canilha L, et al., Sugarcane Bagasse Hydrolysis with Phosphoric and Sulfuric Acids and Hydrolysate Detoxification for Xylitol Production, Journal of Chemical Technology and Biotechnology, 2004, 79(11):1308~1312
    [52]Ballesteros I, Ballesteros M, Manzanares P, et al., Dilute Sulfuric Acid Pretreatment of Cardoon for Ethanol Production, Biochemical Engineering Journal, 2008, 42(1):84~91
    [53]Sassner P, Martensson C G, Galbe M, et al., Steam Pretreatment of H2SO4-impregnated Salix for the Production of Bioethanol, Bioresource Technology, 2008, 99(1):137~145
    [54]Zimbardi F, Viola E, Nanna F, et al., Acid Impregnation and Steam Explosion of Corn Stover in Batch Processes, Industrial Crops and Products, 2007, 26(2):195~206
    [55]Lu X B, Zhang Y M, Yang J, et al., Enzymatic Hydrolysis of Corn Stover after Pretreatment with Dilute Sulfuric Acid, Chemical Engineering & Technology, 2007, 30(7):938~944
    [56]Sun Y, Cheng J J, Dilute Acid Pretreatment of Rye Straw and Bermudagrass for Ethanol Production, Bioresource Technology, 2005, 96(14):1599~1606
    [57]Nguyen Q A, Tucker M P, Keller F A, et al., Two-stage Dilute-acid Pretreatment of Softwoods, Applied Biochemistry and Biotechnology, 2000, 84-86:561~576
    [58]Nguyen Q A, Tucker M P, Keller F A, et al., Dilute Acid Hydrolysis of Softwoods, Applied Biochemistry and Biotechnology, 1999, 77-79:133~142
    [59]Schell D, Nguyen Q, Tucker M, et al., Pretreatment of Softwood by Acid-catalyzed Steam Explosion Followed by Alkali Extraction, Applied Biochemistry and Biotechnology, 1998, 70-72:17~24
    [60]Nguyen Q A, Tucker M P, Boynton B L, et al., Dilute Acid Pretreatment of Softwoods-Scientific Note, Applied Biochemistry and Biotechnology, 1998, 70-72:77~87
    [61]王晓娟,王斌,冯浩等,木质纤维素类生物质制备生物乙醇研究进展,石油天然气与化工,2007, 36(6):452~461
    [62]Zhang Y H P, Ding S Y, Mielenz J R, et al., Fractionating Recalcitrant Lignocellulose at Modest Reaction Conditions, Biotechnology and Bioengineering, 2007, 97(2):214~223
    [63]Rabelo S C, Maciel R, Costa A C, A Comparison Between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production, Applied Biochemistry and Biotechnology, 2008, 148(1-3):45~58
    [64]Eggeman T, Elander R T, Process and Economic Analysis of Pretreatment Technologies, Bioresource Technology, 2005, 96(18):2019~2025
    [65]Saha B C, Cotta M A, Enzymatic Hydrolysis and Fermentation of Lime Pretreated Wheat Straw to Ethanol, Journal of Chemical Technology and Biotechnology, 2007, 82(10):913~919
    [66]Saha B C, Cotta M A, Ethanol Production from Alkaline Peroxide Pretreated Enzymatically Saccharified Wheat Straw, Biotechnology Progress, 2006, 22(2):449~453
    [67]Chang V S, Nagwani M, Kim C H, et al., Oxidative Lime Pretreatment of High-lignin Biomass-Poplar Wood and Newspaper, Applied Biochemistry and Biotechnology, 2001, 94(1):1~28
    [68]Chang V S, Nagwani M, Holtzapple M T, Lime Pretreatment of Crop Residues Bagasse and Wheat Straw, Applied Biochemistry and Biotechnology, 1998, 74(3):135~159
    [69]Kaar W E, Holtzapple M T, Using Lime Pretreatment to Facilitate the Enzymic Hydrolysis of Corn Stover, Biomass & Bioenergy, 2000, 18(3):189~199
    [70]Saha B C, Cotta M A, Lime Pretreatment, Enzymatic Saccharification and Fermentation of Rice Hulls to Ethanol, Biomass & Bioenergy, 2008, 32(10):971~977
    [71]Weil J R, Sarikaya A, Rau S L, et al., Pretreatment of Corn Fiber by Pressure Cooking in Water, Applied Biochemistry and Biotechnology, 1998, 73(1):1~17
    [72]Garrote G, Dominguez H, Parajo J C, Hydrothermal Processing of Lignocellulosic Materials, Holz Als Roh-Und Werkstoff, 1999, 57(3):191~202
    [73]Mosier N, Hendrickson R, Ho N, et al., Optimization of pH Controlled Liquid Hot Water Pretreatment of Corn Stover, Bioresource Technology, 2005, 96(18):1986~1993
    [74]Mok W S, Antal Jr M J, Uncatalyzed Solvolysis of Whole Biomass Hemicellulose by Hot Compressed Liquid Water, Industrial & Engieering Chemistry Research, 1992, 31(4):1157~1161
    [75]Bobleter O, Hydrothermal Degradation of Polymers Derived from Plants. Progress Polymer Science, 1994, 19:797~841
    [76]Weil J, Brewer M, Hendrickson R, et al., Continuous pH Monitoring During Pretreatment of Yellow Poplar Wood Sawdust by Pressure Cooking in Water, Applied Biochemistry and Biotechnology, 1998, 70-72:99~111
    [77]Weil J, Sarikaya A, Rau S L, et al., Pretreatment of Yellow Poplar Sawdut by Pressure Cooking in Water, Applied Biochemistry and Biotechnology, 1997, 68:21~40
    [78]Liu C G, Wyman C E, Partial Flow of Compressed-hot Water Through Corn Stover to Enhance Hemicellulose Sugar Recovery and Enzymatic Digestibility of Cellulose, Bioresource Technology, 2005, 96(18):1978~1985
    [79]Viola E, Cardinale M, Santarcangelo R, et al., Ethanol From Eel Grass via Steam Explosion and Enzymatic Hydrolysis, Biomass & Bioenergy, 2008, 32(7):613~618
    [80]Hendriks A T W M, Zeeman G, Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass, Bioresource Technology, 2009, 100(1):10~18
    [81]Zimbardi F, Viola E, Nanna F, et al., Acid Impregnation and Steam Explosion of Corn Stover in Batch Processes, Industrial Crops and Products, 2007, 26(2):195~206
    [82]Kabel M A, Bos G, Zeevalking J, et al., Effect of Pretreatment Severity on Xylan Solubility and Enzymatic Breakdown of the Remaining Cellulose from Wheat Straw, Bioresource Technology, 2007, 98(10):2034~2042
    [83]Schell D, Nguyen Q, Tucker M, et al., Pretreatment of Softwood by Acid-catalyzed Steam Explosion Followed by Alkali Extraction, Applied Biochemistry and Biotechnology, 1998, 70-72:17~24
    [84]Murugean S, Linhardt R J, Ionic Liquids in Carbohydrate Chemistry-Current Trends and Future Direction, Current Organic Symthesis, 2005, 2:437~451
    [85]Xie H L, Shi T J, Wood Liquefaction by Ionic Liquids, Holzforschung, 2006, 60(5):509~512
    [86]Pu Y Q, Jiang N, Ragauskas A J, Ionic Liquid as a Green Solvent for Lignin, Journal of Wood Chemistry and Technology, 2007, 27(1):23~33
    [87]Swatloski R P, Spear S K, Holbrey J D, et al., Dissolution of Cellulose with Ionic Liquids, Journal of American Chemical Society, 2002, 24:4974~4975
    [88]Heinze T, Schwikal K, Barthel S, Ionic Liquids as Reaction Medium in Cellulose Functionalization, Macromolecular Bioscience, 2005, 5(6):520~525
    [89]Hamilton T J, Dale B E, Ladish M R, et al., Effect of Ferric Tartrate/Sodium Hydroxide Solvent Pretreatment on Enzyme Hydrolysis of Cellulose in Corn Residue, Biotechnology and Bioengineering, 1984, 26:781~787
    [90]Fort D A, Remsing R C, Swatloski R P, et al., Can Ionic Liquids Dissolve Wood? Processing and Analysis of Lignocellulosic Materials with 1-n-butyl-3-methylimidazolium Chloride, Green Chemistry, 2007, 9(1):63~69
    [91]Dadi A P, Varanasi S, Schall C A, Enhancement of Cellulose Saccharification Kinetics Using an Ionic Liquid Pretreatment Step, Biotechnology and Bioengineering, 2006, 95(5):904~910
    [92]Bayer E A, Properties of Cellulolytic Enzyme Systems, Biochemical Society Transactions , 1985, 13(2):407~410
    [93]Wood T M, Mccrae S L, Synergism Between Enzymes Involvement in the Solubilization of Native Cellulose, advances in chemistry series, 1979, 181:181~209
    [94]Yoon H H, Wu Z W, Lee Y Y, Ammonia-recycled Percolation Process for Pretreatment of Biomass Feedstock, Applied Biochenfistry and Biotechnology, 1995, 51:5~19
    [95]Fan L T, LeeY H, Mechanism of the Enzymatic Hydrolysis of Cellulose, Biotechnology and Bioengineering, 1980, 22:177~199
    [96]Cheung S W, Anderson B C, Laboratory Investigation of Ethanol Production from Municipal Primary Waste Water, Bioresource Technology, 1997, 59:81~96
    [97]Huang X L, Penner M H, Apparent Substrate Inhibition of the Trichoderma reesei Cellulose System, Journal of Agricultural and Food Chemistry , 1991, 39:2096~2100
    [98]Penner M.H, Liaw E T, Kinetic Consequences of High Ratios of Substrate to Enzyme Saccharification Systems Based on Trichoderma reesei Cellulose, American Chemical Society, Washington, D C, 1994, 363~371
    [99]Castanon M, Wilke R, Effects of the Surfactant Tween-80 on Enzymatic Hydrolysis of Newspaper, Biotechnology and Bioengineering, 1981, 23:1365~1372
    [100]Alkasrawi M, Eriksson T, Borjesson J, et al., The Effect of Tween-20 on Simultaneous Sacchafification and Fermentation of Softwood to Ethanol, Enzyme and Microbial Technology, 2003, 33:7l~78
    [101]Nidetzky B, Steiner W, Claeyssens M, Synergistic Interaction of Cellulases from Trichoderma reesei during Cellulose Degradation, Process Biochemistry, 1995, 23:117~13
    [102]Wyman C E, Spindler D D, Grohmann K, Simoutinous Saccrification and Fermentation of Several Lignocellulosic Feedstocks to Fuel Ethanol, Biomass and Bioenergy, 1992, 3:301~307
    [103]Szczodrak J, Targonski Z, Selection of Thermotolerant Yeast strains for Simultaneous Saccharification and Fermentation of Cellulose, Biotechnology and Bioengineering, 1988, 31:300~303
    [104]Baliesteros I, Ballesteros M, Cabanas A, et al., Selection of Thermotoleraut Yeasts for Simultaneous Saccharification and Fermentstion(SSF)of Cellulose to Ethanol, Applied Biochemistry and Biotechnology, 1991, 28-29:307~315
    [105]Barron N, Studies on the Use of a Themmtolerant strain of Kluyveromyces marxianus in Simultaneous Saccharification and Ethanol Formation from Cellulose, Applied Microbial Biotechnology, 1995, 43:518~520
    [106]Kadar Z, Szengyel Z, Reczey K, Simuhaneous Saccharification and Fermentation(SSF)of Industrial Wastes for the Production of Ethanol, Industrial Crops and Products, 2004, 20:103~110
    [107]Ballesteros M, Oliva J M, Negro M J, et a1., Ethanol from Lignocellulosic Materials by a Simultaneous Saccharifieation and Fermentstion Process(SFS) with Kluyveromyces marxianus CECT 10875, Process Biochemistry, 2004, 39:1843~1848
    [108]South C R, Hogsett D A, Lynd L R, Continous Fermentation of Cellulosic Biomass to Ethanol, Applied Biochemistry and Biotechnolgy, 1993, 39-40:587~600
    [109]Lynd L R, Weimer P J, van Zyl W H, et al., Microbial Cellulose Utilization:Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, 2002, 66(3):506~577
    [110]Dien B S, Cotta M A, Jeffries T W, Bacteria Engineered for Fuel Ethanol Production:Current Status, Applied Microbiology and Biotechnology, 2003, 63(3):258~266
    [111]Gryta M, Morawski A W, Tomaszewska M, Ethanol Production in Membrane Distillation Bioreactor, Catalysis Today, 2000, 56(1-3):159~165
    [112]Maloney M T, Chapman T W, Baker A J, Dilute Acid hydrolysis of Paper Birch: Kinetic Study of Xylan and Acetyl-group Hydrolysis, Biotechnology and Bioengineering, 1985, 27:355~358
    [113]Sluiter A, Determination of Structural Carbohydrates and Lignin in Biomass, National Renewable Energy Laboratory (NREL), Golden, CO. 2005
    [114]Garrote G, Dominguez H Parajo J C, Kinetic Modeling of Corncob Autohydrolysis, Process Biochemistry, 2001, 36:571~576
    [115]Walther T, Hensirisak P, Agblevor F A, The Influence of Aeration and Hemicellulosic Sugars on Xylitol Production by Candida tropicalis, Bioresource Technology, 2001, 76(3):213~220
    [116]Larsson S, Palmqvist E, Hahn-Hagerdal B, et al., The Generation of Fermentation Inhibitors During Dilute Acid Hydrolysis of Softwood, Enzyme and Microbial Technology, 1999, 24(3-4):151~159
    [117]Liu Z L, Slininger P J, Dien B S, et al., Adaptive Response of Yeasts to Furfural and 5-hydroxymethylfurfural and New Chemical Evidence for HMF Conversion to 2,5-bis-hydroxymethlfuran, Journal of Industrial Microbiology & Biotechnology, 2004, 31(8):345~352
    [118]Lu X B, Zhang Y M, Liang Y, et al., Modeling and Optimization of the Dilute Sulfuric Acid Treatment on Corn Stover at Low Temperature, Chemical and Biochemical Engineering Quarterly, 2008, 22(2):137~142
    [119]Tellez-Luis S J, Ramirez J A, Vazquez M, Mathematical Modelling of Hemicellulosic Sugar Production from Sorghum Straw, Journal of Food Engineering, 2002, 52(3):285~291
    [120]Herrerat A, Tellez-Luis S J, Ramirez J A, et al., Production of Xylose from Sorghum Straw Using Hydrochloric Acid, Journal of Cereal Science , 2003, 37:267~273
    [121]Bustos G, Ramírez J A, Garrote G, et al., Modeling of the Hydrolysis of Sugar Cane Bagasse with Hydrochloric Acid, Applied Biochemistry and Biotechnology, 2003, 104:51~55
    [122]Gamez S, Gonzalez-Cabriales J J, Ramirez J A, et al., Study of the Hydrolysis of Sugar Cane Bagasse Using Phosphoric Acid, Journal of Food Engineering, 2006, 74:78~83
    [123]Tellez-luis S J, Ramirez J A, Vazquez M, Modeling of the Hydrolysis of Sorghum at Atmospheric Pressure, Journal of Food Engineering, 2002, 82: 505~512
    [124]Grohmann K, Torget R, Himmel M, Optimization of Dilute-acid Pretreatment of Biomass, Biotechnology & Bioengineering Symposium, 1985, 15:59~80
    [125]Esteghlalian A, Hashimoto A G, Fenske J J, et al., Modeling and Optimization of the Dilute Sulfuric Acid Pretreatment of Corn Stover, Poplar and Switchgrass,”Bioresource Technology, 1997, 59:129~136
    [126]Kim S, Holtzapple M T, Lime Pretreatment and Enzymatic Hydrolysis of Corn Stover, Bioresource Technology, 2005, 96(18):1994~2006
    [127]Fengel D, Wegener G, Wood Chemistry, Ultrastructure and Reactions, Verlag Kessel, Berlin 1989
    [128]Perez J A, Gonzalez A, Oliva J M, et al., Effect of Process Variables on Liquid Hot Water Pretreatment of Wheat Straw for Bioconversion to Fuel-ethanol in a Batch Reactor, Journal of Chemical Technology and Biotechnology, 2007, 82(10):929~938
    [129]Oliva J M, Negro M J, Saez F, et al., Effects of Acetic acid, Furfural and Catechol Combinations on Ethanol Fermentation of Kluyveromyces marxianus, Process Biochemistry, 2006, 41(5):1223~1228
    [130]Rogalinski T, Ingram T, Brunner G, Hydrolysis of Lignocellulosic Biomass in Water Under Elevated Temperatures and Pressures, Journal of Supercritical Fluids, 2008, 47(1):54~63
    [131]Kim T H, Lee Y Y, Pretreatment of Corn Stover by Soaking in Aqueous Ammonia at Moderate Temperatures, Applied Biochemistry and Biotechnology, 2007, 137:81~92
    [132]Ohgren K, Rudolf A, Galbe M, et al., Fuel Ethanol Production from Steam Pretreated Corn Stover Using SSF at Higher Dry Matter Content, Biomass & Bioenergy, 2006, 30(10):863~869
    [133]Zhu S D, Wu Y X, Yu Z N, et al., Microwave-assisted Alkali Pretreatment of Wheat Straw and Its Enzymatic Hydrolysis, Biosystems Engineering, 2006, 94(3):437~442
    [134]Silverstein R A, Chen Y, Sharma-Shivappa R R, et al., A Comparison of Chemical Pretreatment Methods for Improving Saccharification of Cotton Stalks, Bioresource Technology, 2007, 98(16):3000~3011
    [135]Lloyd T A, Wyman C E, Combined Sugar Yields for Dilute Sulfuric Acid Pretreatment of Corn Stover Followed by Enzymatic Hydrolysis of the Remaining Solids, Bioresource Technology, 2005, 96(18):1967~1977
    [136]Walker L P, Wilson D B, Enzymatic Hydrolysis of Cellulose: An Overview, Bioresource Technology, 1991, 36:3~14
    [137]Krishnan M S, Process Development of Fuel Ethanol Production from Lignocellulosic Sugars Using Genetically Engineered Yeast, Purdue University, 1996
    [138]杨静,玉米秸秆纤维素酶水解研究及响应曲面法优化, [硕士学位论文],天津:天津大学,2006
    [139]赵越,武彬,阎伯旭等,纤维素糖抑制外切纤维素酶水解作用机理的分析,中国科学,2003, 33(5):454~460
    [140]Lee Y H, Fan L T, Kinetic Studies of Enzymatic Hydrolysis Insoluble Cellulose, Biotechnology and Bioengineering, 1983, 25:959~966
    [141]Gregg D J, Saddler J N, Factors Affecting Cellulose Hydrolysis and the Potential of Enzyme Recycle to Enhance the Efficiency of an Integrated Wood to Ethanol Process, Biotechnology and Bioengineering, 1996, 51:375~383
    [142]周亚樵,安新跃,左振跃,高粱秆酶解环境的研究,太原理工大学学报,1999, 30(6):657~670
    [143]Reese E T, Mandels M, Stability of the Cellulase of Trichoderma reesei Under Use Condition, Biotechnology and Bioengineering, 1980, 22:323~335
    [144]Kadar Z, Maltha SF, Szengyel Z, et al., Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH, Applied Biochemistry and Biotechnology, 2007, 136-140:847~858
    [145]Cazetta ML, Celligoi MAPC, Buzato JB, et al., Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresource Technology, 2007, 98:2824~2828
    [146]Jargalsaikhan O, Saracoglu N, Application of Experimental Design Method for Ethanol Production by Fermentation of Sunflower Seed Hull Hydrolysate Using Pichia stipitis NRRL-124, Chemical Engineering Communications, 2009, 196(1-2):93~103
    [147]Izquierdo-Gil M A, Jonsson G, Factors Effecting Flux and Ethanol Separation Performance in Vacuum Membrane Distillation (VMD), Journal of Membrane Science, 2003, 214:113~130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700