用户名: 密码: 验证码:
重油的组成结构和高效转化的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着轻质石油资源的快速减少以及对其消耗的增加,重质石油资源的有效利用变得越来越重要。了解重质油的化学组成并且开发新型催化剂作为重油高效转化和利用的基础研究是非常必要的。通过对重油中化学成分的研究可以对高效利用和催化转化中重油的性能和状态进行预测和评估,如通过对其组成的了解可以更好的解释重油高效转化利用中的相分离现象、焦炭的形成、分子间的相互作用以及催化剂失活的原因;通过对新型催化剂材料的研究将促进重油的高效转化和利用。
     考虑到不同溶剂中重油的化学组成有所不同,本文首先以大港减压渣油(DVR)、俄罗斯减压渣油(RVR)和库姆科尔减压渣油(KVR)为研究对象,对比了三种减压渣油在一系列有机溶剂中的溶解性,利用GC/MS和FTIR对每一种溶剂中的可溶组分进行分析。实验结果表明三种减压渣油在不同溶剂中的萃取率在很大程度上与溶剂的介电常数有关,三种减压渣油在介电常数较小的溶剂中均显示出较好的溶解性。三种减压渣油各溶剂萃取物中检测到了百余种化合物,包括链烷烃、环烷烃、烯烃、芳烃和含杂原子有机化合物,其中链烷烃和环烷烃占优势;各种成分的含量与三种减压渣油的氢碳比及平均分子质量有关。通过对三种减压渣油各溶剂萃取物的组成分析,确定了室温下依次用石油醚、苯和二硫化碳对三种减压渣油进行分级分次萃取,以期进一步认识其组成结构。
     为了进一步了解三种减压渣油族组分的组成,本文利用柱层析法对三种减压渣油进行了SARA四组分分析,并利用GC/MS对三种减压渣油中的各族组分进行分析。实验结果表明KVR中饱和分含量最高,RVR中沥青质含量最高,DVR中芳香族馏分及重质组分的含量最高。三种减压渣油的饱和分中链烷烃和环烷烃占优势,包括C12-C44烷的正构烷烃、少量支链烷烃、带长侧链的烷基环己烷、烷基环戊烷、豆甾烷、胆甾烷、羽扇烷和藿烷等;RVR芳香族馏分中检测到了较多的芳烃,并以多环芳烃为主。仅在DVR饱和分、RVR和KVR胶质和沥青质中检测到长链烯烃且含量较低。在RVR和KVR的胶质和沥青质中检测到了含杂原子有机化合物,且以噻吩类化合物为主。
     本文在温和条件下依次用石油醚、苯和二硫化碳对DVR、RVR和KVR进行分级分次萃取,利用GC/MS对各级各次萃取物进行分析。实验结果表明,三种减压渣油石油醚第一次萃取物中饱和烃占优势,包括正构烷烃(C10-C43)、支链烷烃(C16-C28)、烷基环己烷(C24-C36)、烷基环戊烷、豆甾烷、胆甾烷、羽扇烷和藿烷(C24-C36)等。而石油醚第二次萃取物由少量的烷烃和一系列的烷基苯基碳酸酯组成。三种减压渣油苯的两次萃取物也存在很大差异,苯对DVR中氢醌、RVR中二叔丁基对甲酚以及KVR中联苯都有很好的分离效果,三种化合物在苯萃取物GC/MS可测成分中的含量分别达到了85%,59%和73%。而二硫化碳萃取物中未检测到任何有机化合物。通过对分级萃取过程中三种减压渣油中长链烯烃的溶出行为的研究,发现减压渣油中长链烯烃的溶出行为和存在方式与煤中长链烯烃相似,长链烯烃常与奇碳优势分布的长链烷烃同时溶出;与长链烷烃相比,长链烯烃与渣油的大分子网络或交联网络结构的作用较强。
     为了进一步了解渣油中重质组分的化学组成,本文以重质组分含量最高的DVR为研究对象,利用活性炭(AC)、Y型分子筛(HY)和金属镍(Ni)三种催化剂分别对DVR石油醚不溶组分(DVR-PEIF)进行催化加氢处理,并利用GC/MS对三种反应产物的石油醚可溶组分进行分析,鉴定出118种有机化合物,包括链烷烃、环烷烃、烯烃、芳烃和含杂原子有机化合物。实验结果表明,Ni存在下的催化反应可能以催化加氢反应为主,而AC存在下可能以催化裂化反应为主。
     本文还首次在交联的聚丙烯酰胺(C-PAM)水凝胶存在下合成了方钠石分子筛空心球和空心钠A型分子筛晶体,提出了聚合物交联网络中原位结晶形成空心分子筛的机理,指出分子筛空心结构的形成与由表面到中心的的结晶过程有关。用来合成方钠石空心球的合成凝胶中各组分的质量比为:0.8SiO2: 1.0Al2O3: 21.2Na2O: 86.0H2O: 7.4-28.7丙烯酰胺。利用X-射线衍射、扫描电镜、透射电镜和氮气吸附解析对合成的样品进行了表征,并利用双束显微镜对其内部结构进行了分析。实验结果表明方钠石空心球的直径约为1-5μm,壁厚约为0.5-1μm,而且随着丙烯酰胺量的增多,球的直径由5-10μm减小至1-3μm。用来合成空心钠A型分子筛晶体的合成凝胶中各组分的质量比为:0.8SiO2: 1.0Al2O3: 2.6Na2O: 16.4H2O: 2.6-3.8丙烯酰胺,所合成的空心钠A型分子筛晶体的大小约为300-500 nm。本研究为其他分子筛空心球的合成提供了一个简单可行的方法,也为进一步研究具有更高催化活性和选择性的空心分子筛纳米复合材料,促进重油的高效转化奠定了基础。
The efficient utilization of heavy petroleum becomes more and more important with rapid decrease in light petroleum resources and rapid increase in light petroleum consumption. Understanding composition of heavy oils and synthesizing new catalysts are necessary for efficient utilization of heavy oils as a basic research. For example, predicting the behaviors such as phase separation, coke formation, molecular interaction, and the cause of catalyst deactivation by understanding composition of heavy oils, and enhancing the efficiency of utilization and conversion of heavy oils by synthesizing new catalysts.
     Taking the consideration that composition of heavy oil is closely related to its solubility in different solvents into account, solubility of Dagang vacuum residue (DVR), Russia vacuum residue (RVR) and Kumkol vacuum residue (KVR), three kinds of heavy oils, were compared in a series of organic solvents. The extract yields of DVR, RVR and KVR are largely related to dielectric constant of the solvents, i.e., DVR, RVR and KVR tend to easily dissolve in solvents with lower dielectric constant. The compounds detected from the extraction solutions can be classified into five types: chain alkanes, cyclanes, alkenes, arenes and heteroatoms-containing compounds. Saturated hydrocarbons, i.e., chain alkanes and cyclanes are predominant with all the solvents.
     DVR, RVR and KVR were respectively separated in an alumina packing column by flushing with different solvents, and saturated hydrocarbon (S), aromatics (A), resins (R) and asphaltine (AT) were obtained. SARA were analyzed with GC/MS. The results show that the contents of S in KVR is more than those in DVR and RVR, and the contents of A and R in DVR is the most, and the contents of AT in RVR is more than those in DVR and KVR. The compounds detected from SARA of DVR, RVR and KVR consist of chain alkanes, cyclopanes, alkenes, arene and heteroatoms-containing compounds. DVR, RVR and KVR were extracted in Soxhlet extractor with petroleum ether (PE), benzene and carbon disulfide (CS2) sequentially and the extracts were analyzed with GC/MS. The results show that group components of organic compounds in DVR, RVR and KVR can be separated preferably by fractional extration. The compounds detected from the first PE extracts mostly consist of normal chain alkanes (C10-C43), branched alkanes (C16-C28), cyclanes (C24-C36) and alkenes (C11-C30). The compounds detected from the second PE extracts mostly consist of alkyl phenyl carbonic acid esters. The compounds detected from the first benzene extracts are different from those in the second benzene extracts. Moreover, hydroquinone from DVR, ditertbutylparacresol from RVR, and biphenyl from KVR in benzene extracts are predominant. However, any compounds weren’t dedtected in CS2 extracts. The solubilization behavior of long-chain alkenes was investigated during the fractional extraction. The results show that long-chain alkenes have stronger interaction with vacuum residue macromolecular or linked network structure than long-chain alkanes and are often dissolved out together with long-chain alkanes with odd carbon number.
     The PE-insoluble fraction of DVR (DVR-PEIF) was subject to catalytic hydrogenation in the presence of activated carbon (AC), zeolite Y (HY) and nickel (Ni) under initial hydrogen pressure of 5 MPa at 300 oC, respectively. Most of compounds detected with GC/MS in the PE-soluble fraction of products from DVR-PEIF are aliphatic species. Small amounts of arenes and heteroatom-containing compounds were also identified. The results show that the AC and Ni catalyzed the catalytic cracking and the catalytic hydrogenation of DVR-PEIF, respectively.
     Hollow zeolite structures including sodalite spheres and hollow zeolite NaA crystals were synthesized by introducing crosslinked polyacrylamide (C-PAM) hydrogels into zeolite synthesisgels. The synthesis gels with weight compositions of 0.8SiO2: 1.0Al2O3: 21.2Na2O: 86.0H2O: 7.4-28.7 acrylamide (AM) were used to produce hollow sodalite spheres. The synthesized hollow sodalite spheres had diameter of 1-5μm and shell thickness of 0.5-1μm, and the sphere diameters decreased from 5-10μm to 1-3μm as the amount of C-PAM increased. Hollow zeolite A crystals with sizes of 300-500 nm were grown from the synthesis gel with a weight ratio of 0.8SiO2:1.0Al2O3: 2.6Na2O: 16.4H2O: 2.6-3.8AM. The experimental results suggest that the formation of hollow zeolite structures may involve a surface-to-core crystallization process induced by crosslinked polyacrylamide networks.
引文
[1] 梁文杰. 重质油化学[M]. 山东东营:石油大学出版社,2000.
    [2] Radler M. Oil, gas reserves inch up, production steady in 2007[J]. Oil & Gas Journal, 2007, 105 (48): 22-23.
    [3] 梁刚. 2007年世界石油产量持平、储量略增[J]. 国际石油经济,2008,(1):64-65.
    [4] Anonymous. Egypt and Tomorrow's Energy Markets: Comprehensive strategy equips Egypt for a competitive energy world[J]. Oil & Gas Journal, 2008, 106 (7): 21.
    [5] 中国加油站网. http://www.oilboss.cn/fristnews/ShowArticle.asp?ArticleID=1309.
    [6] 辛云岭,李政,郑志斌. 废水处理中沸石的应用研究进展[J]. 北京工商大学学报,2005,23(3):13-16.
    [7] Li D, Yao J F, Wang H T, Hao N, Zhao D Y, Ratinac K R, Ringer S P.Organic-functionalized sodalite nanocrystals and their dispersion in solvents[J]. Microporous Mesoporous Mater, 2007, 106 (1-3): 262-267.
    [8] 徐兆瑜. 略析分子筛的发展和应用[J]. 化工技术与开发,2007,36(7):31-36.
    [9] Tosheva L, Valtchev V P. Nanozeolites: synthesis, crystallization mechanism, and applications[J]. Chem Mater, 2005, 17 (10): 2494-2513.
    [10] 宋继瑞,夏增敏,文利雄,陈建峰. 聚烯烃催化剂载体材料研究进展[J]. 化工进展,2006,25(9):1049-1055.
    [11] 晏志军,杨建利,杜亚明,李栋墚. 加入有机溶剂合成超微A型沸石[J]. 工业催化,2007,15(9):65-68.
    [12] 吴平易,季生福,胡林华,李成岳. 介孔分子筛孔中过渡金属的组装及其催化应用[J]. 化学进展,2007,19(4):437-443.
    [13] 李全芝. 分子筛催化新进展[J]. 石油化工,1995,25(4):299-305.
    [14] 张秀斌,赵环宇,柳云骐,刘晨光. 分子筛择形催化作用理论和应用的新进展[J]. 石油与天然气化工,2005,34(6):454-458.
    [15] Smit B, Maesen T L M. Towards a molecular understanding of shape selectivity[J]. Nature, 2008, 451 (7179): 671-678.
    [16] 刘春英,柳云骐,李清华,李学礼,刘晨光. 超微NaY分子筛的合成和催化芳烃转化性能[J]. 工业催化,2004,12(11):41-44,53.
    [17] ?ejka J, Mintova S. Perspectives of Micro/Mesoporous Composites in Catalysis[J]. Catalysis Reviews, 2007, 49 (4): 457–509.
    [18] Stein A. Advances in microporous and mesoporous solids-highlights of recent progress[J]. Adv Mater, 2003, 15 (10): 763-775.
    [19] Wang Y J, Caruso F. Macroporous zeolitic membrance bioreactors[J]. Adv Funct Mater, 2004, 14 (10): 1012-1018.
    [20] Wang X D, Yang W L, Tang Y, Wang Y J, Fu S K, Gao Z. Fabrication of hollow zeolite spheres[J]. Chem Commun, 2000, (21): 2161-2162.
    [21] Ren N, Yang Y H, Shen J, Zhang Y H, Xu H L, Gao Z, Tang Y. Novel, efficient hollow zeolitically microcapsulized noble metal catalysts[J]. Journal of Catalysis, 2007, 251 (1): 182-188.
    [22] 季顺成,邬国英. 核磁共振技术在石油加工中的应用[J]. 江苏石油化工学院学报,1997,9(1):55-60.
    [23] Brown J K, Ladner W R. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy. 2. a comparison with infra-red measurement and the conversion to carbon structure[J]. Fuel, 1960, 39 (1): 87-96.
    [24] 刘丰秋,王京,田松柏. 核磁共振分析技术在重油表征中的研究进展[J]. 分析测试学报,2007,26(6):933-939.
    [25] Hájek M. Sklená? V, ?ebor G, Lang I, Weisser O. Analysis of heavy crude oil residues by carbon-13 fourier transform nuclear magnetic resonance spectrometry[J]. Anal Chem, 1978, 50 (6): 773-775.
    [26] 刘晨光,阙国和,陈月珠,梁文杰. 减压渣油芳碳率fa的两个经验计算方法[J]. 石油炼制,1987,(12):53-59.
    [27] Dreeskamp H, Potempa T, Müller A. Aspects of quantitative 13C n.m.r.-spectroscopy of high boiling oil residues and coal tar pitches[J]. Fuel, 1989, 68 (8): 972-977.
    [28] Kotlyar L S, Morat C, Ripmeester J A. Structural analysis of Athabasca maltenes fractions using distortionless enhancement by polarization transfer (DEPT) related 13C n.m.r. sequences[J]. Fuel, 1991, 70 (1): 90-94.
    [29] 梁文杰,阙国和,陈月珠. 我国原油减压渣油的化学组成与结构II. 减压渣油及其各组分的平均结构[J]. 石油学报(石油加工),1991,7(4):1-11.
    [30] 李新安,梁文杰. 用13C-NMR自旋回波技术研究减压渣油的平均结构[J]. 石油大学学报,1993,13(1):99-103.
    [31] 任杰,翁惠新,刘馥英. 重质油组成与结构的研究[J]. 石油炼制,1993,24(9):56-60.
    [32] 陆善祥,Gray. 核磁共振谱法估计重油和沥青中芳环分布[J]. 华东理工大学学报,1994,20(4):501-506.
    [33] 杨扬,刘兵,陈建海,张鸿斌,孙小强,顾志杰. 炼厂重质油的核磁共振光谱特征[J]. 石油化工高等学校学报,1999,12(4):11-14.
    [34] 杨扬,尹芳华,张鸿斌,席海涛,孙小强,顾志杰. 重质油的氢碳原子比与核磁共振氢谱之间关系的研究[J]. 石油化工,2001,30(7):554-557.杨扬,
    [35] 尹芳华,席海涛,孙小强,张涛. 从核磁共振氢谱推导的重质油氢碳原子摩尔比计算式[J]. 分析测试学报,2002,21(5):76-78.
    [36] Yang Y, Liu B, Xia H T, Sun X Q, Zhang T. Study on relationship between the concentration of hydrocarbon groups in heavy oils and their structural parameter from 1H NMR spectra[J]. Fuel, 2003, 82 (6): 721-727.
    [37] Michon L, Siri O, Hanquet B, Martin D. Qualitative and quantitative functional determination in bitumen acidic fractions by 29Si NMR spectroscopy. correlation with bitumen aging[J]. Energy & Fuels, 1996, 10 (5): 1142-1146.
    [38] Michon, L C, Netzel D A, Turner T F, Martin D, Planche J P. A 13C NMR and DSC Study of the Amorphous and Crystalline Phases in Asphalts[J]. Energy & Fuels, 1999, 13 (3): 602-610.
    [39] Wandas R. Structural Characterization of Asphaltenes from Raw and Desulfurized Vacuum Residue and Correlation Between Asphaltene Content and the Tendency of Sediment Formation in H-oil Heavy Products[J]. Petroleum Sci Tech, 2007, 25 (1): 153-168.
    [40] Hauser A, Bahzad D, Stanislaus A, Behbahani M. Thermogravimetric analysis studies on the thermal stability of asphaltenes: pyrolysis behavior of heavy oil asphaltenes[J]. Energy & Fuels, 2008, 22 (1): 449-454.
    [41] 刘丰秋,王京,田松柏. NMR法测定重油中碳、氢的质量百分含量[J]. 光谱实验室,2007,24(2):50-55.
    [42] Wen Y, Kantzas A. Evaluation of heavy oil/bitumen-solvent mixture viscosity models[J]. Journal of Canadian Petroleum Technology, 2006, 45 (4): 56-61.
    [43] Zhao S Q, Zhou Y C, Xu Z M, Xu C M, Chung K H. A new group contribution method for estimating boiling point of heavy oil[J]. Petroleum Sci Tech, 2006, 24 (3-4): 253-263.
    [44] 方文军,徐斌,俞庆森,林瑞森,王国平. 基于1HNMR测定和基团贡献法预测石油馏分的热化学性质[J]. 化工学报,2002,53(4):417-421.
    [45] 王京. 炼油工艺中结垢与阻垢研究的新进展[J]. 石油化工,2001,30(2):141-146.
    [46] Akrami H A, Yardim M F, Akar A, Ekinci E. FT-i.r. characterization of pitches derived from avgamasya asphaltite and raman-dincer heavy crude[J]. Fuel, 1997, 76 (14-15): 1389-1394.
    [47] Kawahara F K. Identification and differentiation of heavy residual oil and asphalt pollutants in surface waters by comparative ratios of infrared absorbances[J]. Environmental Science & Technology, 1969, 3 (2): 150-153.
    [48] Wilt B K, Welch W T, Rankin J G. Determination of asphaltenes in petroleum crude oils by fourier transform infrared spectroscopy[J]. Energy & Fuels, 1998, 12 (5): 1008-1012.
    [49] Aske N, Kallevik H, Sj?blom J. Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude of infrared and near-infrared spectroscopy[J]. Energy & Fuels, 2001, 15 (5): 1304-1312.
    [50] 许志明,王宗贤,Kotlyar L S,Chung K H. 油砂沥青改质产品中甲苯不溶物的表征[J]. 石油学报(石油加工),2004, 20(1):68-74.
    [51] 水恒福,沈本贤,高晋生. 1H NMR/IR对重质油结构的研究[J]. 华东冶金学院学报,1999,16(3):224-229.
    [52] Castro A T. NMR and FTIR Characterization of Petroleum Residues: Structural Parameters and Correlations[J]. J Braz Chem Soc, 2006, 17 (6): 1181-1185.
    [53] 王艳秋,宗志敏,魏贤勇,张佳伟,韩丽,王枫,金鑫. 大港减压渣油超临界萃取物的分析[J]. 精细石油化工进展,2006,7(8):48-52.
    [54] Odebunmi E O, Adeniyi S A. Infrared and ultraviolet spectrophotometric analysis of chromatographic fractions of crude oils and petroleum products[J]. Bulletin of the Chemical Society of Ethiopia, 2007, 21 (1): 135-140.
    [55] Guan R L, Zhu H. Study on components in shengli viscous crude oil by FTIR and UV-Vis Spectroscopy[J]. Spectroscopy and spectral analysis, 2007, 27 (11): 2270-2274.
    [56] Peinder P, Petrauskas, D D, Singelenberg F, Salvatori F, Visser T, Soulimani F, Weckhuysen B M. Prediction of long and short residue properties of crude oils from their infrared and near-infrared spectra[J]. Applied Spectroscopy, 2008, 62 (4): 414-422, 429.
    [57] Farcasiu M, Rubin B R. Aliphatic elements of structure in petroleum resids[J]. Energy & Fuels, 1987, 1 (5): 381-386.
    [58] Ralston C Y, Mitra-Kirtley S, Mullins O C. Small population of one to three fused-aromatic ring moieties in asphaltenes[J]. Energy & Fuels, 1996, 10 (3): 623-630.
    [59] 李勇志,邓先梁,俞惟乐. 同步荧光光谱法监测按芳环数分离重质油中的芳烃[J]. 燃料化学学报,1998,26(3):280-284.
    [60] 刘伟,胡斌,于敦源,程军. 我国重质油的三维荧光特征及其地质意义[J]. 物探与化探,2004,28(2):123-129.
    [61] Groenzin H, Mullins O C, Eser S, Mathews J, Yang M G, Jones D. Molecular size of asphaltene solubility fractions[J]. Energy & Fuels, 2003, 17(2):498-503.
    [62] Riveros L, Jaimes B, Ranaudo M A, Castillo J, Chirinos J. Determination of asphaltene and resin content in venezuelan crude oils by using fluorescence spectroscopy and partial least squares regression[J]. Energy & Fuels, 2006, 20 (1): 227-230.
    [63] 张正红,田松柏,朱书全. 色谱法、质谱法及色谱/质谱法在测定重油烃类组成中的应用[J]. 石油与天然气化工,2005,34(4):315-320,6.
    [64] Ashe T R, Colgrove S G. Petroleum mass spectral hydrocarbon compound type analysis[J]. Energy & Fuels, 1991, 5 (3): 356-360.
    [65] Larsen J W, Li S. Determination of bitumen molecular weight distributions using 252Cf Plasma desorption mass spectrometry[J]. Energy & Fuels, 1995, 9 (5): 760-764.
    [66] 吕振波,全德新. 质谱法对重油中的含氮多环芳烃的定性分析[J]. 石油化工,1996,25(12):849-851.
    [67] Grigsby R D, Green J B. High-resolution mass spectrometric analysis of a vanadyl porphyrin fraction isolated from the >700 oC resid of cerro negro heavy petroleum[J]. Energy&Fuels, 1997, 11 (3): 602-609.
    [68] 史权,梁泳梅. 四根质谱直接进样分析重质油芳烃馏分烃类组成[J]. 质谱学报,1998,19(4):61-64.
    [69] 李贵强. 四极质谱法测定重馏分油的烃类组成[J]. 山东科学,1999,12(2):23-27.
    [70] 廖克俭,李辉,翟玉春. 大庆重质馏分油组成初步研究[J]. 石油化工高等学校学报,1997,10(4):6-9.
    [71] 王少军,凌风香,钱迈原. 质谱法研究渣油芳烃部分烃类组成[J]. 质谱学报,1999,20(3-4):53-54.
    [72] 王少军,凌风香,姚银堂,钱迈原. 常压渣油在加氢预处理过程中组成变化的质谱研究[J]. 质谱学报,2003,24(1):309-312.
    [73] Rudzinski W E, Aminabhavi T M, Sassman S, Watkins L M. Isolation and characterization of the saturate and aromatic fractions of a Maya crude oil[J]. Energy & Fuels, 2000, 14 (4): 839-844.
    [74] Roussis S G, Proulx R. Molecular weight distributions of heavy aromatic petroleum fractions by Ag+ electrospray ionization mass spectrometry[J]. Anal Chem, 2002, 74 (6): 1408-1414.
    [75] 兰翔,赵锁奇,许志明,王仁安. 大庆、辽河油浆窄馏分的环状结构、组成的比较[J]. 石油学报(石油加工),2002,18(2):14-19.
    [76] Miyabayashi K, Naito Y, Tsujimoto K, Miyake M. Structure characterization of petroleum vacuum residues by in-beam EI Fourier transform ion cyclotron resonance mass spectrometry[J]. International Journal of Mass Spectrometry, 2002, 221 (2): 93-105.
    [77] Campbell J L, Crawford K E, Kentt?maa H I. Analysis of saturated hydrocarbons by using chemical ionization combined with laser-induced acoustic desorption/fourier transform ion cyclotron resonance mass spectrometry[J]. Anal Chem, 2004, 76 (4): 959-963.
    [78] Rudzinski W E, Oehlers L, Zhang Y, Najera B. Tandem mass spectrometric characterization of commercial naphthenic acids and a Maya crude oil[J]. Energy&Fuels, 2002, 16 (5): 1178-1185.
    [79] 朱泽霖,李承烈,王平生,朱明华. 石油减压二线馏分及其加氢产物中饱和烃和轻芳烃的色谱-质谱分析[J]. 华东理工大学学报,1993,19(5):746-753.
    [80] Calemma V, Rausa R, D’Antona P, Montanari L. Characterization of asphaltenes molecular structure[J]. Energy & Fuels, 1998, 12 (2): 422-428.
    [81] 赵红,朱俊章,朱翠山,张泽波,王培荣. 用台式色谱-质谱仪同时进行原油芳烃色谱和色谱-质谱分析[J]. 色谱,1999,17(6):556-558.
    [82] 刘泽龙,李云龙,高红,陈晓. 四极杆GC/MS测定石油馏分烃类组成的研究及其分析软件的开发[J]. 石油炼制与化工,2001,32(3):44-48.
    [83] Roussis S G, Fitzgerald W P. Hydrocarbon compound type analysis by mass spectrometry: on the replacement of the all-glass heated inlet system with a gas chromatograph[J]. Energy & Fuels, 2001, 15 (2): 477-486.
    [84] Qian K N, Dechert G J. Recent advances in petroleum characterization by GC field ionization time-of-flight high-resolution mass spectrometry[J]. Anal Chem, 2002, 74 (16): 3977-3983.
    [85] Bacaud R, Rouleau L. Coupled simulated distillation-mass spectrometry for the evaluation of hydroconverted petroleum residues[J]. J Chromatogr A, 1996, 750 (1-2): 97-104.
    [86] Hsu C S, Mclean M A, Qian K N, Aczel T, Blum S C, Oinstesd W N, Kaplan L H, Robbins W K, Schulz W W. On-line liquid chromatography/mass spectrometry for heavy hydrocarbon characterization[J]. Energy & Fuels, 1991, 5 (3): 395-398.
    [87] Hsu C S, Qian K N. High-boiling aromatic hydrocarbons characterized by liquid chromatography-thermospray-mass spectrometry[J]. Energy & Fuels, 1993, 7 (2): 268-272.
    [88] 王艳秋,王枫,宗志敏,孙琦,金鑫,韩丽,魏贤勇,赵锁奇,鲍晓军. 大港减压渣油超临界萃取物气质联用色谱分析[J]. 应用化工,2006,35(11):887-892.
    [89] 王艳秋,王枫,宗志敏,孙琦,金鑫,韩丽,魏贤勇,赵锁奇,鲍晓军. 大港减渣超临界萃取物的GC/MS定性、定量分析[J]. 河北师范大学学报,2007,31(3):102-107.
    [90] Han L, Zong Z M, Jin X, Wang Y Q, Wang F, Yu T T, Tian G F, Zhao S Q, Bao X J, Ma X X, Wei X Y. Solubility of dagang vacuum residue and molecular composition of the soluble fractions in different solvents [J]. Fuel, 2008, 87 (2): 260-263.
    [91] Liang Z, Hsu C S. Molecular speciation of saturates by on-line liquid chromatography-field ionization mass spectrometry[J]. Energy & Fuels, 1998, 12 (3): 637-643.
    [92] Speight J G, Long R B, Trawbridge T D. Factors influencing the separation of asphaltenes from heavy petroleum feedstocks[J]. Fuel, 1984, 63 (5): 616-620.
    [93] Pearson C D, Huff G S, Gharfeh S G. Technique for the determination of asphaltenes in crude oil residues[J]. Anal Chem, 1986, 58 (14), 3265-3266.
    [94] Ancheyta J, Centeno G, Trejo F, Marroqu?′n G, Garc?′a J A, Tenorio E, Torres A. Extraction and characterization of asphaltenes from different crude oils and solvents[J]. Energy & Fuels, 2002, 16 (5): 1121-1127.
    [95] Chandra W. Anglea,*, Yicheng Longa, Hassan Hamzaa, Leo Lueb. Precipitation of asphaltenes from solvent-diluted heavy oil and thermodynamic properties of solvent-diluted heavy oil solutions[J]. Fuel, 2006, 85 (4): 492-506.
    [96] Fossen M, Sj?blom J, Kallevik H, Jakobsson J. A new procedure for direct precipitation and fractionation of asphaltenes from crude oil[J]. Journal of Dispersion Science and Technology, 2007,28 (1): 193-197.
    [97] 张正红,田松柏,刘泽龙,朱书全. 超声包合法分离测定重质油中链烷烃和环烷烃[J]. 西安石油大学学报(自然科学版),2006,21(5):68-71.
    [98] Acevedo S, Escobar G, Ranaudo M A, Pi?ate J, Amorín A, Díaz M, Silva P. Observations about the structure and dispersion of petroleum asphaltenes aggregates obtained from dialysis fractionation and characterization[J]. Energy & Fuels, 1997, 11 (4): 774-778.
    [99] Miller J T, Fisher R B, Thiyagarajan P, Winans R E, Hunt J E. Subfractionation and characterization of Mayan asphaltene[J]. Energy & Fuels, 1998, 12 (6): 1290-1298.
    [100] Alboudwarej H, Beck J, Svrcek W Y, Yarranton H W, Akbarzadeh K. Sensitivity of asphaltene properties to separation techniques[J]. Energy & Fuels, 2002, 16 (2): 462-469.
    [101] Trejoa F, Centenoa G, Ancheyta J. Precipitation, fractionation and characterization of asphaltenes from heavy and light crude oils[J]. Fuel, 2004, 83 (16): 2169-2175.
    [102] Douda J, Llanos M E, Alvarez R, Bola?os J N. Structure of Maya asphaltene-resin complexes through the analysis of soxhlet extracted fractions[J]. Energy & Fuels, 2004, 18 (3): 736-742.
    [103] 王仁安,胡云翔,许志明,苏桐. 超临界流体萃取分馏法分离石油重质油[J]. 石油学报(石油加工),1997, 13(1):53-59.
    [104] Yang G H, Wang R A. The supercritical fluid extractive fractionation and the characterization of heavy oils and petroleum residua[J]. Journal of Petroleum Science and Engineering, 1999, 22 (1-3): 47-52.
    [105] 赵锁奇,许志明,胡云翔,王仁安. 超临界流体萃取分馏仪——石油重质油的深度精密分离技术[J]. 石油仪器,2001,15(4):12-15,32,60-61.
    [106] 梁晓霏,赵锁奇. 渣油超临界萃取馏分溶解度参数的测定新方法[J]. 石油学报(石油加工),2002,18(5):86-91.
    [107] Zhao S Q, Xu Z M, Xu C M, Chung K H, Wang R N. Systematic characterization of petroleum residua based on SFEF[J]. Fuel, 2005, 84 (6): 635-645.
    [108] 许志明,胡云翔,程敏,苏桐,王仁安. 一种预测重质油沸程的方法[J]. 石油学报(石油加工),1997,13(1):60-66.
    [109] Guiliano M, Boukir A, Doumenq P, Mille G, Crampon C, Badens E, Charbit G. Supercritical fluid extraction of bal 150 crude oil asphaltenes[J]. Energy & Fuels, 2000, 14 (1): 89-94.
    [110] Shi T P, Xu Z M, Cheng M, Hu Y X, Wang R A. Characterization index for vacuum residua and their subfractions[J]. Energy & Fuels, 1999, 13 (4): 871-876.
    [111] Park S J, Kim C J, Rhee B S. Fractionation of aromatic heavy oil by dynamic supercritical fluid extraction[J]. Ind Eng Chem Res, 2000, 39 (12): 4897-4900.
    [112] 裘浙炎,程健,刘以红,罗运华,贾生盛. 渣油及其加氢脱硫(VRDS)渣油的超临界精密分离的研究[J]. 石油炼制与化工,1999,30(5):55-61.
    [113] 刘以红,罗运华. 大港减渣窄馏分族组成及结构参数[J]. 石油化工高等学校学报,2003,16(3):42-46.
    [114] 刘玉新,许志明,李凤娟,赵锁奇. 大港减压渣油超临界萃取分馏窄馏分的黏度混合规律[J]. 石油学报(石油加工),2007,23(5):90-94.
    [115] 王2,许志明,李凤娟,赵锁奇. 大港减压渣油的多层次分离与组成结构研究[J]. 燃料化学学报,2007,35(4):412-418.
    [116] 杨翠定,顾侃英,吴文辉. 石油化工分析方法汇编[M]. 北京:科学出版社,1990.
    [117] 陈月珠,袁红,梁文杰,张怀祖. 我国几种原油中减压馏分的化学组成与结构的研究[J]. 石油炼制,1991,(2):60-66.
    [118] 李庶峰,沐宝权. 反冲色谱柱在分离渣油中胶质组分的应用[J]. 实验室研究与探索,2001,20(6):65-67.
    [119] 成跃祖. 高效液相色谱反冲技术分析原油中的重质组份[J]. 石油化工,1989, 18(1):52-56.
    [120] 成跃祖. 化学键合相高效液相色谱联合反冲技术分析原油的烃族组成[J]. 石油化工,1991,20(7):487-493.
    [121] 周晓龙,陈绍洲,常可怡. 减压渣油组成和结构的研究[J]. 华东理工大学学报,1995,21(6):649-653.
    [122] 李勇志,邓先梁,俞惟乐. 对氧化铝和硅胶分离重质油族组分性能的新认识[J]. 石油学报(石油加工),1998,14(2):75-80.
    [123] 李勇志,邓先梁,俞惟乐. 氧化铝对长链正构烷烃的吸附性能[J]. 科学通报,1998,43(1):53-55.
    [124] 高艳秋. 渣油中四组分的测定[J]. 化学工程师,2004,104(5):48-49.
    [125] 林燕生,董萍,王国英. TLC/FID法测定重质油的族组成石油炼制,1991,(2):41-44.
    [126] 毕延根. TLC/FID法测定催化裂化原料油中芳烃的组成[J]. 石油化工,1999,28(8):559-561.
    [127] 安文珍. 薄层色谱氢焰离子检测法测定重质油的族组成[J]. 河北化工,1994,(3):54-57.
    [128] 毕延根. 薄层色谱-火焰离子检测技术在重质油族组成分析中的应用[J]. 燃料化学学报,2000,28(5):388-391.
    [129] 曹宝强,申金林,刘景俊,岳彩鹏. TLC/FID法快速进行减压渣油族组成分析[J]. 河南化工,2001,(1):30-31.
    [130] Masson J F, Price T, Collins P. Dynamics of bitumen fractions by thin-layer chromatography/flame ionization detection[J]. Energy & Fuels, 2001, 15 (4): 955-960.
    [131] 王素琴,王萌,辛玉芬,丁秀云. 原油及渣油族组成定量分析──高效液相色谱法油气田地面工程,1996,15(6):17-18,21.
    [132] 苟爱仙,董宝钧,张艳丽. 高效液相色谱法测定渣油的族组成[J]. 黑龙江石油化工,1998,9(1):45-47.
    [133] 俞鹏程,洪敏芳,耿英杰. HPLC分析催化裂化原料油的芳烃组成[J]. 石油炼制与化工,1992,(11):39-44.
    [134] Sarowha S L S, Sharma B K, Sharma C D, Bhagat S D. Characterization of petroleum heavy distillates using HPLC and spectroscopic methods[J]. Energy & Fuels, 1997, 11 (3): 566-569.
    [135] Pasadakis N, Varotsis N. A Novel Approach for the Quantitation of the hydrocarbon groups in heavy petroleum fractions by HPLC-RI analysis[J]. Energy & Fuels, 2000, 14 (6): 1184-1187.
    [136] Pasadakis N, Gaganis V, Varotsis N. Accurate determination of aromatic groups in heavy petroleum fractions using HPLC-UV-DAD[J]. Fuel, 2001, 80 (2): 147-153.
    [137] 令狐文生,张昌鸣,王志杰,杨建丽,刘振宇. 煤油共处理油品的族组成研究[J]. 燃料化学学报,2002,30(1):33-35.
    [138] Fan T G, Buckley J S. Rapid and accurate SARA analysis of medium gravity crude oils[J]. Energy & Fuels, 2002, 16 (6): 1571-1575.
    [139] Li Y Z, Deng X L, Yu W Y. Group-type analyses of heavy petroleum fractions by preparative liquid chromatography and synchronous fluorescence spectrometry: analyses of aromatics by ring number of Liaohe vacuum gas oil, coker gas oil and heavy cycle oil[J]. Fuel, 1998, 77 (4): 277-284.
    [140] Lee S W, Fuhr B J, Larry R, Holloway L R, Reicher C. Development of a supercritical fluid chromatographic method for determination of aromatics in heating oils and diesel fuels[J]. Energy&Fuels, 1989, 3 (1): 80-84.
    [141] Shariff S M, Robson M M, Myers P, Bartle K D. Hydrocarbon group-type separations for high aromatic fuels by supercritical fluid chromatography on packed capillary columns[J]. Fuel, 1998, 77 (9-10): 927-931.
    [142] Pasadakis N, Varotsis N. Optimization of the HPLC separation of aromatic groups in petroleum fractions[J]. Fuel, 2000, 79 (12): 1455-1459.
    [143] 李新景,卢松年. 高温气相色谱与石油分析[J]. 地球科学进展,1999,14(2):193-196.
    [144] Olajire A A, Oderinde R A. Study of aromatic hydrocarbons in heavy residual oils by a combination of spectroscopic analytical techniques[J]. Journal of African Earth Sciences, 1998, 27 (1): 165-174.
    [145] Padlo D M, Kugler E L. Simulated distillation of heavy oils using an evaporative light scattering detector[J]. Energy & Fuels, 1996, 10 (5): 1031-1035.
    [146] 肖太顺,朱华艺,樊祥柱,李顺新. 沸石分子筛在炼油工业中的应用[J]. 辽宁化工,2004,33(7):414-416.
    [147] 王燕秋. 大港减压渣油超临界萃取物的分析和催化加氢转化[D]. 徐州:中国矿业大学,2007.
    [148] 金鑫. 俄罗斯渣油超临界萃取组分的分析和催化转化研究[D]. 徐州:中国矿业大学,2008.
    [149] Wei X Y, Ni Z H, Zong Z M, Zhou S L, Xiong Y C, Wang X H. Reaction of di(1-naphthyl)methane over metals and metal-sulfur systems[J]. Energy & Fuels, 2003,17 (3): 652-657.
    [150] 孙林兵. 活性炭对煤及相关模型化合物反应的催化作用[D]. 徐州:中国矿业大学,2005.
    [151] 倪中海. 煤及其模型化合物氢转移反应性与机理的研究[D]. 徐州:中国矿业大学,2003.
    [152] 董梅,巩雁军,吴东,王建国,孙予罕. 新型分子筛催化材料研究进展[J]. 石油炼制与化工,2000,31(7):21-26.
    [153] 谭径品,黄云田. NaY 分子筛的改性及其工业应用[J]. 工业催化,1995,(4):40-46.
    [154] 蒋绍洋,王刚,王永林,孙素华. 沸石加氢处理催化剂的制备方法[J]. 工业催化,2002,10(5):57-58.
    [155] Chen S, Yang Y R, Zhang K X, Wang J D. BETA zeolite made from mesoporous material and its hydrocracking performance[J]. Catalysis Today, 2006, 116 (1): 2-5.
    [156] 涂永善,李忠燕,杨朝合. Al-MCM-41介孔分子筛的合成及其加氢特性Ⅱ.加氢反应特性[J]. 石化技术与应用,2007,25(4):285-289.
    [157] Wei X Y, Wang X H, Zong Z M, Ni Z H, Zhang L F, Ji Y F, Xie K C, Lee C W, Liu Z X, Chu N B, Cui J Y. Identification of organochlorines and organobromines in coals[J]. Fuel, 2004, 83 (17-18): 2435-2438.
    [158] 秦志宏. 煤中有机质溶出行为的研究[D]. 徐州:中国矿业大学,2004.
    [159] Valtchev V, Mintova S. Layer-by-layer preparation of zeolite coatings of nanosized crystals[J]. Microporous Mesoporous Mater, 2001, 43 (1): 41-49.
    [160] Valtchev V. Silicalite-1 hollow spheres and bodies with a regular system of macrocavities[J]. Chem Mater, 2002, 14 (10): 4371-4377.
    [161] Wang D J, Zhu G B, Zhang Y H, Yang W L, Wu B Y, Tang Y, Xie Z K. Controlled release and conversion of guest species in zeolite microcapsules[J]. New J Chem, 2005, 29 (2): 272-274.
    [162] Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Gao Z. Hollow Zeolite Capsules: A novel approach for fabrication and guest encapsulation[J]. Chem Mater, 2002, 14 (8): 3217-3219.
    [163] Dong A G, Ren N, Yang W L, Wang Y J, Zhang Y H, Wang D J, Hu H H, Gao Z, Tang Y. Preparation of hollow zeolite spheres and three–dimensionally ordered macroporous zeolite monoliths with functionalized interiors[J]. Adv Funct Mater, 2003, 13 (12): 943-948.
    [164] Dong A G, Wang Y J, Wang D J, Yang W L, Zhang Y H, Ren N, Gao Z, Tang Y. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors[J]. Microporous Mesoporous Mater, 2003, 64 (1-3): 69-81.
    [165] Ren N, Wang B, Yang Y H, Zhang Y H, Yang W L, Yue Y H, Gao Z, Tang Y. General method for the fabrication of hollow microcapsules with adjustable shell compositions[J]. Chem Mater, 2005,17 (10): 2582-2587.
    [166] Xiong C R, Coutinho D, Balkus K J. Fabrication of hollow spheres composed of nanosized ZSM-5 crystals via laser ablation[J]. Microporous Mesoporous Mater, 2005, 86 (1-3): 14-22.
    [167] Wang D J, Zhang Y H, Dong A G, Tang Y, Wang Y J, Xia J C, Ren N. Conversion of fly ash cenosphere to hollow microspheres with zeolite/mullite composite shells[J]. Adv Funct Mater, 2003, 13 (7): 563-567.
    [168] Wang D J, Tang Y, Dong A G, Zhang Y H, Wang Y J. Hollow cancrinite zeolite spheres in situ transformed from fly ash cenosphere[J]. Chin Chem Lett, 2003, 14 (12): 1299-1302.
    [169] Rhodes K H, Davis S A, Caruso F, Zhang B J, Mann S. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks[J]. Chem Mater, 2000, 12 (10): 2832-2834.
    [170] Yang W L, Wang X D, Tang Y, Wang Y J, Ke C, Fu S K. Layer-by-layer assembly of nanozeolite based on polymeric microsphere: zeolite coated sphere and hollow zeolite sphere[J]. J Macromol Sci Pure Appl Chem, 2002, 39 (6): 509-526.
    [171] Wang Y J, Angelatos A S, Caruso F. Template synthesis of nanostructured materials via layer-by-layer assembly[J]. Chem Mater, 2008, 20 (3): 848-858.
    [172] Naik S P, Chiang A S T, Thompson R W, Huang F C. Formation of silicalite-1 hollow spheres by the self-assembly of nanocrystals[J]. Chem Mater, 2003, 15 (3): 787-792.
    [173] Schattka J H, Shchukin D G, Jia J G, Antonietti M, Caruso R A. Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique[J]. Chem Mater, 2002, 14 (12): 5103-5108.
    [174] Wang H T, Holmberg B A, Yan Y S. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels[J]. J Am Chem Soc, 2003, 125 (33): 9928-9929.
    [175] Yao J F, Wang H T, Ringer S P, Chan K Y, Zhang L X, Xu N P. Growth of SAPO-34 in polymer hydrogels through vapor-phase transport[J]. Microporous Mesoporous Mater, 2005, 85 (3): 267-272.
    [176] Wang H T, Wang Z B, Yan Y S. Colloidal suspensions of template-removed zeolite nanocrystals[J]. Chem Commun, 2000, (23): 2333-2334.
    [177] Wang H T, Holmberg B A, Yan Y S. Homogeneous polymer–zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals[J]. J Mater Chem, 2002, 12 (12): 3640-3643.
    [178] Wang H T, Huang L M, Wang Z B, Mitra A, Yan Y S. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions[J]. Chem Commun, 2001, (15): 1364-1365.
    [179] Yao J F, Wang H T, Ratinac K R, Ringer S P. Formation of colloidal hydroxy-sodalite nanocrystals by the direct transformation of silicalite nanocrystals[J]. Chem Mater, 2006, 18 (6): 1394-1396.
    [180] Myatt G J, Budd P M, Price C, Hollway F, Carr S W. The influence of surfactants and watersoluble polymers on the crystallization of zeolite NaA[J]. Zeolites, 1994, 14 (3): 190-197.
    [181] Nikolakis V, Vlacho D G, Tsapatsis M. Modeling of zeolite crystallization: the role of gel microstructure[J]. Microporous Mesoporous Mater, 1998, 21 (4-6): 337-346.
    [182] Drews T O, Katsoulakis M A, Tsapatsis M. A mathematical model for crystal growth by aggregation of precursor metastable nanoparticles[J]. J Phys Chem B, 2005, 109 (50): 23879-23887.
    [183] Valtchev V P, Bozhilov K N. Evidences for zeolite nucleation at the solid-liquid interface of gel cavities[J]. J Am Chem Soc, 2005, 127 (46): 16171-16177.
    [184] Chen X Y, Qiao M H, Xie S H, Fan K N, Zhou W Z, He H Y. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core[J]. J Am Chem Soc, 2007, 129 (43): 13305-13312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700