用户名: 密码: 验证码:
重寄生真菌盾壳霉降解草酸毒素及其引起的生防效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由核盘菌[Sclerotinia sclerotiorum(Lib.)de Bary]引起的油菜菌核病是一种世界性分布的重要病害。重寄生真菌盾壳霉(Coniothyrium minitans)是核盘菌的一种具有广阔应用前景的生防菌。前人对盾壳霉防治核盘茵的机制和防病潜力已进行了深入研究。这些机制主要侧重于盾壳霉对核盘菌的重寄生作用,竞争作用和抗真菌作用,而对其降解核盘菌产生的草酸毒素及其产生的一系列生防效应则未见报道。
     草酸(Oxalic acid,OA)是核盘菌产生的一种毒素,在核盘菌的致病过程中起着决定因子的作用。盾壳霉可以寄生核盘菌的菌落以及核盘菌引起的病斑,可见盾壳霉可以抵抗一定浓度的草酸。这种抗性的本质是什么?本研究从盾壳霉降解草酸的角度出发,对盾壳霉降解草酸的能力和影响因子,以及由此产生的生防效应进行了研究,旨在发掘盾壳霉防治核盘菌的新因子,以及增强盾壳霉防治油菜菌核病的效果及稳定性。取得了如下研究结果:
     首先,对盾壳霉降解草酸的能力进行了定量分析。结果表明:在含有0.8~32mmol/L草酸的改良马铃薯葡萄糖培养液(mPDB)中培养盾壳霉15d(20℃),培养液中的草酸含量下降85.9%~91.7%。这些盾壳霉培养物滤液的pH值从酸性水平(pH2.9~6.3)升高至弱碱性水平(pH7.7~8.6)。此外,从这些盾壳霉培养物滤液中还检测出氨。产生氨可能是引起培养液pH值升高的另一个原因。而当mPDB中的草酸浓度达到40和80mmol/L时,盾壳霉不能生长,培养液中的草酸含量没有发生明显下降。在另一个试验中,以含有16mmol/L草酸的mPDB培养盾壳霉(20℃,15d),分别测定培养液和盾壳霉菌丝中的草酸含量,结果表明:培养液中草酸含量下降88.0%,菌丝提取物中没有检测到草酸的存在。由此证明盾壳霉具有降解草酸的能力。将油菜幼苗的根浸泡在盾壳霉培养物滤液中,测定其中的毒性。结果表明:盾壳霉在含有草酸(8、16、24、32mmol/L)的培养液中生长后(20℃,15d),滤液的毒性显著降低,进一步证实盾壳霉具有解除草酸毒害作用的能力。
     进一步定量分析表明:盾壳霉降解草酸与盾壳霉菌丝有关。其证据包括:(1)盾壳霉培养物(mPDB+16mmol/L OA,20℃,9d)滤液(无菌丝细胞)对草酸(8mmol/L)没有降解作用,这说明滤液中不存在降解草酸的活性物质或活性物质的含量很低:(2)在盾壳霉培养物(mPDB+16mmol/L OA,20℃,9d)中继续添加草酸(16mmol/L),再分成两种处理,一种处理是补充营养物质(0.1%KNO_3和0.5%葡萄糖,w/v),另一种处理不添加任何营养物质,继续振荡培养(20℃,200r/min,9d),结果表明:补充营养物质处理的草酸降解较不加营养物质处理明显提前。这说明盾壳霉菌丝生长与降解草酸是同步进行的。从盾壳霉菌丝中检测到草酸脱羧酶活性。
     其次,对影响盾壳霉降解草酸的因子进行了研究。结果表明:酸性环境对盾壳霉降解草酸根离子十分重要。在mPDB培养液中添加草酸钠(16mmol/L)后,培养液的pH值为6.4,添加草酸铵(16mmol/L)后,pH值为6.2。盾壳霉在这两种培养液中生长后对草酸根离子的降解率低于5%。在含草酸钠或草酸铵的培养液中添加草酸(16mmol/L)后,培养液的pH值下降至3.5~3.6。盾壳霉在这两种培养液中生长后,对草酸根离子的降解率上升至14.1%(草酸钠处理)或36.1%(草酸铵处理)。在含草酸钠或草酸铵的培养液中添加盐酸(0.2%,v/v)后,培养液的pH值下降至2.8~2.9。盾壳霉在这两种培养液中生长后,对草酸根离子的降解率上升至63.0%(草酸钠处理)或89.5%(草酸铵处理)。另一方面,用NaOH(1mol/L)调节含草酸(8、16、24、32mmol/L)的mPDB至pH7.0时,盾壳霉生长后降解草酸的能力显著降低。
     影响盾壳霉降解草酸效率的另一个因子是草酸浓度。在草酸浓度为8~32mmol/L范围内,草酸浓度愈高,降解速度愈慢,反之亦然。当浓度高于40mmol/L时,盾壳霉不能生长,因而不能降解草酸。
     比较了两个培养特性(色素产生、双链RNA有无和液体产孢)差别较大的盾壳霉菌株(Chy-1和ZS-1)降解草酸的能力。结果表明:这两个盾壳霉菌株降解草酸的能力没有显著差异。
     以查比培养液为基础培养基研究了5种碳源(葡萄糖、果糖、麦芽糖、乳糖、可溶性淀粉)和4种氮源(硝酸钾、硝酸铵、丙氨酸、谷氨酸)对盾壳霉降解草酸的影响。结果表明:供试5种碳源和3种氮源(硝酸钾、丙氨酸和谷氨酸)均有利于盾壳霉菌丝生长,因而降解草酸的效率较高(>98%)。而硝酸铵不利于盾壳霉菌丝生长,因而草酸降解效率较低(46.1%)。在核盘菌菌核提取物或菌丝提取物中添加草酸(8mmol/L或16mmol/L),接种盾壳霉,振荡培养(20℃,200r/min,15d)后培养液中的草酸全部被盾壳霉降解。
     第三,研究了盾壳霉降解草酸对其产生重寄生相关的胞外酶(β-1,3-葡聚糖酶、几丁质酶和蛋白酶)的影响、对这些胞外酶活性的影响以及对产生抗真菌物质的影响。结果表明:盾壳霉降解草酸后,引起环境pH升高,有利于盾壳霉产生这三种重寄生相关酶,并提高这些酶的活性。说明降解草酸有利于盾壳霉寄生核盘菌。另一方面,草酸可以诱导盾壳霉产生抑制核盘菌菌丝生长的抗真菌物质(Anti-fungalsubstance,简称AFS)。盾壳霉产生AFS的量与培养液(PDB)中的初始草酸浓度(8~32mmol/L)呈正相关(P<0.05),而与盾壳霉降解草酸的效率呈负相关(P<0.01)。而在PDB培养液中添加草酸钠时(8~32mmol/L),盾壳霉培养液的AFS活性低。说明草酸营造的酸性环境是诱导盾壳霉产生AFS的原因。
     基于上述研究结果,可以看出草酸在盾壳霉与核盘菌互作中扮演着重要角色—调控盾壳霉的抗真菌作用和重寄生作用。
Sclerotinia rot of oilseed caused by Sclerotinia sclerotiorum is a widespread disease. Coniothyrium minitans is an antagonistic fungus of S.sclerotiorum.Many studies indicated that C.minitans has a great potential in controlling sclerotinia disease caused by S.sclerotiorum in greenhouses and fields.
     Oxalic acid(OA) is a phytotoxin produced by S.sclerotiorum.Previous studies showed that OA played a determinant role in pathogenesis of S.sclerotiorum.As a mycoparasite of S.sclerotiorum,C.minitans should be tolerant to OA through an unknown mechanism.In this study,degradation of OA by C.minitans and the effects of this process on suppression of S.sclerotiorum were investigated.Results achieved so far were summarized below:
     Firstly,the capacity of OA degradation by C.minitans was investigated by incubation of C.minitans in modified potato dextrose broth(mPDB) amended with OA at 0.8-80 mmol/L.Results showed that after incubation at 20℃for 15 days,C.minitans could grow in mPDB containing 0.8-32 mmol/L of OA and thus degrade OA by 85%-92%.The pH values of the cultural filtrates increased from 2.9-6.3 to 7.7-8.6. Mycelial growth by C.minitans was completely inhibited in mPDB containing 40 or 80 mmol/L of OA.Production of ammonia by C.minitans was observed in mPDB alone or mPDB amended with OA at 0.8-32 mmol/L and was partially responsible for the increase of pH in cultures of C.minitans.
     Further analysis showed that the element responsible for OA degradation was located within mycelia of C.minitans,as the cultural filtrate of C.minitans could not convert OA.Activity of oxalate decarboxylase was detected in extracts of mycelia incubated in mPDB alone or mPDB amended with OA at 16 mmol/L.
     Secondly,factors affecting OA degradation by C.minitans were characterized.The factors investigated include strains of C.minitans,ambient pH and carbon/nitrogen sources.Results showed that two different strains of C.minitans:ZS-1 and Chy-1 were not different in degradation of OA in mPDB amended OA at 32 or 40 mmol/L.
     The initial ambient pH greatly affected degradation of oxalate by C.minitans.In mPDB amended with ammonia oxalate(AO)(16 mmol/L) or sodium oxalate(SO)(16 mmol/L),the ambient pH of the media was neutral to slightly alkaline.The percentage of degradation of oxalate was less than 5%in the 15-day-old cultures of C.minitans in these media.In mPDB amended with ammonia oxalate(AO)(16 mmol/L) plus OA at 16 mmol/L or sodium oxalate(SO)(16 mmol/L) plus OA at 16 mmol/L,the ambient pH of the media decreased to 3.4-3.5.The percentage of degradation of oxalate increased to 14.1%-36.1%in cultures of C.minitans(15 d).In mPDB amended with ammonia oxalate (AO)(16 mmol/L) plus HCl at 0.2%(v/v) or sodium oxalate(SO)(16 mmol/L) plus HCl at 0.2%,the ambient pH of the media decreased to 2.8-2.9.The percentage of degradation of oxalate increased to 63.1%-89.5%after incubation in these media for 15 days.On the contrary,in mPDB amended with oxalic acid(8,16,24 or 32 mmol/L) and adjusted to be neutral with NaOH,the percentage of degradation of oxalate decreased from 82.8%-97.1%to 13.0%-21.5%.
     Degradation of OA by C.minitans was observed in Czapek mineral salts amended with each of the five carbon sources(glucose,fructose,maltose,lactose and soluble starch) with alanine as the constant nitrogen source or each of the four nitrogen sources (potassium nitrate,ammonia nitrate,alanine and glutamic acid) with glucose as the constant carbon source,indicating that carbon or nitrogen source may be not the important factors affecting OA degradation by C.minitans.In sclerotial extract or mycelial extract of S.sclerotiorum amended with OA(8 or 16 mmol/L),a complete degradation of OA by C.minitans was also recorded after incubation for 15 days.
     Thirdly,effects of degradation of OA by C.minitans on S.sclerotiorum were studied by analysis of production and activity of mycoparasitism-related extra-cellular enzymes (β-1,3-glucanase,chitinase and protease),and antifungal substances by this mycoparasitic fungus.
     Regarding the production ofβ-1,3-glucanase by C.minitans,results showed that after incubation for 9,12 and 15 days,the yield ofβ-1,3-glucanase in mPDB amended with 16 mmol/L of OA was significantly higher than that in mPDB alone.At that time, OA was degraded by 90%-94%in the treatment of mPDB+OA(16 mmol/L),thereby enhancing the ambient pH to 8.3-8.5.In the pH-buffered experiment,production ofβ-1,3-glucanase by C.minitans increased with the increase of the ambient pH from 3.0-8.0,implying that the beneficial effect of OA degradation by C.minitans lies in enhancement of ambient pH.
     Regarding the activity ofβ-1,3-glucanase produced by C.minitans,results showed that the optimum ambient pH for this enzyme was 4-6.In the enzymatic system ofβ-1,3-glucanase without amendment of OA(control),the ambient pH was 7.0 and the activity of this enzyme was 621.8μg glucose/mL/min.However,with the increase of OA from 4 to 32 mmol/L,the ambient pH decreased to 3.5-1.5 and the activity ofβ-1,3-glucanase decreased to 503.5-55.9μg glucose/mL/min.When sodium oxalate was amended in the enzymatic system ofβ-1,3-glucanase of C.minitans at the concentrations ranging from 2 to 32 mmol/L,the ambient pH and the activity ofβ-1,3-glucanase changed slightly,compared to the control treatment without addition of this chemical. Therefore,it is the acidic ambient pH created by OA that can inhibit the activity ofβ-1,3-glucanase produced by C.minitans.
     Regarding the production of chitinase by C.minitans,results showed that the yield of this enzyme in cultures of C.minitans amended with OA at 0.8-24 mmol/L was significantly higher than that in the cultures of C.minitans without amendment of OA. The ambient pH for these 15-day-old cultures of C.minitans amended with OA was 7-8.
     Regarding the activity of chitinase produced by C.minitans,results showed that the optimal pH for activity of this enzyme was 8.0.In the enzymatic system of chitinase of C. minitans amended with OA at 4-48 mmol/L,the activity was inhibited and the inhibitory degree was negatively correlated with the concentration of OA.
     Activity of protease was determined using gelatin-amended plate.Results showed that the optimal pH value for production of protease by C.minitans was 6-7.The highest activity of protease was detected at pH 8.0.Production and activity of protease were inhibited by high concentration of oxalic acid.
     Degradation of OA results in increase of ambient pH,which is not favorable for production of anti-fungal substance(AFS) by C.minitans.In another word,when OA is degraded partly or not degraded,ambient pH is low.Acidic environment is favorable for production of AFS.
     Results of this study suggest that OA plays an important role in regulation of the antagonistic mode of action against S.sclerotiorum.The presence of OA is favorable for production of AFS responsible for antibiosis,whereas the absence of OA is favorable for production and activity of mycoparasitism-related enzymes responsible for mycoparasitism.
引文
1.陈三风,李季伦,裘维蕃.关于抑制植物病原真菌几丁质酶来源及效应的研究:强作用黄杆菌的分离和鉴定.植物病理学报,1992,22(4):323-327
    2.付云龙,唐建祥.油菜终花期摘除3叶防治菌核病效果好.植物保护,1994,22(1):48
    3.高俊明,王双双,刘慧平,韩巨才.菌核重寄生菌盾壳霉生物学特性研究.山西农业大学学报,2002,22(1):22-25
    4.胡艳梅.盾壳霉产生的几丁质酶及其作用研究.[硕士学位论文].武汉:华中农业大学,2004
    5.黄剑华,陆瑞菊,张玉华.应用离体培养技术奠定不结球白菜耐热性及诱导耐热变异体.上海农业学报,1995,11:18-22
    6.黄娟.核盘菌致病机制的关键因子分析.[硕士学位论文].武汉:华中农业大学,2006
    7.黄秀梨,项伯衡.白僵菌的几丁质酶.北京师范大学学报(自然科学版),1981,2:91-94
    8.姜道宏.核盘菌寄生菌盾壳霉(Coniothyrium minitans)的生物学及其寄生生态学研究.[硕士学位论文].武汉:华中农业大学,1995
    9.姜道宏,李国庆,易先宏,付艳平,王道本.盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28(1):29-32
    10.李国庆,王道本,张顺和,但汉鸿.菌核寄生菌盾壳霉的研究Ⅰ:生物学特性及在湖北省的自然分布.华中农业大学学报,1995,14:125-129
    11.李建厂,李永红,陈文杰,李殿荣.向日葵核盘菌菌株致病性研究及其温度效应.西北农业学报,2003,12(1):114-117
    12.李金秀,陈文瑞,秦芸.油菜土壤中与核盘菌菌核存活有关的真菌.四川农业大学学报,1997,15(1):1-5
    13.李君,曾中文,欧阳石文.微生物几丁质酶的特性、基因表达调控及应用.微生物学报,2001,28(4):84-87
    14.刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗性机理[J].植物病理学报,1998,28(1):33-37
    15.刘永举.王清吉.王江青.张好治.于海明.DNS法测定饲用β-葡聚糖酶活力.中国饲料,1999,18:26
    16.罗宽,周必文.油菜菌核病菌核上寄生真菌的研究.中国油料,1987,3:40-44
    17.缪华军,李国庆.盾壳霉抗杀菌剂vinclozolin.的诱变及突变体的生防潜力.中国生物防治.2006,21(1):73-77
    18.潘以楼,汪智渊,吴汉章.油菜病害研究进展.江苏农业科学,1997,13:32-35
    19.闰修花,王桂珍,陈迪军,纳氏试剂比色法测定海水中的氨氮[J].环境监测管理与技术,2003,15(3):21-23
    20.王婷,吴健胜.王金生.草酸降解菌的筛选及其对油菜菌核病的防治作用.南京农业大学学报,2001,24(4):29-32
    21.王英超.李国庆.方媛.姜道宏.利用油菜秸秆培养重寄生菌盾壳霉分生孢子.中国生物防治,2006,22(4):308-312
    22.吴纯仁,刘后利.油菜菌核病的致病机制-罹病组织内草酸毒素积累和分布的初步分析[J].植物病理学报,1991,21(2):135-140
    23.韦善君.盾壳霉在油菜花辦上萌发的因子分析和防治核盘菌茵核病的研究.[硕士学位论文].武汉:华中农业大学,2000
    24.肖晓华.秀山县2007年油菜菌核病重发特点及原因分析.中国农技推广,2007,23(7):44-45
    25.许志刚.普通植物病理学.第三版.北京:中国农业出版社,2002,297
    26.杨新美.油菜菌核病Sclerotinia sclerotiorum在我国的寄主范围及生态特性的调查研究.植物病理学报,1959,15(2):111-112
    27.张源,阮颖,彭琦,伍林涛,刘春林.油菜菌核病致病机理研究进展.作物研究,2006,5:549-551
    28.张政兵,郭海明,苏彪,李冠华.湖南省油菜菌核病发生特点、流行规律及防治对策研究.农药研究与应用,2006,10(6):13-15
    29.赵丽娟,张永杰,刘慧平,韩巨才,高俊明.盾壳霉抗菌核净菌株的诱导及其特性初步研究.农药学学报,2005,7(3):233-236
    30.周乐聪.油菜品种资源对菌核病的抗性鉴定.中国油料(增刊),1994,69-72
    31.周乐聪.植物病原菌核盘菌生防菌的筛选、诱变及分子改造.[博士学位论文].北京:中国农业大学,2000
    32.Adam T and Kstephen B.Bacillus substilis Yvrk is an acid-induced oxalate decarboxylase.Bacteriol.,2000,182,18:5271- 5273
    33.Adams P B.The potential of mycoparasites for biological control of plant diseases.Annual Review of Phytopathol.,1990,28:59-72
    34.Adams P B and Ayers W A.Biological control of sclerotinia lettuce drop in the field by Sporidesmiurn sclerotivorum.Phytopathology,1982,72:485-488
    35.Adams P B and Ayers W A.Ecology of Sclerotinia species.Phytopathology,1979,69:896-899
    36.Aguilar C,Urzua U,Koenig C,Vicuna R.Oxalate oxidase from Ceriporiopsis subvermispora:biochemical and cytochemical studies.Arch.Biochem.Biophy.,1999,366:275-282
    37.Akamatsu Y and Shimada M.Partial purification and characterization of glyoxylate oxidase from the brown-rot basidiomycete Tyromyces palustris.Phytochemistry.1994,37:649-653
    38.Alghisi P and Favaron F.Pectin-degrading enzymes and plant parasite interactions.Eur.J.Plant Pathol.,1995,101:365-375
    39.Anand R,Dorrestein P C,Kinsland C,Begley T P and Ealick S E.Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolution.Biochemistry,2002,41:7659-7669
    40.Aoki H,Sassa T and Tamura T.Phytotoxic metabolites of Rhizoctonia solani.Nature,1963,200:575
    41.Bailey K L,Johnston A M,Kutcher H R,Gossen B D and Morrall R A A.Managing crop losses from foliar diseases with fungicides,rotation,and tillage in the Saskatchewan Parkland spring sown oilseed rape.Crop Prot.,2000,17:405-411
    42.Bardin S D and Huang H C.Research on biology and control of Sclerotinia diseases in Canada.Can.J.Plant Pathol.,2001,23:88-98
    43. Bateman D F and Basham H G Degradation of plant cell walls and membranes by microbial enzymes. In:Heitefuss R and Williams P H eds, Physiol. Plant Pathol., Berlin, Springer-Verlag Press, 1976,316-355
    44. Blum L E B, Prada A, Medeiros E A A and Amarante C V T. Temperature, light and culture medium affecting the production of sclerotia of Sclerotium rolfsii and Sclerotinia sclerotiorum. Revista de Ciencias Agroveterinarias. 2002,1 (1): 27-32
    45. Boland G J and Hall R. Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Dis., 1987,71: 934-936
    46. Boland G J and Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol., 1994,16: 93-108
    47. Budge S P, McQuilken M P, Fenlon J S and Whipps J M. Use of Coniothyrium minitans and Gliocladium virens for biological control of Sclerotinia sclerotiorum in glasshouse lettuce. Biol. Control, 1995,5: 513-522
    48. Budge S P and Whipps J M. Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathol., 1991,40: 59-66
    49. Budge S P and Whipps J M. Potential for integrated control of Sclerotinia sclerotiorum glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology, 2001,91: 221-227
    50. Campbell W A. A new species of Coniothyrium parasitic on sclerotia. Mycologia, 1947,39: 90-195
    51. Caracuel Z, Roncero M I G, Espeso E A, Gonzalez-Verdejo C I, Garcia-Maceira F I and Pietro A D. The pH signaling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mole. Microbio., 2003,48(3): 765-779
    52. Cassells A C and Walish M. Screening for Sclerotinia Resistance in Helianthus tuberous L.(Jerusalen artichoke) varieties, lines and somaclones, in the field and in vitro. Plant Pathol., 1995,44: 428-437
    53. Cervone F, Hahn M G, Lorenzo G. Host - pathogen interaction XXXIII A plantt protein converts a fungal pathogenesis factor onto an elicitor of plant defense reponses. Plant Physiol, 1989, 90: 542 - 548
    54. Cessna S G., Sears V E, Dickman M B and Low P S. Oxalic Acid, a pathogenicity factor for Sclerotinia sderotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 2000,12:191 - 220
    55. Chen C B, Harel A, Gorovoits R, Yarden 0 and Dickman M B. MAPK regulation of sclerotial development in Sderotinia sderotiorum is linked with pH and cAMP sensing. Mol. Plant -Microbe Interac., 2004,17(4): 404-413
    56. Cheng J S, Jiang D H, Fu Y P , Li G Q, Peng Y L, Ghabrial S A. Molecular characterization of a dsRNA totivirus infecting the sclerotial parasite Coniothyrium minitans. Virus Res., 2003a, 93 (1):41-50
    57. Cheng J S, Jiang D H, Yi X H, Fu Y P , Li G Q and Whipps J M. Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture. FEMS Microbiol Lett., 2003b, 227 (1): 127-131
    58. Cotton P, Kasza Z, Bruel C, Rascle C, Fevre M. Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sderotinia sderotiorum. FEMS Microbiol. Lett., 2003, 227: 163-169
    59. Cotton P, Rascle C and Fevre M. Characterization of PG2, an early endoPG produced by Sderotinia sderotiorum, expressed in yeast. FEMS Microbiol. Lett., 2003, 213: 239-244
    60. Cervone F, Hahn M G and Lorenzo G. Host - pathogen interaction XXXIII A plantt protein converts a fungal pathogenesis factor onto an elicitor of plant defense reponses. Plant Physiol., 1989,90: 542-548
    61. Davies D D and Asker H. Synthesis of oxalic acid by enzymes from lettuce leaves. Plant Physiol., 1983, 72:134-138
    62. de Bary A. Ueber einige sclerotinien and sclerotien krankheiten. Bot. Zeitung, 1886, 44: 377-474
    63. de Vrije T, Antoine N, Buitelaar R H,Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones E E, Luth P, Oostra J, Ravensberg W J, Renaud R, Rinzema A, Weber F J and Whipps J M. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol., 2001, 56: 58-68
    64. Dias BBA, Cunha W G, Morais L S, Vianna G R, Rech E L, Capdeville G and Aragao F J L. Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol., 2006,55:187-193
    65. Dickman M B and Chet I. Biodegradation of oxalic acid: A potential new approach to biological control. Soil Biol. and Biochem., 1998,30:1195-1197
    66. Dickman M B and Mitra A. Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogenesis. Physiol. Mol. Plant pathol., 1992, 41: 255-263
    67. Dickson M H and Petzoldt R. Breeding for resistance to Sclerotinia sclerotiorum in Brassica oleracea. Acta. Hort., 1996,407:103-108
    68. Dorn G. Genetic analysis of the phosphatases in Aspergillus nidulans. Gene. Res., 1965, 6:13-26
    69. Dutton M V, Rastall R A and Evans C S. Improved high-performance liquid separation for the analysis of oxalate in fungal culture media. Can. J. Bot., 1989. 67(9): 2726-2730
    70. Emiliani E, Bekes P. Enzymatic oxalate decarboxylation in Aspergillus niger. Arch. Biochem. Biophy., 1964,105:488-493
    71. Favaron F, Alghisi P, Marciano P and Magro P. Polygalacturonase isoenzymes and oxalic acid produced by Sclerotinia sclerotiorum in soybean hypocotyls as elicitors of glyceollin. Physiol. Mol. Plant Pathol., 1988,33: 385-395
    72. Favaron F, Sella L and Dovidio R. Relationships among endopolygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol. Plant-Microbe Interact., 2004,17:1402-1409
    73. Ferrar P H and Walker J R L O-Dipenol oxidasse inhibition: an additional role of oxalic acid in the phytopathogenic arsenal of Sclerotium rolfsii. Physiol. Mol. Plant Pathol., 1993,43:15-442
    74. Flaherty J E, Pirttila A M, Bluhm B H and Woloshuk C P. Pad, a pH-regulatory gene from Fusarium verticillioides. Appl. Environ. Microbiol., 2002, 69(9): 5222-5227
    75. Fraissinet-Tachet L and Fevre M. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. Curr. Microbiol. 1996,33:49-53
    76. FilippoV N A. The present state and future outlook of biological control in USSR. Acta Entomological Fennia, 1989,53:11-18
    77. Gao S, Choi G, Shain L and Nuss D L. Cloing and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Appl. Environ. Microbiol., 1996, 62: 1984-1990
    78. Garcia-MaceiraF I, Di pietro A, Huertas-Gonzalez M D, Ruiz-Roldan M C and Roncero M I G. Molecular characterization of an endopolygalacturonases from Fusarium oxysporum expressed during early stages of infection. Appl. Environ. Microbiol., 2001, 67: 2191-2196
    79. Gerlagh M H, Goossen-van de Geijn M and Fokkenma N J Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology, 1999, 89:141-147
    80. Gerlagh M H, Kruse M, Goossen-van de Geijn H M and Whipps J M. Growth and survival of the mycoparasite Coniothyrium minitans on lettuce leaves in contact with soil in the presence or absence of Sclerotinia sclerotiorum. Eur. J. Plant Pathol, 1994,100:55-59
    81. Gerlagh M H, Whipps J M, Budge S P and Goosen-van de Geijn H M. Efficiency of isolates of Coniothyrium minitans as mycoparasites of Sclerotinia sclerotiorum, Sclerotium cepivorum and Botrytis cinerea on tamato stem pieces. Eur. J. Plant Pathol., 1996,102: 787-793
    82. Giczey G, Kerenyi Z, Fulop L and Hornok L. Expression of cmgl, an exo-β-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl. Environ. Microbiol., 2001, 67: 865-871
    83. Godoy G, Steadman J R, Dickman M B and Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris .Physiol Mol. Plant Pathol., 1990,37:179-191
    84. Gong X Y, Fu Y P, Jiang D H , Li G Q , Yi X H and Peng Y L L-Arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genet. Biol, 2007, doi:10.1016/j.fgb.2007.07.007
    85. Hamlet W M and Plowright C B. On the occurrence of oxalic acid in fungi. Chemical News, 1877,36: 93-94
    86. Harel A, Gorovits R, Yarden 0. Changes in protein kinase A activity accompany sclerotial development in Sclerotinia sclerotiorum. Phytopathology, 2005, 95(4): 397-404
    87. Hayaishi. Enzymatic decarboxylation ofoxalic acid. J. Biol. Chem., 1956, 222: 435-44
    88. Hayes C K, Klemsdal S, and Lorito M. Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma haizianum. Gene, 1994,148:143-148
    89. Hegedus D D and Rimmer S R. Sclerotinia sclerotiorum: When "to be or not to be" a pathogen?. FEMS Microbiol. Lett., 2005,251:177-184
    90. Huang H C. Importance of Coniothyrium minitans in survival of Sclerotinia sclerotiorum in wilted sunflowers. Can. J. Bot., 1977,55: 289-295
    91. Huang H C. Distribution of Coniothyrium minitans in Manitoba sunflower field. Can. J. Plant Pathol., 1981,3:219-222
    92. Huang H. C. Factors affecting myceliogenic germination of sclerotia of Sclerotinia sclerotiorum. Phytopathology, 1985, 75: 433-437
    93. Huang H C and Dorrell D G Sreeening sunflower seedlings for resistance to toxic metabolites produced by Sclerotinia sclerotiorum. Can. J. of Plant Sci., 1978, 58: 1107-1110
    94. Huang H C. and Kokko E G Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. J. Phytopathol., 1988, 123:133-136
    95. Huang H C and Kozub G C. Longevity of normal and abnormal sclerotia of Sclerotinia sclerotiorum. Plant Dis., 1994, 78:1164-1166
    
    96. Jakoby W B. Oxalate decarboxylase. Methods Enzymol. 1962,5: 637-640
    
    97. Jamaux J, Gelie B and Lamarque C. Early stage of infection of rapeseed petals and leaves by Sclerotinia sclerotiorum revealed by scanning electron microscopy. Plant Pathol, 1995, 44: 22-30
    
    98. Jones D. Ultrastructure and composition of the cell walls of Sclerotinia sclerotium. Trans. Br. Mycol. Soc, 1970,54: 351-360
    
    99. Jones E, Carpenter M D, Fong A, Goldstein A, Thrush, Crowhurst and Stewart A. Co-transformation of the sclerotial mycoparasite Coniothyrium minitans with hygromycin B resistance and b-glucuronidase markers. Mycol. Res., 1999, 103: 929-937
    
    100.Jones D and Watson D. Parasitism and lysis by soil fungi of Sclerotinia sclerotiorum (Lib) de Bary, a phytopathogenic fungus. Nature, 1969, 22: 287- 288
    101.Jurick W M and Rollins J A. Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet Biol., 2007,44(6): 521-530
    102.Kars I, Krooshof G H, Wagemakers L, Joosten R, Benen J A E and van Kan J A L. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J., 2005,43: 213-225
    103.Kasza Z, Vagvolgyi C, Fevre M and Cotton P. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Curr. Mocrobiol., 2004, 48: 208-213
    104.Kathiara M, Wood D A and Evans C S. Detection and partial characterization ofoxalate decarboxylase from Agaricus bisporus. Mycol. Res., 2000,104: 345-350
    105.Kesarwani M, Azam M, Natarajan K, Mehta A and Datta A. Oxalate decarboxylase from Collybia velutipes: Molecular cloning and its over-expression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol.l Chem., 2000, 275: 7230-7238
    106. Kim H S and Diers B W. Inheritance of partial resistance to sclerotinia stem rot in soybean. Crop Sci., 2000,40:55-61
    107.Knudsen G R, Eschen D J, Dandurand L M and Bin L. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harazianum. Plant Dis., 1991,75: 466-470
    108.Kuan I-C, Tien M. Stimulation of Mn peroxidase activity: A possible role for oxalate in lignin biodegradation. Proc. Nat. Acad. Sci., USA, 1993,90:1242-1246
    109.Laker M F, Horfmann A F and Meeuse B J D. Spetrophotometric determination of urinary oxalate with oxalate oxidase prepared from moss. Clin. Chem., 1980,26(7): 827-830
    110.Lefol C, Seguin-Swartz G and Morrall R A A. Resistance to Sclerotinia sclerotiorum in a weed related to canola. Can. J. Plant Pathol., 1997,19:113
    111.Lenz H, Wunderwald P and Eggerer H. Partial purification and some properities of oxalacetase from Aspergillus niger. Eur. J. Biochem., 1976, 65: 225-236
    112.Li G Q, Huang H C and Acharya S N. Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biol. Control, 2003a, 28:11-18
    113.Li G Q, Huang H C and Acharya S N. Importance of pollen and senescent petals in the suppression of Sclerotinia sclerotiorum by Coniothyrium minitans. Biocon. Sci. Technol., 2003 b, 13: 495-505
    114.Li G Q, Huang H C, Acharya S N and Erickson R S. Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of sclerotinia blossom blight of alfalfa. Plant Pathol., 2005,54:204-211
    115.Li G Q, Huang H C, Miao H J, Erickson R S, Jiang D H and Xiao Y N. Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur. Plant Pathol., 2006,114:345-355
    116.Li R, Rimmer R, Buchwaldt L, Sharpe AG, Senguin-Swartz, G and Hegedus, D.D. Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet. Biol., 2004,41: 754-765
    117.Liu S Y, Zhou B W and Pan J R. Metabolism of oxalate by oilseed rape and resistance mechanism to Sclerotinia sclerotiorum. Acta Phytopathologica Sinica, 1998, 28: 33-37
    118.Loewus F, Runeckles V and Reese E. Degradation of polymeric carbohydrates in microbial enzymes. Recent Advances in Phytochemistry, 1977, Plenum, New York
    119.Lumsden R D. Pectolytic enzymes of Sclerotinia sclerotiorum and their localization of infected bean. Can. J. Bot., 1976,54: 2630-2641
    120.Lynch J M and Ebben M H. The use of micro-organisms to control plant disease. J. Appl. Bacteriol. Symp., 1986, [suppl]: 115s-126s
    121.Maccheroni Jr W, Araujo W L and Azevedo J L. Ambient pH-regulated enzyme secretion in endophytic and pathogenic isolates of the fungal genus Colletotrichum. Sci.Agric, 2004, 61: 298-302
    122.Magan N and Whipps J M. Growth of Coniothyrium minitans, Gliocladium roseum, Trichoderma harzianum and T. viride from alginate pellets and interaction with water availability. Eur. Mediterr. Plant Prot. Organ. Bull., 1988,18: 37-45
    123.Magro P, Marciano P and di Lenna P. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiol. Lett., 1984, 24: 9-12
    124.Makela M, Galkin S, Hatakka A and Lundell T. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technol., 2002, 30: 542-549
    125.Mandava, N B, Orellana R G, Warthen J D, Jr. Worley J F, Dutky S R, Finegold H and Weathington B C. Phytotoxins in Rhizoctonia solani: isolation and biological activity of m-hydroxy-and m-methoxyphenylacetic acids. J. Agric. food chem., 1980, 28: 71-75
    126.Marciano P, di Lenna P, Margo P. Oxalic acid, cell-wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol. Plant Pathol., 1983, 22: 339-345
    127.Maxwell D P and Lumsden R D. Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathol., 1970, 60: 1395-1398
    128.McLaren D L, Huang H C and Rimmer S R. Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Dis., 1996, 80:1373-1378
    129.McQuilken M P, Budge S P, Whipps J M. Effect of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycol. Res., 1997,101:11-17
    130.McQuilken M P, Mitchell S J, Budge S P, Whipps J M, Fenlon J S and Archer S A. Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathol., 1995, 44: 883-896
    131.McQuilken M P, Gemmell J and Whipps J M. Some nutritional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans. Bio. Sci. and Technol., 2002,12 (4): 443-454
    132.McQuilken M P, Gemmell J, Hill R A and Whipps J M. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbio. Lett., 2003,219(1): 27- 31
    133.McQuilken M P and Whipps J M. Production, survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Eur. J. Plant Pathol., 1995,101:101-110
    134.Monaco C. Evaluation of the efficiency of mycoparasites on Sclerotinia sclerotiorum in vitro. Rev. Fac. Agron. Univ. Nac. La Plata, 1989,65: 67-73
    135.Miiller H M. Utilization of gluconate by Aspergillus niger. II. Enzymes of degradation pathways and main end products. Zentralbl. Mikrobiol., 1986,141(6): 461-469
    136.Muthumeenakshi S, Goldstein A L and Stewart A. Molecular studies on intraspecific diversity and phylogenetie position of Coniothyrium minitans. Mycol. Res., 2001,105(9): 1065-1074
    137.Nathalie P, Sandrine C, Genevieve B G, Chistine R and Michel F, Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiol., 2001,147: 717-726
    138.0rdentlich A. The role of Serretia marcescens in biocontrol of Sclerotium rolffsii. Phytopathology, 1988, 78(1): 84-88
    139.Pechenare A. Producion of toxins and wall degrading enzymes by Gliocladium roseum. Trans. Br. Mycol. Soc., 1980,74 (3): 561-566
    140.Penaiva M A and Arst J H N. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev., 2002, 66:426-446
    141.Peres A P, Nasser L C B and Machado J C. Use of semi-seletive media for detection of Sderotinia sderotiorum on bean and soybean seeds. Fitopatologia Brasileira, 2002, 27:123-127
    142.Pressey R. Polygalacturonase inhibitors in bean pods. Phytochemistry, 1996, 42(5): 1267-1270
    143.Pousserau N, Creton S, Billon-Grand G, Rascle C and Fevre M. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sderotinia sderotiorum. Microbiology, 2001a, 147: 717-726
    144.Pousserau N, Gente S Rascle C, Billon-Grand G and Fevre M. aspS encoding an unusual aspartyl protease from Sderotinia sderotiorum is expressed during phytopathogenesis. FEMS Microbiol. Lett., 2001b, 194: 27-32
    145.Pozo M J, Baek J-M, Garcia J M and Kenerley C M. Functional analysis of tvspl, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet, and Biol., 2004,41: 336-348
    146.Punja Z K, Huang J S and Jenkins S F. Relationship of mycelial growth and production of oxalic acid and cell wall degradating enzymes to virulence in Sderotium rolfsii. Can. J. Plant Pathol., 1985, 7(2): 109-117
    147.Purdy H. Sderotinia sderotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 1979, 69: 875-880
    148.Prusky D, McEvoy J L, Leverentz B and Conway W S. Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol. Plant-Microbe Interact., 2001,14(9): 1105-1113
    149.Prusky D, McEvoy J L, Saftner R, Conway W S and Jones R. Relationship between host acidification and virulence of Penecillium spp. on apple and citrus fruit. Phytopathology, 2004,94:44-51
    150.Reese E. Degradation of polymeric carbohydrates in microbial enzymes. Recent Advances in Phytochemistry. 5 th eds. New York: Loewus F and Runeckles, 1977. 311-367
    151.Reese E and Mandels M. 6-D-l,3-Glucanases in fungi. Can J Microbiol., 1959, 5: 173-185
    152.Rejane L G and Henrik U S. Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection. Plant Physiol., 2004,136: 3703-3711
    153.Reymond P, Deleage G Rascle C and Fevre M. Cloning and sequence analysis of a polygalacturonase-encoding gene from the phytopathogenic fungus Sclerotinia sclerotiorum. Gene, 1994,146: 233-237
    154.Riou C, Freyssinet G and Feure M. Production of cell wall degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol., 1991, 57:1478-1484
    
    155.Riou C, Freyssinet G and Feure M. Purification of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. MicrobioL, 1992, 58: 578-583
    
    156.Rollins J A and Dickman M B. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl. Environ. Micobiol., 1998, 64: 2539-2544
    157.Rollins J A and Dickman M B. pH signaling in Sclerotinia sclerotiorum'. identification of a pacC/RIM1 homolog. Appl. Environ. Micobiol., 2001,67: 75-81
    158.Sandys-Winsch C, Whipps J M, Gerlagh M and Kruse M. World distribution of the sclerotial mycoparasite Coniothyrium minitans. Mycol. Res., 1993, 97(10): 1175-1178
    159.Scott-Craig J S, Panaccione D, Cervone F and Walton J D. Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell, 1990, 2:1191-1200
    160.Sparringa R A and Owens J D. Causes of alkalinization in tempe solid substrate fermentation. Enzyme and Microbial Technol., 1999,25:677-681
    161.Steadman J R. Control of plant diseases caused by Sclerotinia species. Phytopathology, 1979, 69: 904-907
    162.St Leger R J, Nelson J O and Screen S E. The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology ,1999,145: 2691-2699
    163.Tariq V N and Jeffries P. Ultrastructure of penetration of Phaseolus spp. by Sclerotinia sclerotiorum. Can. J. Bot., 1986, 64: 2909-2915
    164.Tanner A, Bowater L, Fairhurst S A and Bornemann S. Oxalate Decarboxylase Requires Manganese and Dioxygen for Activity. J. Biol. Chem., 2001, 276(47): 43627-43634
    165.ten Have A, Mulder W, Visser J and van Kan J A. The endopolygalacturonase gene Bcpgl is required for full virulence of Botrytis cinerea. Mol. Plant-Microbe Interact., 1998,11:1009-1016
    166.Thompson C, Dunwell J M, Johnstone C E, Lay V, Ray J, Schmitt M, Watson H and Nisbet G. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica, 1995, 85: 169-172
    167.Tilburn J, Sarkar S, Widdick D A, Espeso E A, Orejas M, Mungroo J, Penalva M A and Arst J H N. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid and alkaline expressed genes by ambient pH. EMBO, 1995, 14: 779-790
    168.Toal E S, Jones P W.Induction of systemic resistance to Sclerotinia sclerotiorum by oxalic acid in oilseed rape.Plant Pathol., 1999, 48 (6):759-767
    169.Tribe H T. On the parasitism of Sclerotinia trifolirum by Coniothyrium minitans. Trans. Br. Mycol. Soc, 1957,40: 489-499
    170.Trip H, Evers M E, WKiel J A K and Driessenl A J M. Uptake of the 6-lactam precursor - aminoadipic acid in Penicillium chrysogenum is mediated by the acidic and the general amino acid permease. Appl. Environ. Microbiol., 2004, 70(8): 4775-4783
    171.Trutmann P, Keane P J and Merriman P R. Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans. Trans. Br. Mycol. Soc., 1982,78: 521-529
    172.Tu J C. Mycoparasitism by Coniothyrium minitans on Sclerotinia sclerotiorum and its effect on sclerotial germination. Phytopathology, 1984,109: 261-268
    173.Tu J C. Tolerance of white bean (Phaseolus vulgaris) to white mold (Scterotinia sclerotiorum) associated with tolerance to oxalic acid. Physiol. Plant Pathol., 1985, 26,111-117
    174.Turkington T K and Morrall R A A. Use of petal infestation to forecast sclerotinia stem rot of canola: the influence of inoculum variation over the flowering period and canopy density. Phytopathology, 1993, 83: 682-689
    175 .Turner G J and Tribe H T. Preliminary field plot trails on biological control of Sclerotinia trifoliorum by Coniothyrium minitans. Plant Pathol., 1975,24:109-113
    
    176.Vaisey E B, Cheldelin V H and Newburgh R W. Oxalate oxidation by an obligately parasitic fungus Tilletia contraversa. Arch. Biochem. Biophys., 1961, 95: 66-69
    177.Vrije T, Antoine N and Buitelaar R H. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol., 2001,56:58-68
    178.Waksman G, Keon J P and Turner G Purification and characterization of two endopolycturonases from Sclerotinia sclerotiorum. Biochim. Biophys. Acta, 1991, 1073:43-48
    179.Whipps J M, Budge S P, McClement S and Pink D A C. A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum. Eur. J. Plant Pathol., 2002,108: 373-378
    180.Whipps J M, Budge S P and Mitchell S J. Observations on sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycol. Res., 1993, 97(6): 697-700
    181.Whipps J M and Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol. Res., 1992, 96: 897-907
    182.Whipps J M, Grewal S K and Goes P. Interactions between Coniothyrium minitans and sclerotia. Mycol. Res., 1991,95:195-299
    183.Whipps J M and Lumsden R D. Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C and Magan N eds., Fungal Biocontrol Agents: Progress, Problems and Potential, Wallingford: CABI Publishing, 2001, 9-22
    184.Williamson B and Ramanathan V. A polygalacturonase inhibitor from immature raspberry fruit: a possible new approach to grey mould control. Acta-Horticulturae, 1993,352: 601-606
    185.Williams R H and Whipps J M. Growth and transmission of Coniothyrium minitans in soil. Bull. Int. ORG Biol. Control, 1995,18:39-43
    186.Williams R H, Whipps J M and Cooke R C. Water splash dispersal of Coniothyrium minitans in the glasshouse. Ann. Appl. Biol., 1998a, 132: 77-90
    187. Williams R H, Whipps J M and Cooke R C. The role of soil mesofauna in dispersal of Coniothyrium minitans: transmission to sclerotia of Sclerotinia sclerotiorum. Soil Biol. Biochem., 1998b, 30:1929-1935
    188.Williams R H, Whipps J M and Cooke R C. The role of soil mesofauna in dispersal of Coniothyrium minitans: mechanism of transmission. Soil Biol. Biochem., 1998c, 30:1937-1940
    189.Willetts H J. Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol. Res., 1997,101: 939-952
    190.Yakoby N, Kobiler I, Dinoor A and Prusky D. Ph regulation of pectate lyase secretion modulates the attack of Collectotrichum gloeosporioides on avocado fruits. Appl. Environ. Microbiol., 2000,66(3): 1026-1030
    191.Yamamoto R and Nevins D. Degradation of a glucan containing 8-(1-3) and 8-(1-6) linkages by an exo-(1-3)- 8-D-glucanase. Carbohydr. Res., 1983,122: 217-226
    192.Yang J C and Loewus F A. Metabolic conversion of L-ascorbic acid to oxalic acid in oxalate-accuumulating plants. Plant Physiol., 1975,56: 283-285
    193.Yang L, Miao H J, Li G Q, Yin L M and Huang H C. Survival of the Mycoparasite Coniothyrium minitans on Flower Petals of Oilseed Rape under Field Conditions in Central China. Biol. Control, 2007,40:179-186
    194. Yang R, Han Y C, Li G Q, Jiang D H and Huang H C. Suppression of Sclerotinia sclerotinrum by antifungal substances produced by the mycoparasite Coniothyrium minitans. Eur. J. Plant Pathol., 2007,119:411-420.
    195.Yang R, Han Y C, Li G Q, Jiang D H and Huang H C. Effects of ambient pH and nutritional factors on antifungal activity of the mycoparasite Coniothyrium minitans. Biol. Control, 2007b, in press: doi:10.1016/j.biocontrol.2007.08.008
    196.Yoder O C. Toxins in pathogenesis. Ann. Rev. Phytopathol., 1980,18:103-129
    197.Zhao J, Peltier A J, Meng J, Osborn T C and Grau C R. Evaluation of sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Dis., 2004, 88:1033-1039
    198.Zantinge J L, Huang H C and Cheng K J. Induction, screening and identification of Coniothyrium minitans mutants with enhanced β-glucanase activity. Enzyme and Microbial Technol., 2003, 32:224-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700