用户名: 密码: 验证码:
基于液压伺服控制的动静压轴承设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代机械设备向大型化、高速、高精度、重载等方向发展,液体润滑动静压轴承得到越来越广泛的应用。动静压轴承在其静压油腔的进油路上采用节流器作为调节元件,节流器对动静压轴承的静、动态性能起着重要的作用。为了解决传统节流方式中固定节流器承载性能及油膜刚性差、可变节流器的动态特性较差等问题,本文创新性地提出了一种新型节流方式的动静压轴承——基于液压伺服控制的动静压轴承,该轴承采用液压伺服控制方式实现了节流方式由固定节流或可变节流到按需可控节流的转变。本文的研究成果及主要内容如下:
     ①分析了液压伺服控制动静压轴承系统的组成及工作原理,建立了轴承力学性能的雷诺方程;采用有限差分法对不同节流方式下的静压、动静压轴承的静态性能进行了求解,采用MATLAB软件计算轴承油膜压力场;建立动静压轴承的静态性能解析法模型,实现了解析计算;采用FLUENT软件求解轴承的静态性能;对上述三种方法的求解进行了对比分析。实例证明,三种方法均能有效求解轴承的压力场及静态特性,三油腔动静压轴承和三油腔阶梯动静压轴承相比于四油腔静压轴承具有较高的承载能力和油膜刚性,液压伺服控制的动静压轴承具有较高的油膜刚性和承载能力。
     ②建立了动静压轴承温度场的数学模型,对能量方程进行离散及迭代计算,分别采用数值计算法和流体力学分析软件FLUENT求解几种结构形式的动静压轴承的温度场分布。实例结果表明:两种方法计算出来的结果接近,比较符合实际运行工况。
     ③阐述了动静压轴承油膜刚度和油膜阻尼形成的机理,提出了8个动力特性系数,探讨了动力特性系数的求解方法——有限差分法和作图解析法,有效地求解了不同节流方式下和不同腔形结构的静压、动静压轴承动力特性系数。实例结果表明:两种方法计算结果比较接近;三油腔阶梯动静压轴承具有较高的油膜刚度和阻尼系数,能大大提高轴承的运行性能。此外,还分析了轴承主轴在受到外界扰动时轴心运动轨迹的数学模型,推导了动载作用下主轴轴心轨迹的运动方程。实例计算表明:当主轴在恒定载荷作用下受到外界干扰时,在干扰消除后,轴心按一定轨迹回到原有初始平衡位置。
     ④研究静压轴承节流机理,建立了毛细管、小孔、薄膜反馈、滑阀反馈节流方式下静压轴承的承载性能及油膜刚度解析式,并通过实验验证上述节流方式下轴承的承载能力及油膜刚性。提出了采用流量平衡方程法和线性化法推导上述四种节流方式下轴承的动态特性传递函数,得到动态特性方块图,实现动态仿真。仿真结果表明:固定节流方式下轴承的动态性能较好,而可变节流方式下轴承的动态响应速度偏慢、动态超调量偏大。
     ⑤分析研究液压伺服控制动静压轴承的动态特性。首先从分析单自由度液压伺服控制的静压轴承入手,建立了相应的动态特性数学模型;其次,采用线性化法和动力特性系数相结合的方法推导两自由度液压伺服控制的动静压轴承动态特性方块图。在此基础上,探索前后径向轴承、主轴等多自由度交叉耦合的主轴转子系统动态特性传递函数的分析求解方法,实现了一系列的仿真分析。仿真结果表明:液压伺服控制的静压、动静压轴承具有较为理想的动态特性。
     本文开展的液压伺服控制动静压轴承设计理论中的研究方法和研究成果,对于开发适用于高速、高精度、重载等领域的新型动静压轴承提供了重要的参考及理论价值,是液体润滑轴承理论创新的一次探索,对于轴承设计理论将产生重要的推动作用。
With the development of the modern mechanical equipment to large-scale, high speed, high precision, heavy load, etc. liquid lubrication hybrid bearings become more and more widely be used. On the entrance to hydrostatic oil recesses, the throttleers are used as regulate elements, and the throttleers play an important role in the static and dynamic performance of the hybrid bearings. For the bearing performance and the oil film rigidity of the fix throttleer are not very good and the dynamic characteristics of the variable throttleer is poor, The paper creatively puts forward to a kind of hybrid bearings with new type of throttle----based on the hydraulic servo control system. The hybrid bearing changes the way of fixed throttle and variable throttle to throttle by need. The main works and results are as follows:
     ①By analyzing the composition and work principle of the hydraulic servo control system of the hybrid bearings, the Reynolds equation of the mechanical properties of the hybrid bearings were established. Finite difference method is adopted to solve the static performance of the hybrid bearings with different throttle ways and hydraulic servo control, MATLAB software was used to calculate the pressure field of the oil film. Analytical models for the static performance of the hybrid bearings were established to realize the analytic calculation. FLUENT software was applied to analyze and solve the static performance of the hybrid bearings. According to the comparative analysis of three methods above, all the methods can effectively solve the pressure field and static performance of the hybrid bearings, and compared with hydrostatic bearings with four oil recesses, the hybrid bearings with three oil recesses and the ladder hybrid bearings with three oil recesses have higher bearing capacity and oil film rigidity, and the hybrid bearing controlled by the hydraulic servo system has higher bearing capacity and oil film rigidity.
     ②The mathematical model of the temperature field of the hybrid bearing was established, the energy equation was discreted and iterative calculated. Then the temperature field distribution of the several forms hybrid bearings respectively were calculated by numerical calculation and FLUENT. The examples show that the results of two methods are close to each other and agree with the actual operating conditions.
     ③The formation mechanism of oil film rigidity and damping of hybrid bearing were analysed, and eight dynamic characteristics coefficients were put forward and the solving methods of the dynamic characteristics coefficients were discussed ---- finite difference method and drawing analytic method, and the coefficients of the hydrostatic bearings and the hybrid bearings were solved based on different throttle ways and different cavity shapes. The results of the two methods are close to each other, the ladder hybrid bearings with three oil recesses have higher oil film rigidity and damping coefficients and could greatly improve the performance of the bearings. Besides, the mathematical model of spindle axes locus with external disturbance was built, the movement equation of the spindle axes locus was derived when dynamic load was exerted to the spindle. Examples show that the axes will move when external disturbance is exerted to the constant load spindle, axes can come back to the original balance location after the disturbance was eliminated.
     ④In order to deeply study the throttle mechanism of the hydrostatic bearing, the analytic equation of the bearing performance and the oil film rigidity for different throttle methods such as capillary, holes,film feedback, slide valve feedback throttle were established, and the bearing performance and oil film rigidity of the bearings with the throttle methods mentioned above were verified through experiment. According to the lack of study of dynamic performance of the bearings in different throttle ways, the dynamic transfer functions of the hydrostatic bearings throttled by throttle methods mentioned above were derived through the flow balance equations and the linearlization method, and the dynamic characteristics block diagrams were gained. The simulation results show that the dynamic characteristics of the hydrostatic bearing throttled by fixed throttle is better than variable throttle, the dynamic response of the hydrostatic bearings in variable throttle is slowly and the dynamic overshoot is large, which provided the important theory basic for the study of hydraulic servo control throttle method.
     ⑤In order to generally analyze the dynamic characteristics of the hybrid bearings controlled by hydraulic servo system. Firstly, the mathematical models of the dynamic characteristics of the single degree of freedom hydraulic servo-controlled hydrostatic bearings were established. Seconedly, the dynamic characteristics block diagram for the two degrees of freedom hybrid bearing is derived by combinating the linear method with the method of dynamic characteristics of coefficients. lastly, the solution methods of the dynamic characteristics of spindle rotor system for several degrees of freedom cross-coupled such as radial bearings and spindles were quested, a series of simulation analysis were obtained. The simulation results show that the hydrostatic bearing and the hybrid bearing controled by hydraulic servo system have a more satisfactory dynamic characteristics.
     The study methods and the results of the new type throttle theory in the thesis provide important reference and theoretical value for the new hybrid bearings of the fields such as high speed and high precision, heavy load. It is a quest for the theory innovation of the liquid lubricant bearings, It will play an important role in the design theory of bearing.
引文
[1]白城均,宋方臻,邵海燕.磁力轴承的发展及应用[J].济南大学学报(自然科学版), 2007, 21(4):325-331.
    [2] Kingsbury A.Trans[C].ASME 1931,53-59.
    [3] Christopherson D G. Proc[C].Institutions of Mech.Eng,1942,146.
    [4] Sternlicht, Michel A G.Trans[C].ASME 1929,51,53.
    [5] Reddi, Ocvirk K W, NACAT[C]. 1969,2808.
    [6] Sharma S C, Kumar, Vijay,et al. Study of slot-entry hydrostatic/hybrid journal bearing using the finite element method[J].Tribology International, 1999,32(4) 185-196.
    [7] Lu C H, Chen S J, Jin C B. Finite Element Analysis on Novel High-speed Hybrid Bearing[J].Key Engineering Materials, 2004, 258-259:834-838.
    [8]王建设,路长厚,王丽丽等.多油楔轴承压力分布的数值解法[J].光学精密工程,1995,3(6):55-59.
    [9]路长厚,刘文信,艾兴.机床动静压滑动轴承的计算分析[J].机床与液压,1997,6:51-53.
    [10]朱希玲.静压轴承压力场的有限元数值模拟[J].上海工程技术大学学报,2002,16(2):92-95.
    [11]王丽丽.计入供油压力的螺旋油楔动压滑动轴承动静特性分析[J].润滑与密封,2008,33(11):77-80.
    [12]王春好,张毅,敏政等.基于MATLAB的动压轴承压力分布计算和优化设计[J].现代制造工程,2007,5:8-10.
    [13]张毅.基于Matlab的汽轮机流体动压滑动轴承的优化设计[J].轴承,2009,1:4-7.
    [14]敏政,王乐,魏志国,丁大力.基于MATLAB技术的滑动轴承油膜压力分布的模拟[J].润滑与密封,2008,33(8):51-57.
    [15] Guo, Zenglin, Hirano, Toshio, et al. Application of CFD analysis for rotating machinery, part 1: Hydrodynamic, hydrostatic bearings and squeeze film damper[C].American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2003, 4:651-659.
    [16]高庆水,刘松平,蒋小文等.基于CFD方法的液体动压滑动轴承动特性研究[J].润滑与密封,2008,33(9):65-67.
    [17]刘松平,基于计算流体力学方法的动静压轴承研究[J].铜业工程,2008,4:64-66.
    [18]蒋小文,顾伯勤.收敛楔形间隙中流体流动的数值模拟[J].润滑与密封,2004,3:47-49.
    [19] Sanandres L A. Effect of Eccentricity on the Static and Dynamic Performance of aTurbulent Hybrid Bearing[C], 1991.
    [20] Helene, Mathieu, Arghir, et al. Numerical three-dimensional pressure patterns in a recess of a turbulent and compressible hybrid journal bearing[J].Journal of Tribology, 2003, 125(2): 301-308.
    [21] Jain S C, Sharma S C, Babu N R. Performance characteristics of multirecess hybrid flexible journal bearing in turbulent regime[J].Journal of the Institution of Engineers (India): Mechanical Engineering Division, 2000 ,(81)1:1-8.
    [22] Andres L S.Approximate Hybrid Bearings-Static and Dynamic Performance for centered operation[C].J Tribol Trans, ASME, 1990,12 (4):692-698.
    [23] Andres L S.Turbilent hybrid bearings withfluid inertia effects[C]. Jtribol Trans, ASME,1990,112(4):699-707.
    [24] Andres L S, Childs D, Zhou Yang.Turbulent-flow hydrostatic bearings[M].Analysis and experimental results.Int J Sci,1995,37(8):815-829.
    [25] Andres L S, Childs D. Angled injection hydrostatic bearings analysis and comparison to test results[C].Transactions of the ASME,1997,119:179-187.
    [26] Helene M, Arghir M, Frene J. Numerical study of the presssure pattern in a two-dimensional hybrid journal bearing recess,laminar,and turbulent flow results[J].Journal of Tribology, 2003,125(2):283-290.
    [27] Helene M, Arghir M. Combined Navier-Stokes and Bulk-flow analysis of hybrid bearings:Radial and Angled injection[J].Journal of Tribology,2005,127(3):557-567.
    [28]廖先禄,郭力.高速紊流液体动静压混合轴承理论分析[J].润滑与密封,2002,2:12-17.
    [29]宋贵亮,刘文志,蔡光起.高速液体动静压混合轴承的理论研究与设计应用[J].机械设计与研究,2000,3:21-23.
    [30]刘文志,宋贵亮,蔡光起.紊流大流量液体动静压混合轴承的设计计算[J].东北大学学报(自然科学版),1996,17(4):425-429.
    [31] Garg H C, Kumar V, Sharda H B.Thermohydrostatic analysis of capillary compensated symmetric hole-entry hybrid journal bearing operating with non-Newtonian lubricant[J]. Industrial Lubrication and Tribology, 2009, (61) 1:11-21.
    [32] Garg H C, Kumar V, Sharda H B.on-Newtonian and thermal effects in constant flow valve compensated symmetric hole-entry hybrid journal bearing[J].Lubrication Science, 2007, 19(4):269-286.
    [33] Kumar V,Sharma Satish C, Jain S C. On the stability margin of hole-entry hybrid journal bearings considering viscosity-temperature variation[J].Tribology Transactions, 2003,46(3):421-427.
    [34] Kumar V, Sharma S C, Jain S C.Journal motion simulation of hybrid journal bearing considering viscosity variation due to temperature change[C]. Proceedings of the ASME Tribology Division,2005,215-227.
    [35] So H, Chang T S.Charactristics of a hybrid journal bearing with one recess part 2[J].Thermal analysis,Tribology Internation,1986,19 (1):11-18.
    [36] Sharma S C, Kumar V, Jain S C, et al. Thermohydrostatic analysis of slot-entry hybrid Journal bearing[J].Tribology Internation,2002,35:561-567.
    [37] Sharma S C, Kumar V, Jain S C, et al. Studof hole-entry hybrid journal bearing system considering combined influence of thermal and elastic effects[J].Tribology Internation, 2003,36(12):903-920.
    [38] Sharma S C, Kumar V, Jain S C. Stability margin of hybrid journal bearing: influence of thermal and elastic effects[J].Tribology Internation,2004,126(3):630-634.
    [39]周良宝.考虑温度影响后动静压轴承特性的有限元分析[J].河海大学机械学院学报,1996,3:12-19.
    [40]王晓红,周大元,石玉权,李卉.轴颈偏斜对径向滑动轴承静态性能的影响[J].热能动力工程,2008,23(1):83-87.
    [41] Jang G H, Kim Y J. Calculation of dynamic coefficients in a hydrodynamic bearing considering five degrees of freedom for a general rotor-bearing system[J].American Society of Mechanical Engineers (Paper), 1998,98:1-7.
    [42] Chen Cheng-Hsien, Kang Yuan, Chang Yeon-Pun. Influences of recess depth on the stability of the Jeffcott rotor supported by hybrid bearings with orifice restrictors[J]. Industrial Lubrication and Tribology, 2005, (57)1: 41-51.
    [43]张新勇,段滋华,张牢牢.滑动轴承油膜涡动及油膜振荡研究[J].太原理工大学学报,2008,39 (3) :233-237.
    [44]刘荣强,武新华,夏松波,刘占生.滑动轴承最佳稳定性的优化方法[J].航空动力学报,1996,11(4):358-360.
    [45]鲁锐,王克明,李炳涛.简单转子系统油膜稳定界限的计算分析[J].沈阳航空工业学院学报,2008,25(4):30-32.
    [46]卢黎明.机床静压推力滑动轴承的动态特性分析[J].机床与液压,2008,36(4):247-249.
    [47]刘伟,陈大融,P rokopenk.静压轴承自控系统的动态特性[J].清华大学学报(自然科学版),2000, 40(5):80-83.
    [48]孟心斋,杨建玺,孟昭焱.液体静压支承动态性能表达式与应用[J].洛阳工学院学报,2000, 21(2):44-48.
    [49] Nagaraju T,Sharma Satish C, Jain S C. Influence of surface roughness on non-newtonianthermohydrostatic performance of a hole-entry hybrid journal bearing[C].Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2006.
    [50] Sharma Satish C, Nagaraju T, Jain S C. Performance of an orifice compensated hole-entry hybrid journal bearing system considering surface roughness and thermal effects[J]. Tribology Transactions, 2004,47(4):557-566.
    [51] Nagaraju T, Sharma Satish C, Jain S C. The stability margin of a roughened hole-entry hybrid journal bearing system[J].Tribology Transactions,2005,48(1): 140-146.
    [52]黄文亮,沈洁,程中元.表面粗糙度对动压滑动轴承承载能力的影响[J].天津轻工业学院学报,1991,4:32-37.
    [53]郑铁生,许庆余.滑动轴承动特性系数的新方法[J].1996, 32(3):20-27.
    [54]马群,谢沛霖,商春华.混合轴承动特性简化计算方法[J].机电设备,2003,4:15-21.
    [55]路长厚,刘文信,金传波.机床主轴滑动轴承的动特性计算模型[J].山东工业大学学报,1997,1(3):232-235.
    [56]岑少起,于卫东,李瑞珍.动静压滑动轴承基本方程和特性系数无量纲化研究[J].机械传动,2008,32(3):4-8.
    [57] Jadon Vijay Kumar, Singh, Madhvender. Study of supply cut-off and bearing geometric parameters on design of hybrid journal bearing[J]. Industrial Lubrication and Tribology, 2007, 59(2):92-102.
    [58] Singh Narendra, Sharma Satish C, Jain S C.Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes[J].Tribology International,2004,37(1):11-24
    [59] Sharma S C, Jain S C, Sinhasan R, et al. Comparative study of the performance of six-pocket and four-pocket hydrostatic/hybrid flexible journal bearings[J].Tribology international, 1995,20(8):531-539.
    [60] Sharma S C, Jain S C, Sinhasan R, et al. performance of hydrostatic/hybrid journal bearings[J]. Tribology Transaction,1998,41(3):375-381.
    [61] Sharma S C, Sinhasan R, Bharuka D K. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing[J].Tribology international, 2002,35:347-356.
    [62] Johnson, Robert E, Noah D. Sensitivity Studies for the Shallow-pocket Geometry of a Hydrostatic Thrust Bearing[M]. American Society of Mechanical Engineers,The Fluid Power and Systems Technology Division (Publication)FPST,2003,10:231~238.
    [63] Osman T A, Dorid M, Safar Z S, et al. Experimental Assessment of Hydrostatic Thrust Bearing Performance[J].Tribology International,1996,29(3):233~239.
    [64] Harnoy A, Khonsari M M. Hydro-roll:a novel bearing design with superior thermal characteristics[J]. Tribology Transaction,1996,39(2):455-161.
    [65] Yoshimoto S, Rowe W B, Ives D.Theoretical investigation of the effect of inlet pocket size on the performance of hole entry hybrid journal bearings employing capillary restrictors[J]. Wear, 1988,127(3):307-318.
    [66] Satish C S, J ain S C, Bharuka D K. Influence of Recess Shape on the Performance of a Capillary Compensated Circular Thrust Pad Hydrostatic Bearing [J] . Tribology International, 2002,35 (6):347-356.
    [67] Tsuneo S. journal-bearing databook[M]. Berlin:Springer Verlag,1988.
    [68] Costal, Fillon M, Miranda AS, et al. An experimental investigation of groove location and supply pressure on the THD performance of a steadily loaded journal bearing[C].ASME Journal of Tribology,2000,122(1):227-232.
    [69]郭力,李波.不同形状的高速动静压轴承研究[J].磨床与磨削,2000,2:39-41.
    [70]车建明.静压向心轴承的结构创新设计[J].润滑与密封,2005,169(3):102-104.
    [71]伍良生,刘振宇,张宝柱等.带过渡深腔的动压轴承的优化设计与试验[J].机械工程学报, 2006, 42(11):144-149.
    [72] Sharma S C, Jain S C, Reddy N M.A study of non-recessed hybrid flexible journal bearing with different restrictors[J].Tribology Transactions, 2001,44(2):310-317
    [73] Chen Cheng Hsien, Kang Yuan, Chang Yeon-Pun, et al. Influence of restrictor on stability of the rigid rotor-hybrid bearing system[J]. Journal of Sound and Vibration, 2006,297(3-5):635-648.
    [74] Chen Cheng Hsien, Kang Yuan, Chang Yeon-Pun, et al. The restrictive effects of orifice compensation on the stability of the Jeffcott rotor-hybrid bearing system[J].Industrial Lubrication and Tribology, 2002,54(6):255-261.
    [75] Kumar Vijay, Sharma Satish C, Jain S C. On the restrictor design parameter of hybrid journal bearing for optimum rotordynamic coefficients[J].Tribology International, 2006,39(4):356-368.
    [76] Sharma S C, Sinhasan R, Jain S C. Performance characteristics of multirecess hydrostatic/hybrid flexible journal bearing with membrane type variable-flow restrictor as compensating elements[J]. Wear, 2003,152(2):279-300.
    [77] Mizumoto H, Kobo M, Makimoto Y,et al. Hydrostatically controlled restrictor for an infinite stiffness hydrostatic journal bearing[M].Bull Jpn Soc Precis Eng,1987.
    [78] Hongo, T.Hongo, M.Harada, R.Miyaji. Static Characteristic of externally.
    [79] Ohsumi T, Mori H, Ikeuchi K, et al. Frequency response of automatically controlledexternally pressurized bearing[M].J JSLE Int Ed,1988.
    [80]夏恒青.内部节流静压、动静压支承中节流腔新结构及其不同布置时的支承性能[J].郑州工学院学报,989,10(2):98-102.
    [81]岑少起,郭红,张少林等.多种节流形式的动静压轴承有限元优化分析[J].机械科学与技术,2002,21(3):237-239.
    [82]华绍杰,付少敏,郭红.内置毛细管节流的动静压滑动轴承有限元——优化综合分析[J].郑州工业大学学报,1996,17(4):1-8.
    [83]朱有洪,刘建亭,杨建玺等.液体静压轴承薄膜节流新结构的设计分析[J].轴承, 2008,3:27-30.
    [84] Santos I F.On the adjusting of the dynamic coefficients of tilting-pad journal bearings[J].Tribology Transactions,1995,38(3):700-706.
    [85]Sun L,Krodkiewski J M, Cen Y. Self-tuning Adaptive Control of Forced Vibration in Rotor Systems Using an Active Journal Bearing[J ]. Journal of Sound and Vibration, 1998,213(1):1-14.
    [86] Deckler D C, Veillette R J, Choy F K,et al. Modeling of a controllable tilting pad bearings[C].Proceedings of the American control conference,1997,3416-3420.
    [87] Deckler D C, Veillette R J, Braun F K,et al. Modeling and control design for a controllable bearing system[C]. Proceedings of the 39th IEEE conference on decision and control, 2000:4066-4071.
    [88] Krodkiewski J M, Davies G J. Modeling a new three-pad activebearing[C].Proc ASME Turbo Expo,2004:799-808.
    [89] Cai Z,De Queiroz M S,Khonsari M M. On the Active Stabilization of Tilting-pad Journal Bearings[J].Journal of Sound and Vibration,2004,273:421-428.
    [90] Deckler D C,Veillette R J ,Braun M J,et al. Modeling and Control Design for a Controllable Bearing System[C]. Proceedings of the 39th IEEE Conference on Decision and Control, New York : IEEE,2000:4066-4071.
    [91] Sun L, Krodkiewski J M, Zhang N. Modeling and analysis of the dynamic behavior of an active journal bearing[M].Am Soc Mech Eng Pap,1994:1-6.
    [92] Sun L, Krodkiewski JM. Selt-tuning adaptive control of forced vibration in rotor systems using an active journal bearing[J].Journal of Sound and Vibration,1998,213(1):1-14.
    [93] Sun L, Krodkiewski J M. Experimental investigation of dynamic properties of an active Journal bearing[J]. Journal of Sound and Vibration,2000,230(5):1103-1117.
    [94]马柯达,吴超,付亚琴等.应用于主动控制油膜轴承的超磁致伸缩驱动器的实验研究[J].润滑与密封,2009,34(1):36-39.
    [95] Dara Childs. Turbonachionery rotordynamics [M]. NewYork: John Wiley & Sons,Inc,1993.
    [96] Zheng T S,Hasebe N. Calculation of equilibrium position and dynamic coefficients of a journal bearing using free boundary theory [C]. ASME J. Tribology,2000,122(3):616~621.
    [97] Zheng T S ,Hasebe N. Calculation of equilibrium position and dynamic coefficients of a journal bearing using free boundary theory [C].ASME Journal Tribology, 2000,122:(3):616~621.
    [98] Brancati R, Rocca E,Russo M,et al. Journal orbits and their stability for rigid unbalanced rotor [C]. ASME Journal of Tribology,1995,117:709~716.
    [99] Choi S K, Noah S T. Mode-locking and chaos in a jeffcott rotor with bearing clearance [C]. ASME Journal of Applied Mechanics,1994,61:131~138.
    [100]王文,张直明.油叶型轴承非线性油膜力数据库[J].上海工业大学学报,1993,14(4): 299~305.
    [101] Brancati R, Rocca E, Russo M, et al. Journal orbits and their stabilty for rigid unbalanced rotor [J]. ASME Journal of Tribology,1995 ,117:709~716.
    [102]孟志强,徐华,朱均.基于Poincare变换的滑动轴承非线性油膜力数据库方法[J].摩擦学报,2001,21(3):223~227.
    [103]郑铁生,张文,马建敏等.滑动轴承非线性油膜力的几个理论问题及应用[J].水动力学研究与进展,2003,18(6):761~768.
    [104]陈龙,郑铁生,张文等.轴承非线性油膜力的一种变分近似解[J].应用力学学报,2002,19(3):90~95.
    [105]陈照波,焦映厚,夏松波等.求解有限长圆柱型滑动轴承中非线性油膜力的近似解析方法[J].中国电机工程学报,2001, 21增刊(12):6~9.
    [106] Tower B.First report on friction experiments[M].Proc.Inst.Mech.Engrs,1983.
    [107] Petroff N P. Friction in machines and the effect of the lubricant[J].Engineering journal St.Petersburg,1883(In Russian)
    [108] Reynolds O.On the theory of lubrication and its application to Mr.Towwr’s experiments[M]. Philos.Trans.R.Soc,london,1886,177
    [109] Sommerfeld A. Zur hydrodynamishe theorie der schmiermittlreibung[M]. Z.Maths. Phys, 1904,50.
    [110] DuBois G B,Ocvirk F W. Analytical derivation and experimental evaluation of short bearing appoximations for full journal bearings[C].N.A.C.A.Tech.Rep,1953,1157.
    [111]周桂如,马骥,全永昕.流体润滑理论[M].浙江:浙江大学出版社,1990
    [112]张寇坤,钟洪.液体动静压轴承[M].广州:科学普及出版社广州分社.1998.
    [113]张直明,张言羊,谢友柏.滑动轴承流体动力润滑理论[M].北京:高等教育出版社,1986.
    [114]池长青.流体力学润滑[M].北京:国防工业出版社,1998.
    [115]张艳芹.基于FLUENT的静压轴承流场及温度场研究[A].工学硕士学位论文2007.3.
    [116]富彦丽,朱均.动静压混合油膜轴承三维温度场的研究[J].润滑与密封,2006,2:115-117.
    [117]罗大兵,罗鹿鸣,帅旗.径向动压滑动轴承主轴轴心轨迹的动态仿真[J].机械设计,2006,23(4):51-54.
    [118]周述奇,权威,王建民.薄膜反馈节流静压轴承模糊优化设计[J].机械设计与制造,2004,3:56~58.
    [119]李荛中,王有远.缝隙节流器地设计与应用[J].航空制造技术.2004,2:90~91.
    [120]赵军,付纯连,王钢.固定节流小孔在组合机床液压系统中的应用[J].组合机床与自动化加工技术,1999,12:46~49.
    [121]孟心斋,孟昭焱.节流性能优异的新型液体静压支承节流器[J].中国工程科学,2005,7(3):49~52.
    [122]胡业发,周祖德,江征风等.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700