用户名: 密码: 验证码:
红花籽粕中阿魏酰5-羟色胺和香豆酰5-羟色胺富集工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红花籽粕中阿魏酰5-羟色胺(FS)和香豆酰5-羟色胺(CS)具有抗氧化、抗肿瘤和消炎抑菌作用,可应用于食品、医药、化妆品等领域,具有广阔的开发前景。本文系统研究了红花籽粕中阿魏酰5-羟色胺和香豆酰5-羟色胺的富集工艺。
     通过单因素试验及正交实验优化确定苯丙烯酰5-羟色胺化合物提取工艺为:提取溶剂60%乙醇,提取时间90min、提取温度65℃、料液比1:20,原料粉碎过筛35目;苯丙烯酰5-羟色胺化合物得率为0.784%,粗提物得率为9.96%,粗提物中苯丙烯酰5-羟色胺化合物纯度为7.87%,阿魏酰5-羟色胺(FS)、香豆酰5-羟色胺(CS)、香豆酰色胺单葡萄糖苷(CSG)、阿魏酰色胺单葡萄糖苷(FSG)含量分别为3.82、2.58、0.53和0.94 %。对60%乙醇溶液提取红花籽粕苯丙烯酰5-羟色胺化合物动力学过程进行了分析,以Fick第一定律为基础得到了提取缩芯模型,确定溶解的苯丙烯酰5-羟色胺化合物通过红花籽粕颗粒通道向颗粒表面扩散为控制速率步骤,且提取时间t与成线性关系,结果表明该模型适用于预测、设计和优化。
     采用β-葡萄糖苷酶对粗提物中苯丙烯酰5-羟色胺配糖物进行水解,通过单因素试验和响应面分析得到酶解优化条件为:粗提物浓度为3.3g/L,pH=5.9,47℃,加酶量3.00%(g/g粗提物),水解10.5h,FSG和CSG的转化率分别达到94.6%和90.0%,转化物中FS和CS含量分别达到3.46%和4.30%,提高了样品中FS和CS的含量。
     采用D818弱碱性大孔阴离子交换树脂对酶处理液中FS、CS进行富集,最佳吸附和解吸条件:进样液中FS、CS的浓度分别为30-50、25-41μg/mL,pH=9.1,吸附流速1.5mL/min;洗脱剂为pH3.2的80%乙醇,洗脱流速1.0mL/min,FS、CS的收率分别为86.3%和85.6%,FS、CS含量分别达到23.6%和19.4%,达到了富集目的。
     采用XDA-1大孔吸附树脂对离子交换柱解吸物进行纯化,得到FS和CS混合物粗品,其中FS和CS的含量分别为32.2%和25.9%,收率分别为85.4%和83.3%。采用硅胶柱层析,石油醚/丙酮体系梯度洗脱,空塔流速0.074cm/min,进样量0.012g/g硅胶,得到FS和CS纯度分别为49.3%和40.2%。混合物,收率分别为91.3%和92.7%。HPLC-ELSD、红外光谱和质谱表明,富集纯化过程没有改变FS和CS的结构。
The N-feruloylserotonin (FS) and N-(p-coumaroyl)serotonin (CS) in safflower (Carthamus tinctorius L.) seed meal exhibited anti-oxidation, anti-inflammatory and anti-tumor effect, can be used in food, medicine, cosmetics and other fields. They have broad development prospects. In this paper, enrichment process of N-feruloylserotronin (FS) and N-(p-coumaroyl)serotonin (CS) in safflower (Carthamus tinctorius L.) seed meal has been researched systematically.
     Through single factor experiment and orthogonal experiment, the optimal technology of extracting the total phenylpropanoid amides of 5-hydroxytryptamine (PAHA) from meal was determined as follow: 60% ethanolas extraction solvent, extracted at 65℃for 90min, solid-liquid ratio of 1:20, grinding granularity of 35 mesh. The yield of PAHA was 0.784%, and the purity was 7.87%; The yield of the crude extraction was 9.96%, and the purity of FS, CS, FSG and CSG in the crude extraction were 3.82, 2.58, 0.53 and 0.94% respectively. The shrinking core model on PAHA extraction of safflower seed meal by 60% ethanol was established, based on the Fick’s first law. According to the experimental data, the model was solved and validated. The extraction rate-determining step of the process was the diffusion of solute through the extracted residual layer. And The extraction time t was in the good linear relationship with . The results proved that the model could be used to analyze and predict the process of extracting PAHA from safflower seeds by ethanol.
     The optimal enzymolysis conditions of PAHA glucoside were detemined by using the single factor experiment and response surface analysis:The crude extract concentration of PAHA 3.3g/L, pH=5.9, enzymolysis with 3.00% (g/g crude extraction)β-D-glucosidase under 47℃f or 10.5 hr. The conversation rate of N-(p-coumaroyl)serotonin-mono-β-D- glucopyranoside (CSG) and (N-feruloylserotronin)-mono-β-D-glucopyranoside (FSG) were 94.6 and 90.0% respectively, and the FS and CS content in the conversation product were 3.42 and 4.30%.
     After enzymatic hydrolysising PAHA crude extraction byβ-D-glucosidase, enrichment processes of FS and CS with D818 weak alkaline macropore anion ion-exchanger resin were studied. The optimal adsorption and desorption experiments on D818 resin were conducted to establish parameters as: FS and CS concentration in sample solution 30-50 and 25-41mg/mL, respectively, pH=9.1(for adsorption), sample flow rate 1.5 mL/min; eluent 80% ethanol, pH=3.2, flow rate 1 mL/min (for desorption). After one run of adsorption and desorption, the contents of FS and CS were increased from 3.42%, 4.30% to 23.6% and 19.4%, and the recoveries were 86.3% and 85.6%, respectively.
     Then used XDA-1 macroporous resin column chromatography for purifying poduct desorpted by D818 resin, the FS and CS crude mixture was received, and the contents of FS and CS were increased to 32.2% and 25.9%, and the recoveries were 85.4% and 83.3%, respectively. The process of gel column chromatography was researched as follow: eluted by petroleum ether/acetone=6:4,the flow rate 0.074cm/min,sample quality 0.012g/g gel,finally the contents of FS and CS in the product were 49.3% and 40.2%, and the recoveries were 91.3% and 92.7%, respectively.
     The monomers of FS and CS were detected respectively with HPLC-ELSD, IR and EIS-/MS, suggesting the chemical structure of CS and FS are unchanging after extraction, enzymolysis and purifying in enrichment process.
引文
1.王建勋.新疆红花及其主要品种简介[J].特种经济动植物,2006,(2):25-26
    2.宋广巍,黎大爵.中国西部地区红花的开发及其产业化[J].农村实用工程技术,2002,(1):28-29
    3.薛晓珍,张敏.新疆红花的主要营养成分及利用价值[J].中国食物与营养.2005,(12):7.40-42
    4.吕顺,张凡庆,孟广龙等.红花油及其在食品中的应用[J].食品研究与开发,2004,25(4):74-76
    5.郑良军,李发云,李仁辉.新疆红花发展前景及对策[J].新疆农业科技,2002,(4):7
    6.赵钢,王安虎.红花的栽培及其开发利用[J].特种经济动植物,2003,(8):28-29
    7.潘涛江.红花籽的开发利用[J].中国油脂,2001,26(2):57-58
    8.钱学射,黄奇碧.红花种子的氨基酸分析[J].氨基酸杂志,1994(2):33-34
    9. Betrchart A A. Development of safflower protein .J Amer Oil chem,1979,56(3):454-457
    10. Kang G H,Chang E J,Choi SW.Antioxidative activity of phenolic compounds in roasted safflower (Carthamus tinctrius L.)seeds. J Food Sci Nutr,1994,4:221-225
    11. Palter R, Lundin R E, Hnddon W F.A cathartic lignan glycoside isolated from Carthamus tinctorus.Phytochem,1972,11:2871-2874
    12. Johnson R C, Bergman J W, Flynn C R, et al.Oil and meal characteristics of core and non-core safflower accessions from the USDA collection.Genetic Res & Crop Evolution, 1999,46:611-618
    13. Lyon C K, Gumbmann M R,Betschart A A, et al.Removal of deleterious glucosides from safflower meal.J Amer oil chem,1979,56:560-564
    14. Sato H, Kawagishi H, Nishimura T. Serotobenine, anovel phenolic amide from safflower seeds (Carthamus tinctorius L.). Agric Biol Chem, 1985, 49:2969-2974
    15.赵雁来,何森泉,徐长德.杂环化学导论[M].北京:科学出版社,1992,192-193
    16. Eun O K,Jun Y L,Sang W C. Quantitative changes in phenolic compounds of safflower (Carthamus tinctorius L.) seeds during growth and processing. J Food Sci&Nutri, 2006, 11(4):311-317
    17. Sakamura S, Terayama Y, Kawakatsu S, et al.Conjugated serotonins related to carthartic activity in safflower seeds (Carthamus tinctorius L.). Agric Biol Chem,1978, 42:1805- 1806
    18. Sakamura S, Terayama Y, Kawakatsu S, et al. Conjugated serotonins and phenolicconstituents in safflower seed (Carthamus tinctorius L.). Agric Biol Chem, 1980, 44: 2951–2954
    19. Kumarasamy Y, Middleton M, Reid R G, et al. Biological activity of serotonin conjugates from the seeds of Centaurea nigra. Fitoterapia, 2003, 74:609–612
    20. Sarker S D, Laird A, Nahar L, et al. Indole alkaloids from the seeds of Centaurea cyanus (Asteraceae). Phytochemistry, 2001, 57:1273–1276
    21. Sarker S D, Savchenko T, Whiting P, et al. Moschamine, cis-moschamine, moschamindole and moschamindolol: four novel indole alkaloids from Centaurea moschata. Nat Prod Lett, 1997, 9:189-199
    22. Milan P, Vera L, Karel G. High-performance liquid chromatographic analysis and separation of N-feruloylserotonin isomers. J Chromatogr , 2002, 77:291–295
    23. Jenett S K, Weigl R, Kaloga M, et al. Ipobscurines C and D: macrolactam-type indole alkaloids from the seeds of Ipomoea obscura. Phytochemistry , 2003, 62:1257–1263
    24. Andrianaivoravelona J O, Terreaux C, Sahpaz S, et al. A phenolic glycoside and N-(p-coumaroyl)-tryptamine from Ravensara anisata. Phytochemistry , 1999, 52:1145– 1148
    25. Tanaka E, Tanaka C, Mori N, et al. Phenylpropanoid amides of serotonin accumulate in witches’broom diseased bamboo. Phytochemistry, 2003,64:965–969
    26. Watanabe M. Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains.J Agric Food Chem, 1999, 47:4500–4505
    27. Kang K, Jang S M, Kang S, et al. Enhanced neutraceutical serotonin derivatives of rice seed by hydroxycinnamoyl-CoA: serotonin N-(hydroxycinnamoyl)transferase. Plant Sci, 2005, 168:783–788
    28. Jang S M, Ishihara A, Back K. Production of coumaroylserotonin and feruloylserotonin in transgenic rice expressing pepper hydroxycinnamoyl-coenzyme A:serotonin N- (hydroxycinnamoyl) transferase.Plant Physiol, 2004, 135:346–356
    29. Niwa T, Etoh H, Shimizu A, et al. cis-N-(p-coumaroyl)serotonin from Konnyaku, Amorphophalus konjac K. Koch. Biosci. Biotechnol.Biochem, 2000, 64:2269-2271
    30. Cutillo F, D’Abrosca B, Dellagreca M, et al. Cinnamic acid amides from Chenopodium album:effect on seeds germination and plant growth. Photochemistry, 2003, 64:1381- 1387
    31. Majak W, Bai Y L, Benn M H. Phenolic amides and isoquinoline alkaloids from Corydalis sempervirens. Biochem Syst & Ecol, 2003, 31:649–651
    32. Negrel J. Martin C. The biosynthesis of feruloyltyramine in Nicotiana tabacum. Phytochemistry, 1984, 23:2797-2801
    33. Zhang H L, Nagatsu A, Sakakibara J, Novel antioxidants from safflower (Carthamus tinctorius L.) oil cake. Chem Pharm Bull, 1996, 44:874-876
    34.王未鲜,金青哲,刘元法等,一种测定红花籽粕中5-羟色胺衍生物总量的方法[J].中国油脂, 2006, 31(4):50-52
    35. Joule J A, Mills K.杂环化学[M].业诚等译.北京:科学出版社, 2004, 278-310
    36.黎景丽,文一彪.氨基酸分析(上)[J].中国调味品,2002, 12:34-37
    37.肖崇厚.中药化学(供中药类专业用)[M].上海:科学技术出版社,1997,84-91
    38.吴立军.中药化学[M].北京:中国医药科技出版社,2000,21-44
    39. Zhang H L, Nagatsu A, Watanabe T, et al. Antioxidative compounds isolated from safflower (Carthamus tinctrius L.) oil cake. Chem Pharm Bull, 1997, 45:1910–1914
    40. YamamotováA, PometlováM, Harmatha J,et al.The selective effect of N- feruloylserotonins isolated from Leuzea carthamoides on nociception and anxiety in rats. J Ethnopharmacol, 2007, 112:368-374
    41.冯年平,郁威.中药提取分离技术原理与应用[M].北京:中国医药科技出版社,2005,15-17
    42.杜成兵.红花籽粕中5-羟色胺衍生物超声波提取工艺研究[D]学士学位论文,江南大学食品学院,2007
    43.冯世江,李春,曹竹安.糖苷酶及其在糖基化合物改性中的研究[J].生物加工过程,2006,4(3):16-21
    44.迟玉明,赵晞瑛,吉泽丰吉等.离子交换树脂用于角蒿总生物碱的纯化研究[J].天然产物研究与开发,2005,17(5):617-621
    45.霍务贞,李苑新,姜红宇.阳离子交换树脂纯化喘平复方总生物碱的工艺研究[J].中药新药与临床药理, 2005,(6) :446-449
    46.林绥,李援朝,冯樱井等.雷公藤倍半萜生物碱的研究[J].药学学报,2001,36(2):116-118
    47.蔡应繁,潘正,高运玲.大孔吸附树脂分离纯化唐松草总生物碱的工艺研究[J].中成药,2007,29(11): 1609-1611
    48. Naoto K, Kanna K, Tetsuya S, et al. Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem, 2006, 54:4970- 4976
    49. Kwang D, Moon, Back S S, et al.Safflower Seed extract lowers plasma and hepatic lipids in rats fed high cholesterol diet. Nutrition research,2001,21:895-904
    50. Hotta Y, Nagatsu A, Liu W, et al. Protective effects of antioxidative serotonin derivatives isolated from safflower against postischemic myocardial dysfunction. Mol Cell Biochem, 2002, 238:151-162
    51. Kim J H, Oh W T, Roh J S, et al. In vitro antioxidant activity of safflower (Carthamus tinctorius L.) seeds. Food Sci & Biotechnol, 1999, 8(2):88-92
    52. Akito N, Zhang H L, Mizukami H, et al. Tyrosinase inhibitory and anti-tumor promoting activities of compounds isolated from safflower (Carthamus tinctorius L.) and cotton (Gossypium hirsutum L.)oil cakes. Nat.Prod.Lett, 2000, 14:153–158
    53. Kawashima S, Hayashi M, Takii T, Kimura H.et al.Serotonin derivatives, N-(p- coumaroyl) serotonin, inhibits the production of TNF-a, IL-1 a, IL-1 b, and IL-6 endotoxin-stimulated human blood monocytes. Interferon Cytokine Res,1998,18: 423–428
    54. Yue Q, Miller C J, White J F, et al. Isolation and characterization of fungal inhibitors from Epichloe festucae.J Agric Food Chem., 2000, 48:4687–4692
    55. Takii T, Masaru H, Hiroyuki H, et al. Serotonin derivative, N-(p-coumaroyl) serotonin, isolated from safflower(Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor(bFGF) or epidermal growth factor (EGF) .J biochem,1999,125:910-915
    56. Jung S R,Ji Y H,Jung H K, et al. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull, 2004, 27(12):1976-1978
    57. YamamotováA, PometlováM, Harmatha J, et al. The selective effect of N- feruloylserotonins isolated from Leuzea carthamoides on nociception and anxiety in rats.J Ethnopharmacol, 2007, 112:368-374
    58. Koyama N, Seki T, Arisaka H, et al. Plant seed extract composition and process for producing the same[P]. UCS0060257540. 2006-11-16
    59.李心文,逯晓萍,米富贵.红花蛋白的提取及利用价值评价[J].内蒙古农牧学院学报,1996,17(4):7-11
    60.刘艳梅,魏福祥.超临界流体萃取动力学模型的比较研究[J].河北工业科技,2006,23(5):306-311
    61.杨宏志,田伟,贾建.溶剂法提取亚麻籽木脂素动力学模型的建立[J].中国粮油学报,2007,22(2):75-78
    62. Giri C C, Sharma D K. Kinetic studies and shrinking core model on solvolytic extraction of coal. Fuel Processing Technology,2000,68:97-109
    63. Motonobu G, Bhupesh C R, Tsutomu H. Shrinking-core leaching model for supercritical- fluid extraction. J Supercritical Fluid,1996,9:128-133
    64.赵跃强,刘维炜,吴争鸣等.从天然植物中超临界流体萃取有效成分动力学模型研究[J].中药材,2006,29(1):57-59
    65.朱开宏,袁渭康.化学反应工程分析[M].北京:高等教育出版社,2002,220-227
    66.格.叶.克里切夫斯基.染色和印花过程的吸附与扩散[M].北京:纺织工业出版社.1985,72-74
    67.储茂泉,古宏晨,刘国杰.中草药浸提过程的动力学模型[J].中草药,2000,31(7):504-506
    68.李远华.β-葡萄糖苷酶的研究进展(综述)[J].安徽农业大学学报,2002,29(4):421-425
    69.许晶,张永忠,孙艳梅.β-葡萄糖苷酶的研究进展[J].食品研究与开发,2005,26(6):183-186
    70. Julie B. Kempton, Stephen G, et al.. Mechanism of agrobacterium. beta.-glucosidase: kinetic studies. Biochemistry,1992,31: 9961-9969
    71.徐茂军.β-葡萄糖苷酶对豆奶及豆奶粉中大豆异黄酮糖苷化合物的转化作用研究[J].中国食品学报,2005,5(4):28-32
    72.孙艳梅,张永忠,王伊强等.大豆β-葡萄糖苷酶水解大豆异黄酮糖苷的研究[J].中国粮油学报,2006,21(2):86-89
    73.孙艳梅,张永忠,许晶等.黑曲霉β-葡萄糖苷酶水解大豆异黄酮糖苷研究[J].东北农业大学学报,2007,38(1):9-12
    74.常文保.简明分析化学手册[M].北京:北京大学出版社,1981,262-266
    75.姜志新,谌竟清,宋正孝.离子交换分离工程[M].天津:天津大学出版社出版,1992,67-71
    76. L.R.斯奈德,J.J.柯克兰,现代液相色谱法导论[M].第二版.高潮等译.北京:化学工业出版社,1988,233-254
    77.赵邦屯,魏天俊,冯光瑛.薄层色谱溶剂系统优化方法进展[J].色谱,1995,13(2):99-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700