用户名: 密码: 验证码:
轴向柱塞泵的虚拟样机及油膜压力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向柱塞泵是液压系统中最重要的动力元件,广泛应用于各类机械装备中。轴向柱塞泵是机构和流体的统一体,机构向流体传递运动和能量,流体为摩擦副提供动力润滑油膜改善其摩擦条件,并传递出流量和压力进行做功。因此流体和机构耦合是轴向柱塞泵的基本特征,也是影响其性能的研究重点和难点。本学位论文针对轴向柱塞泵机构和流体多维模型耦合的虚拟样机技术展开研究,目的在于提高轴向柱塞泵的综合性能,为柱塞泵的结构设计和优化提供手段,具有广泛的工程应用背景和重要的学术研究价值。
     本学位论文创建了轴向柱塞泵液固耦合的虚拟样机环境,并研制了柱塞副油膜特性测试专用试验台,验证了虚拟样机的分析准确性,为柱塞泵的外部输出特性与内部流体特性研究提供了手段,为柱塞泵支承油膜理论研究和结构设计提供了一种新方法。针对轴向柱塞泵虚拟样机液固耦合的特点建立了机构和流体模型,机构模型包括三维刚体动力学子模型和柔性化子模型,流体模型包括流体功率传递子模型和柱塞副油膜支承子模型,通过建立接口模型链接各个子模型,进而构成了轴向柱塞泵的虚拟样机。这种建模方式考虑了柱塞泵三维运动机构的动力学因素和柱塞副油膜特性,并将其用于扭矩损失、流量损失和压力损失的计算,而解算结果又反作用于各子模型,因此该模型不仅具备传统模型的特点而且充分考虑多模型间的关联和支持。根据虚拟样机的模型特点研制了柱塞副油膜特性测试泵,其在不改变泵结构的条件下实现了柱塞副油膜压力场、温度场、油膜厚度的测试,并能够和实际泵一样驱动压力等级为0~30MPa的开式或闭式负载,可以通过无线传输的方式把高速旋转部件上的36通道的测试数据传递到数据采集系统中,是柱塞泵高速运动部件上油膜特性测试的一种新方法。基于虚拟样机模型和上述试验平台,全面分析了轴向柱塞泵虚拟样机在虚拟环境下对柱塞泵输出特性和内部流体、机构特性,这是传统方法难以实现的。和试验相比,虚拟样机仿真对开式压力、流量、转速等外特性预测的平均精确度可达96.2%,对闭式压力、流量、转矩、转速的平均精确度可达95.9%,可以满足实际性能分析需要。对于时间尺度为毫秒级的内部配流窗切换的压力、流量脉动率和试验相比的误差分别仅为0.5%、0.6%,同时通过研究可以揭示吸、排油流量脉动与局部结构之间的关系,对柱塞泵的结构优化和性能改善具有指导意义;最后,轴向柱塞泵虚拟样机技术在数字式柱塞泵和斜轴双泵交叉功率控制的设计和性能分析上进行了应用,对数字泵的控制效果和交叉功率的灵活性进行了准确的预测,证明了虚拟样机模型的通用性和广泛性,以及广泛的应用价值和良好的应用前景。论文主要结构如下:
     第一章,指出了论文研究的目的和意义,对国内外主要的轴向柱塞泵科研机构的相关研究情况进行了调研,综述了该领域研究现状,确定了博士学位论文研究的内容。
     第二章,分析并建立了柱塞泵机构模型。建立了三维多体动力学模型,对关键部件进行了柔性化处理,优化了模型中的主要影响参数,为机构模型和流体模型的联合仿真奠定了基础。
     第三章,针对轴向柱塞泵复杂的流体系统,分别构建了轴向柱塞泵的流体功率传动模型和柱塞副间隙油膜模型。通过对机械传动驱动流体的过程分析,建立了轴向柱塞泵的扭矩模型、流量模型和压力模型,并考虑了流体的弹性模量和惯性流量的影响。最后,创建了柱塞副油膜模型,用来求解柱塞副的压力场等油膜微观参量。
     第四章,研究了轴向柱塞泵虚拟样机各个子模型之间的关系,搭建了轴向柱塞泵各模型之间的接口模型,并进行了封装。
     第五章,提出了一种在高压高速工况下真实柱塞泵上测试柱塞副油膜的新方法,研制了柱塞副油膜测试泵和综合性能测试平台,为虚拟样机仿真提供了试验验证的手段。
     第六章,通过试验研究和虚拟样机仿真分析对轴向柱塞泵开式、闭式的宏观输出特性、微观输出特性、柱塞泵内部柱塞副油膜压力场特性进行了对比分析,证明了虚拟样机仿真平台对轴向柱塞泵内外部特性的仿真分析具有较高的精度。依据模型优势,对轴向柱塞泵内部节点的流体特性进行了研究,揭示了其流量、压力产生的机理。而且采用轴向柱塞泵的虚拟样机对数字泵和轴向柱塞泵双泵的交叉功率控制进行了应用分析,成功的预测了数字泵控制效果和交叉功率的灵活的功率分配策略。
     第七章,总结了论文的主要研究工作,给出了主要的研究结论,指出博士学位论文研究课题的创新点,并对未来的研究工作进行了展望。
Axial piston pump, the most important component in hydraulic systems, is widely used in industrial machinery.In axial piston pump, the coupling of fluid and mechanism (FM) is a basic feature. On the one hand, the mechanical energy from prime mover is converted to fluid energy through moving fluid by mechanism; on the other hand, the lubrication condition of viscous friction pairs, including piston pairs, distribution pair and slipper pairs, are maintained by the FM coupling, which have a significant effect on the performance of axial piston pump. Therefore, a new approach to study FM coupling, the virtual prototype technology of axial piston pump, was mainly focused in this thesis.
     In this thesis, the Virtual Simulation Package of Axial piston pump (ViSPA) has been developed. In order to verify the simulation results, a test rig was set up. By comparison of simulation and experimental results, it was proved that the simulation accuracy of ViSPA can reach 96.1%. In the ViSPA, three dimension (3D) multi-body dynamics model of the pump mechanism for analysis of rigid bodies were established, and a fitness element method (FEM) flexibility model was built to study elastic-mechanics of key parts. For the FM co-simulation, the rigid and flexible models must be used together with fluid model, which take into oil film dynamics of piston pairs. The kinematic, dynamics and fluid parameters in the virtual prototype environment can be calculated simultaneously and interchanged through the interfaces in real time. Moreover, the test pump was designed and engineered to mount micro sensors in the cylinder body of pump without influence on the pump performance. So not only the external performance but also the pressure, temperature and film height inside the piston pairs can be measured in a real piston pump. Based upon the ViSPA simulation and the experiment, the pressure distribution between piston and cylinder bore inside the pump was examined. The values from experiment and simulation in the 3D distribution surface are very close in same position inside the piston chamber and in the same phase of piston rotation.In addition, the ViSPA simulation accuracy of the external and internal parameters of the pump was studied. The average simulation accuracy of output flow, pressure and rotary speed is more than 96.2% in open loop system compared with the experimental results, and it can reach 95.9% in close loop. As for pressure and flow ripple rate of axial piston pump, the difference between calculated and measured value is only 0.5% and 0.6%. Therefore, the ViSPA is an effective tool to predict the external and internal performance of axial piston pump. Also the ViSPA was applied to study cross power control of axial piston double pump and high speed on/off control in axial piston pump. Thus, the ViSPA developed can be used as a reference to study the behaviors of axial piston pump together with optimal design of pump structure.
     In chapter 1, the aim and significance of the study in the thesis were discussed. The current research progresses on virtual prototype technology of axial piston pump were reviewed. The main research subjects were presented.
     In chapter 2, the theoretical study of the pump mechanism was carried out. 3D multi-body dynamics model of the pump mechanism for analysis of rigid bodies were established, and a FEM flexibility model was built to study elastic-mechanics of key parts.
     In chapter 3, the fluid model of axial piston pump was studied. The power transmission of fluid model was analyzed to obtain the torque loss, the lekage flow and the pressure effect, which are important parameters inside the pump. Also the fluid model takes into oil film dynamics of piston pairs so that help to solve the pressure distribution inside piston chamber.
     In chapter 4, the interfaces between different models were developed and packaged in a program called ViSPA, and the GUI (Graphical User Interface) of ViSPA was programmed.
     In chapter 5, In order to verify the simulation results, a test rig was designed and engineered. Not only the external performance but also the pressure, temperature and film height inside the piston pairs can be measured in a test pump, which was developed by inserting micro sensors in the cylinder body of pump.
     In chapter 6, the ViSPA simulation and experiment results were compared and analayzed. In order to improve the performance and optimize the structure, the relationships between performance and structure inside the pump were investigated. In addition, the ViSPA simulation accuracy of the external and internal parameters of the pump was studied. The average simulation accuracy of output flow, pressure and rotary speed is more than 96.2% in open loop system compared with the experimental results, and it can reach 95.9% in close loop. As for pressure and flow ripple rate of axial piston pump, the difference between calculated and measured value is only 0.5% and 0.6%. Therefore, the ViSPA is an effective tool to predict the external and internal performance of axial piston pump.
     In chapter 7, conclusions in this thesis were summarized and future research proposals were suggested.
引文
[1]路甬祥.流体传动技术与控制的历史进展与展望,2001.37(10),pp.1-8.
    [2]王益群,张伟.流体传动及控制技术的评述.机械工程学报,2003.39(10),pp.95-99.
    [3]黄人豪.液压技术与中国装备制造业,2008(2),pp.1-3.
    [4]彭熙伟,陈建萍.液压技术的发展动向.液压与气动,2007(3),pp.1-4.
    [5]黄传火,工程机械中液压技术发展的新动向.采矿技术,2006.6(2),pp.71-73
    [6]成俊兰,吴晓明.21世纪的液压技术发展展望.通用机械,2003(3),pp.13-14.
    [7]史维祥.流体传动及控制的现状及新发展(续2).流体传动与控制,2004(2),pp.6-12.
    [8]徐绳武.浅谈中国液压传动的发展与出路.液压气动与密封,2002(6),pp.10-11.
    [9]徐绳武.轴向柱塞泵和马达的发展动向.液压气动与密封,2003(4),pp.10-16.
    [10]徐绳武.Q**CY14-1B_k系列轴向柱塞泵简介.流体传动及控制,2004(2):pp.1-5.
    [11]I.Jaroslav,I.Monika.Hydrostatic pumps and motors.Inadia:Akademia books international,2001:
    [12]翟培祥.斜盘式轴向柱塞泵设计.北京:煤炭工业出版社,1978.
    [13]赵伟国.通轴式轴向柱塞泵.煤矿机电,1996(3):pp.22-24.
    [14]徐绳武.Q**CY14-1BK系列轴向柱塞泵的研制.锻压装备与制造技术,2004(5):pp.25-29.
    [15]江国耀.力土乐AV系列高压柱塞泵发展概况.建筑机械,2003(7):pp.6-9.
    [16]P.Achten,T.V.D.Brink,M.Schellekens.Design Of a Variable Displacement Floating Cup Pump.The ninth scandinavian international conference on fluid power SICFP'05,Linkoping,Sweden,June 1-3,2005.
    [17]陈立平,张云清,任卫群,覃刚.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.
    [18]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.陕西:西北工业大学出版社:2002
    [19]杨智炜,徐兵,张斌 基于虚拟样机技术的轴向柱塞泵特性仿真.液压气动与密封.2006(3):pp.33-36.
    [20]张保锋.基于虚拟样机技术的自行电站传动系动力学仿真研究[D].洛阳:河南科技大学,2004.
    [21]M.Deeken.Simulation of the Reversing Effects of Axial Piston Pumps Using Conventional CAE Tools.(O|¨)lhydraulik und Pneumatik,2002(46).
    [22]余新康,王健.基于ADAMS的液压系统虚拟样机.工程机械,2003(11):pp.42-45.
    [23]M.Deeken.Simulation of the Tribological Contacts in an Axial Piston Machine.(O|¨)lhydraulik und Pneumatik,2003(47):pp.11-12.
    [24]P.Antoszkiewicz,Martin P.Simulation of a Hydraulic Variable Axial Piston Double Pump of Bent Axis Design with Subsystems.The eighth scandinavian international conference on fluid power SICFP'03,Linkoping,Sweden,May 7-9,2003.
    [25]H.Zhang,L.Kasper,R.Kimpel.Development of a Virtual Prototype of Piston Pump for Hydrostatic Transmission.Proceedings of the Sixth ICFP,2005:pp:485-489.
    [26]杨智伟.轴向柱塞泵虚拟样机仿真技术研究[M].杭州:浙江大学,2006.
    [27]杨华勇,张斌,徐兵轴向柱塞泵马达技术的发展演变.机械工程学报,2008(10):pp
    [28]B.Zhang,B.Xu,C.Xia,H.yang.Modeling and Simulation on Axial Piston Pump Based on Virtual Prototype Technology.5th International Symposium on Fluid Power Transmission and ControlBeidaihe,China,June 6-8,2007.
    [29]高殿荣.范卓立.基于虚拟样机技术的轴向柱塞泵运动特性仿真分析.液压气动与密封,2007(4):pp.25-29.
    [30]范卓立.基于虚拟样机技术的轴向柱塞泵运动及动力特性仿真分析[M].秦皇岛:燕山大学,2007.
    [31]胡新华.轴向柱塞泵静压支承球铰副与柱塞副的理论研究:[M].杭州:浙江工业大学,2003.
    [32]那成烈.轴向柱塞泵可压缩流体配流原理.兵器工业出版社,2003.
    [33]徐绳武.柱塞式液压泵.北京:机械工业出版社,1985.
    [34]翟培祥.斜盘式轴向柱塞泵设计.煤炭工业出版社,1978.
    [35]孙毅刚,许耀铭.液压泵可靠性序贯寿命强化试验方法研究.液压与气动,1992(4),pp.41-44
    [36]孙毅刚,许耀铭.液压元件可靠性试验的基本方法.哈尔滨工业大学学报,1992,24(5),pp.96-99
    [37]孙毅刚,许耀铭.XB型轴向柱塞泵失效模式及其分析.工程机械,1991.22(10),pp.31-35
    [38]孙毅刚,许耀铭.轴向柱塞泵缸体部件疲劳可靠度计算方法.工程机械,1993.24(4),pp.38-40.
    [39]孙毅刚,许耀铭.液压泵摩擦副部件模拟磨损强化试验研究.液压气动与密封,1993(4).pp.28-30
    [40]孙毅刚,许耀铭.液压泵磨擦副极限[PV]值试验研究.液压气动与密封,1994(3).pp.9-10.
    [41]孙毅刚,许耀铭.柱塞泵摩擦副耐磨性能测试方法.液压气动与密封,1992(3).pp.44-46
    [42]孙毅刚,许耀铭.XB型轴向柱塞泵缸体-配流盘摩擦副粘铜失效分析.自动驾驶仪与红外技术,1991(1).pp.38-43
    [43]许耀铭.油膜理论与液压泵和马达的摩擦副设计.北京:机械工业出版社,1984
    [44]马六成.高压柱塞泵噪声的频谱分析与研究.哈尔滨工业大学学报,1998.30(3).pp.53-55
    [45]那成烈,范春行.轴向柱塞泵气穴振动问题研究.液压与气动,1992(4).pp.20-23
    [46]那成烈,陈宁.功率匹配轴向柱塞泵的动态仿真研究.甘肃工业大学学报,2000.26(4).pp.54-59
    [47]李书泽.轴向柱塞泵斜盘力矩分析.柴油机设计与制造,2001(1).pp.24-26
    [48]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力流量的影响.机械研究与应用,1997.10(1).pp.10-13
    [49]那成烈,李书泽.轴向柱塞泵配流盘对缸体液压作用力矩的稳定性分析.甘肃工业大学学报,2001.27(3).pp.41-43
    [50]那成烈.三角槽节流口面积的计算.甘肃工业大学学报,1993.19(2).pp.45-48
    [51]赵弘,那成烈.遗传算法在轴向柱塞泵配流盘结构优化设计中的应用.机床与液压,2001(5).pp.112-113.104
    [52]那焱青,那成烈 等.轴向柱塞泵配流盘液压支承力的计算.甘肃工业大学学报,2003.29(2). pp.53-55
    [53]那成烈,尹文波.可压缩流体工作介质情况下轴向柱塞泵配流盘设计.甘肃工业大学学报,2002.28(4).pp.65-67
    [54]王宝华,闻德生.一种新型噪声控制方法.重型机械,1994(2).pp.57-60
    [55]闻德生,潘景异 等.开路式变量轴向柱塞泵噪声控制方法.机床与液压,2004(10).pp.137-138,65
    [56]闻德生,潘景异等.轴向柱塞泵配流窗口面积对转速和噪声的影响.机床与液压,2003(5).pp.115-116.268
    [57]闻德生,潘景异等.开闭路式泵滑靴底面动态仿真及试验.流体传动与控制,2004(4).pp.24-29
    [58]王宝华,闻德生.关于柱塞泵中滑靴静压支承适应性问题的探讨.机械设计与制造,1993(4).pp.46-47
    [59]潘永阁,韩德才,周铁农.轴向柱塞泵几种滑靴的实验研究.齐齐哈尔轻工学院学报,1990.Vol.6.pp.9-14
    [60]韩德才,周铁农,潘永阁.实际工况下滑靴油膜动特性的实验研究.东北重型机械学院学报,1989.Vol.13.pp.35-38
    [61]潘永阁,韩德才,周铁农.轴向柱塞泵静压支承滑靴油膜动特性的理论分析和实验研究.齐齐哈尔轻工学院学报,1990.Vol.8.pp.10-16
    [62]姜万录,王益群.混沌振子在液压泵故障诊断中的应用.机床与液压,1999(5).pp.52-53,83
    [63]杨铁林,高英杰,孔祥东.基于小波变换的柱塞泵故障诊断方法.机械工程学报,2005.41(2).pp.112-116
    [64]闻德生,王广怀.斜盘形闭式轴向柱塞泵发热的机理及解决办法.节能技术,1992(4).pp.35-36,34
    [65]闻德生,潘景异 等.提高轴向柱塞泵性能指标的新方法.流体传动与控制,2004(5).pp.5-9
    [66]闻德生,潘景异 等.开路式轴向柱塞泵最佳自冷却的探讨.机床与液压,2004(9).pp.201-201,184
    [67]闻德生,潘景异等.降低CY泵温度的新方法.兰州理工大学学报,2005.31(4).pp.58-61
    [68]闻德生,潘景异等.CY泵提高性能指标的新方法和降噪措施.起重运输机械,2005(3).pp.57-61.12
    [69]潘景异,闻德生等.CY型泵自冷却分析.燕山大学学报,2001.25(2).pp.110-117
    [70]闻德生,王建春.CY泵与SPB泵自冷却性能比较.机械工程学报,2002.38(9).pp.150-154
    [71]潘景异,闻德生.SPB型泵自冷却分析.燕山大学学报,2001.25(4).pp.316-321,324
    [72]胡新华,杨继隆,姜伟.变粘度条件下静压支承滑靴副的理论研究.机床与液压,2003(2).pp.37-38
    [73]姜伟,陈海明,胡新华等.变粘度条件下柱塞摩擦副泄漏流量的计算.润滑与密封,2003(3).pp.25-26
    [74]胡新华,杨继隆等.静压支承滑靴油膜的动态仿真分析.机床与液压,2003(1).pp.85-86,202
    [75]胡新华,杨继隆等.变粘度条件下静压支承滑靴副的研究.润滑与密封,2003(1).pp.42-43
    [76]胡新华,杨继隆等.静压支承球铰副的支承特性研究.液压与气动,2002(11).pp.33-34
    [77]唐群国,向东湖,廖义德.纯水液压柱塞泵滑靴副的设计问题.液压与气动,2004(9).pp.69-71
    [78]聂松林,万志勇,刘卫东.一种新型配流盘的理论研究.机床与液压,2004(3).pp.88-90
    [79]聂松林,李壮云.水压柱塞泵(马达)配流盘的研究与仿真.机械科学与技术(西安),2001.20(3).pp.407-409
    [80]卢义敏,周华,杨华勇.纯水液压泵配流盘的仿真研究.液压与气动,2005(7).pp.56-57
    [81]陈远玲,周华.纯水轴向柱塞泵滑履的静压支承设计.工程设计学报,2002.9(3).pp.168-170
    [82]陈远玲,周华.纯水轴向柱塞泵配流盘的静压支承设计.林业机械与木工设备,2002.30(8).pp.14-16
    [83]庄欠伟,周华,艾青林.轴向柱塞泵滑靴副润滑特性实验台的研制.机床与液压,2005(3).pp.113-114.76
    [84]艾青林,周华,杨华勇.轴向柱塞泵配流副润滑特性试验系统的建立及仿真研究煤炭学报,2004.29(6).pp.731-735
    [85]艾青林,周华等.轴向柱塞泵配流副与滑靴副润滑特性试验系统的研制.液压与气动.2004(11).pp.22-25
    [86]Renius,K.T.1974.Untersuchung zur Reibung Zwi-schen Kolben und Zylinder bei Schragscheiben-Axialkolbenmaschinen.VDI-Forschungsheft 561.
    [87]Yamaguchi,A.and Tanioka,Y.,Piston Motion in Piston Type Hydraulic Machine(1st Report,Theoretical Analysis),Trans,Jpn.Soc.Mech.Eng.,(in Japanese),Vol 41,No.348,1975,pp.2399-2406
    [88]Yamaguchi,A.and Tanioka,Y.,Piston Motion in Piston Type Hydraulic Machine(2nd Report,Experiment),Trans,Jpn.Soc.Mech.Eng.,(in Japanese),Vol.41,No.348,1975,pp.2407-2412
    [89]Huang,C.CASPAR based slipper performance prediction in axial piston pumps.Proceedings of 3rd FPNI-PhD symposium on Fluid Power.Terassa.Spain,2004.pp.229-238.
    [90]Ivantysynova,M.A new approach to the design of sealing and bearing gaps of displacement machines.4th JHPS International Symposium on Fluid Power.Tokyo.Japan,1999.
    [91]Ivantysynova,M.and Huang,C.Thermal analysis in axial piston machines using CASPAR.Proc.of the Sixth International Conference on Fluid Power Transmission and Control.Hangzhou.China.2005.
    [92]Wieczorek,U.and Ivantysynova,M.CASPAR-a computer aided design tool for axial piston machines.Proceedings of the Bath Workshop on Power Transmission and Motion Control PTMC,2000.
    [93]Huang,C.and Ivantysynova,I.A new approach to predict the load carrying ability of the gap between valve plate and cylinder block.Proc.of Bath Workshop on Power Transmission and Motion Control (PTMC).Bath,2003.pp.225-239
    [94]Ivantysynova,M.and Lasaar,R.An investigation into micro- and macrogeometric design of piston/cylinder assembly of swash plate machings.International Journal of Fluid Power,2004.pp.23-36.
    [95] Olems, L. Investigations of the temperature behaviour of the piston cylinder assembly in axial piston pumps. International Journal of Fluid Power, Vol. 1, No. 1 (ISSN 14399776), 2000. pp. 27-38.
    [96] Lasaar, R. and Ivantysynova, M. Advanced gap design - basis for innovative displacement machines. Proc. of 3. IFK Internationales Fluidtechnisches Kolloquium. Aachen. Germany, 2002. pp. 215-230.
    [97] Ivantysynova, M. and Huang, C. Investigation of the gap flow in displacement machines considering elastohydrodynamic effect, Fifth JHPS International Symposium on Fluid Power. Tokyo. Japan, 2002. pp. 219-229.
    [98] Lasaar, R. The influence of the microscopic and macroscopic gap geometry on the energy dissipation in the lubricating gaps of displacement machines. Proc. of 1st FPNI-PhD Symposium Hamburg, 2000. pp.101-116
    [99] Lasaar, R. and Ivantysynova, M. Gap geometry variations in displacement machines and their effect on the energy dissipation. Proc. of 5th International Conference on Fluid Power Transmission and Control (ICFP'2001). Hangzhou. China, 2001. pp. 296-301.
    [100] Kyogoku, K., Hamamura, Y., Naganuma, T. and Nakahara, T., Lubrication of Oil-Hydraulic Piston Pump/Motor (Part 1, Measurement of piston Friction Force), J. Jpn. Soc. Tribologists, (in Japanese), Vol. 35, No. 12 ,1990, pp. 914-921
    [101] Kyogoku, K., Naganuma, T., Hamamura, Y. and Nakahara, T., Lubrication of Oil-Hydraulic Piston Pump/Motor (Part 2, Measurement of Oil Film Thickness between Piston and Cylinder), J. Jpn. Soc. Tribologists, (in Japanese), Vol. 36, No. 1, 1991, pp. 28-35.
    [102] Kleist, A. Berechnung von hydrostatischen Dichtstellen in hydraulischen Maschinen. Olhydraulik und Pneumatik. O+P. 39, 1995. pp.767-771.
    [103] Tanaka, K., Nakahara, T. and Kyogoku, K., Experimental Verfication of Oil Whirl of Piston in Axial Piston Pump and Motor, Trans. Jpn. Soc. Mech. Eng., Vol. 65, No. 637, C(1999), pp. 3811-3817.
    [104] Tanaka, K., Nakahara, T. and Kyogoku, K. and Momozono, S., Oil Whirl of Piston in Axial Piston Pump and Motor(Numerical Calculation under Mixed Lubrication), Trans. Jpn. Soc. Mech. Eng., (in Japanese), Vol. 64, No.618, C(1998), pp. 653-661.
    [105] Tanaka, K., Kyogoku, K. and Nakahara, T., Lubrication Characteristics on Sliding Surfaces between Piston and Cylinder in a Piston Pump and Motor (Effects of Running-In, Profile of Piston Top and Stifmess), Trans. Jpn. Soc. Mech. Eng., (in Japanese), Vol. 64, No.626, C(1998), pp. 3959-3967.
    [106] Dipl.-Ing. and M. Deeken. Simulation of the reversing effects of axial piston pumps using conventional CAE tools. Olhydraulik und Pneumatik. O+P. 46, 2002. Nr.6
    [107] Dipl.-Ing. and M. Deeken. Simulation of the tribological contacts in an axial piston machine. Olhydraulik und Pneumatik. O+P.47,2003. Nr.11-12.
    [108] M. Deeken. Displacement unit simulation in DSHplus. lhydraulik und Pneumatik. Olhydraulik und Pneumatik. O+P. 39, 2001. Nr.2
    
    [109] 贺小峰, 张铁华, 杨曙东. 水压柱塞泵柱塞副的试验研究方法[J]. 液压气动与密封, 2001(2): 7-8.
    [110] N.D. Marring. Friction Forces within the Cylinder Bores of Swash Plate Type Axial-Piston Pumps and Motors. Journal of Dynamic Systems, Measurement and Control, 1999.Vol. 121. pp. 531-537.
    [111] Dipl.-Ing. and R. Oberem. Research into the frictional force in the HWBF-lubricated contact between piston and cylinder.(O|¨)lhydraulik und Pneumatik.O+P,2001.Nr.8.
    [112]Van Bebber,D and Murrenhoff,H.Improving the wear resistance of hydraulic machines using PVD-coating technology.(O|¨)lhydraulik und Pneumatik.O+P.46,2002.Nr.11-12
    [113]Murrenhoff,H.and Scharf,S.Wear and Friction of ZRCG-Coated pistons of Axial Piston Pumps.International Journal of Fluid Power,Vol.7,No.3,2006.pp.13-20
    [114]K.A.Edge and J.Darling.Cylinder Pressure Transients in Oil Hydraulic Pumps with Sliding Plate Valves.Proc.Instn.Mech.Engrs.,Vol.200,No.B1,1986.pp.45-54.
    [115]N.D.Marring.and C.L.Wray and Z.Dong.Experimental studies on the performance of slipper bearings within axial-piston pumps.Journal of Tribology.Vol.126,2004.pp.511-518
    [116]N.D.Marring.and Y.Zhang.The improved volumetric-efficiency of an axial-piston pump utilizing a trapped-volume design.Journal of Dynamic Systems,Measurement,and Control.Vol.123,2001.pp.479-487
    [117]N.D.Marring.and Z.Dong.The impact of using a secondary swash-plate angle within an axial piston pump.Journal of Dynamic Systems,Measurement,and Control.Vol.126,2004.pp.65-74
    [118]N.D.Marring.The Torque on the Shaft of an Axial Piston Swash Plate Type Hydrostatic Pump.Journal of Dynamic Systems,Measurement,and Control.Vol.120,1998.pp.57-62.
    [119]Fang,Y.and Shirakashi,M.Mixed lubrication characteristics between piston and cylinder in hydraulic piston pump-motor.Journal of Tribology.Trans.ASME,1995.Vol.117,pp.80-85.
    [120]薛志成.柱塞副修复四法.农业机械与电气化,2003(5),pp 21
    [121]黄其圣,郭元,亓四华,柱塞副偶件配对间隙测试方法的研究,内燃机燃油喷射及控制,2001(1),pp.47-48
    [122]高兆军,柱塞副的检查与修理.陕西:农机的使用与维修:2003(4),pp.52
    [123]贺小峰,张铁华,杨曙东.水压柱塞泵柱塞副的试验研究方法.液压气动与密封,2001(2)
    [124]周华.纯水液压泵柱塞副的故障分析.液压与气动,1999(1),pp 43-44
    [125]卢光明.介绍原苏联柱塞副修复的一张方法.农机维修,1999(3),pp 35-36
    [126]宋起跃,张立群,梁晋中.斜盘型轴向柱塞泵柱塞副受力分析.兵工学报坦克装甲车与发动机分册,1999(3)
    [127]郑建荣.ADAMS--虚拟样机技术入门与提高.北京:机械工业出版社,2002.
    [128]叶炜威,余才佳等.SolidWorks 2006实体建模与二次开发教程[M].北京:国防工业出版社,2006.
    [129]赵治国,卢军.基于SolidWorks的冲压模参数化标准件库的开发[J].模具工程,2006.11:77-80.
    [130]江洪等.SolidWorks二次开发实例解析[M].北京:机械工业出版社,2004.
    [131]高航,孟宇.基于SolidWorks平台的零件级二次开发[J].CAD/CAM与制造业信息化,2006.9:52-53.
    [132]周汝望,仲梁维.基于SolidWorks二次开发的起重机斜梯参数化设计[J].精密制造与自动化,2008.4:43-44.
    [133]许书生,徐兵,李春光,张斌.基于SolidWorks二次开发的轴向柱塞泵参数化建模设计[J].机床与液压,2009.
    [134]李军,邢俊文,覃文洁.ADAMS实例教程.北京:北京理工大学出版社,2002.
    [135]陆元章.液压系统的建模与分析.上海:上海交通大学出版社,1989.
    [136]章宏甲,黄谊.液压传动.北京:机械工业出版社,2000.9.
    [137]马吉恩.轴向柱塞泵流体噪声及配流盘优化设计研究[D].杭州:浙江大学,2009.
    [138]余经洪.柱塞泵动态模型与降噪[D].上海:上海交通大学,1990.
    [139]K.A.Edge,J.Darling.The pumping dynamics of swash plate piston pumps.Journal of Dynamic System Measurement and Control-Transactions of the ASME,1986.111(2),pp.307-312.
    [140]K.A.Edge,J.Darling.A theoretical model of axial piston pump flow ripple[C]//Design modelling and control of pumps/First Bath International Fluid Power Workshop,Sep.8th 1988:113-136.
    [141]Wieczorek,Uwe 2003.Ein Simulationsmodell zur Beschreibung der Spaltstr(o|¨)mung in Axialkolbenmaschinen der Schr(a|¨)gscheibenbauart.VDI Fortschritt-Berichte.Reihe 7 Nr.443.D(u|¨)sseldorf:VDI.ISBN:3-18-344307-4.
    [142]Lasaar,Rolf.2003.Eine Untersuchung zur mikro- und makrogeometrischen Gestaltung der Kolben-/Zylinderbaugruppe yon Schr(a|¨)gscheibenmaschinen VDI Fortschritt-Berichte.Reihe 1 Nr.364.D(u|¨)sseldorf:VDI.ISBN:3-18-336401-8.
    [143]陈庆瑞.轴向柱塞泵柱塞副油膜特性测试系统研究[D].浙江大学,2008.
    [144]Xu Bing,Ma Jien,Lin Jianjie.Computational Flow Rate Feedback and Control Method in Hydraulic Elevators.Chinese Journal of Mechanical Engineering,2005.12(4),pp.490-493.
    [145]马吉恩,徐兵,杨华勇.轴向柱塞泵流动特性理论建模分析.农业机械学报,2009.
    [146]杨华勇,马吉恩,徐兵.轴向柱塞泵流体噪声的研究现状.机械工程学报,2008.
    [147]N.D.Manring.Hydraulic control systems[M].Includes bibliographical reference and index(ISBN 0-471-69311-1),2004.
    [148]S.V.帕坦卡 著,张政 译.传热与流体流动的数值计算[M],北京:科学出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700