用户名: 密码: 验证码:
图牧吉油砂中有机质的提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提取油砂中有机质为目的,对内蒙古图牧吉油砂分别进行热碱水洗脱、固定床热解和加氢热解、非等温亚临界和超临界水萃取以及等温超临界二氧化碳和超临界丙烷萃取等方法的研究,考察了不同提取方法中主要因素对有机质提取率的影响,为我国油砂开发利用提供具有参考价值的方法和数据。主要研究内容和结果如下:
     1)在油砂热碱水洗脱实验中,考察了水洗温度、碱浓度、搅拌时间、搅拌速率和水砂比等条件对油砂中有机质洗脱率的影响。实验得到图牧吉油砂较佳水洗条件为水洗温度90℃,碱水浓度0.3%,水与油砂质量比1:1,搅拌时间90 min,搅拌速率200 r/min,洗脱率可达到90%。
     2)采用非等温热重法,在氮气气氛下系统地研究了油砂的热解特性,并采用不同的动力学处理方法,包括Coas-redfern法、Kissinger法、Doyle法及分布活化能模型(DAEM)法,求取了油砂的热解动力学参数。
     3)在固定床热解反应器中,考察了温度、压力、气体流量和停留时间等对油砂热解和加氢热解的影响。结果表明,油砂通过热解或加氢热解处理可得到较高的转化率和液体产率,产生较少的气体和热解水。在研究的实验条件范围内,油砂的热解最大转化率为87%,最高液体产率为80%;油砂的加氢热解最大转化率为95%,最高液体产率为90%。油砂热解的转化率和液体产率随温度的增加而增大,而油砂加氢热解的转化率和液体产率随温度的升高先增加而后略有降低。恒温时间对油砂热解和加氢热解的产率影响不大,载气流量对油砂热解和加氢热解产率的影响只改变有机质在液体产物和气体产物中的分配。
     4)在半连续超临界萃取实验设备上,以水为溶剂,对油砂进行亚临界和超临界流体非等温萃取实验,得到的最大液体产率83%。随着实验压力的增大,液体产率提高,而气体产率减少。随着实验温度的增加,液体产物及其主要组成(饱和分、芳香分和胶质)的生成速率都是先增大,在400℃左右出现峰值随后逐渐减少。随着实验压力的增加,液体产物、饱和分和芳香分的生成速率峰值所对应的温度向低温区移动,而胶质的生成速率峰值所对应的温度却向高温区移动。
     5)在半连续超临界萃取实验设备上,分别以二氧化碳和丙烷为溶剂,对油砂进行超临界流体等温萃取试验。随着萃取压力的升高或萃取温度的降低,萃取产率增大。以超临界丙烷为溶剂时,最大萃取产率可以达到85%,而以超临界二氧化碳为溶剂时,萃取产率很低,超临界二氧化碳不适合作为图牧吉油砂的萃取溶剂。
Tumuji oil sand from Inner Mongolia was processed to get organic substance with different methods involving hot water extraction, fixed-bed pyrolysis and hydropyrolysis, non-isothermal sub-and supercritical water extraction and isothermal supercritical extraction with supercritical propane and carbon dioxide as solvent.
     a) With hot water extraction, the effects of experiment conditions on wash yield were investigated including temperature, stirring time, stirring rate, alkali concentration and the weight ratio of water to oil sand. The maximum 90.1% of wash yield could be obtained under the condition of temperature 90°C, alkali concentration 0.3%, water to oil sand 1:1, stirring time 90 min, and stirring rate 200 r/min.
     b) The pyrolysis characteristics of Tumuji oil sand were studied with thermogravimetric analysis in the stream of N_2. Four kinds of methods, Coats-Redfern, Doyle, Kissinger and Distributed Activation Energy Model (DAEM), were used to determine the kinetic parameters. The results indicated that the kinetic parameters were different with different methods. DAEM is an efficient method to provide more information of the pyrolysis of oil sand.
     c) Pyrolysis and hydropyrolysis of Tumuji oil sand were carried out in a fixed-bed reactor to investigate the effects of temperature, pressure, gas flowrate and time on liquid yield and product fractions in liquid. A maximum of pyrolysis conversion and liquid yield of 87% and 80%, respectively, can be obtained under the studied experimental conditions, and the maximum of hydropyrolysis conversion and liquid yield is 95% and 90%, respectively. With increase of temperature, conversion, liquid yield and gas yield of pyrolysis all increase, but those of hydropyrolysis firstly increase then decrease little. Pyrolysis time at constant temperature has no evident effect and gas flowrate has an effect on the distribution of organic substance in liquid and gas.
     d) Tumuji oil sand was extracted with sub- and supercritical water in a semi-continuous apparatus with non-isothermal method at different pressure and different solvent flow rate. The results show that with increase of pressure, liquid yield increases while gas yield decreases. A maximum liquid yield of 83% can be obtained at 30 MPa. The results also show that the formation rates of three fractions (saturates, aromatics, resin) in extract has a maximum with the variation of temperature. The temperature corresponding to the maximum formation rates of saturates and aromatics decrease, while that of resin increases with the increase of pressure.
     e) Tumuji oil sand was also extracted by using supercritical propane and supercritical carbon dioxide, respectively, on a semi-continuous apparatus with isothermal method. When propane as solvent, the maximum extract yield of 85% is obtained at temperature of 110℃and pressure of 20 MPa. When carbon dioxide as solvent, the maximum extract yield is only 13% at 40℃and 25 MPa. The extract yield increases with the increasing pressure and/or with the decreasing temperature.
引文
[1] 李莹,李德贵.我国石油产量峰值预测.中国能源,2007,29(4):10-12.
    [2] 刘增洁.未来20年世界能源供需预测.中国能源,2002(5):33-35.
    [3] 张春贺.油砂:新能源的探索.百科知识,2006,8:8-9.
    [4] http://www.steelmy.com.我国油砂远景资源量丰富.
    [5] 科兴华.加拿大阿尔伯塔省的油砂资源和油砂工业.全球科技经济嘹望,2004,5:58
    [6] 我国油砂远景资源量一亿吨.中华人民共和国国土资源部.2005,11,24.
    [7] Jiayu Niu, Jianji HU. Formation and distribution of heavy oil and tar sands in China. Marine and Petroleum Geology. 1999, 16(1):85-95.
    [8] 油砂资源利用浮出水面.化工情报网,2006,5.
    [9] 梁峰.Athabasca油砂沥青VTB戊烷溶剂深度脱沥青的研究:(硕士学位论文).北京石油大学,2001:4.
    [10] 李俊岭,张玉贞,李淑云.新疆油砂稠油制特种沥青.石油炼制与化工,1998,29(12):5-8.
    [11] 牛嘉玉,刘尚奇,门存贵等.稠油资源地质与开发利用.北京:科学出版社,2002:15-21.
    [12] Donkor K K, Kratochvil B, Duke et al. Estimation of trace element distribution in bitumen fractions of oil sand by INAA.Department of Chemistry. University of Alberta, 1965.
    [13] Cloutis E A, Gaffey M J, Moslow T F. Characterization of minerals in oil sands by reflectance spectroscopy. Fue. 1995, 74(6):874-879.
    [14] Joseph K L,Harry E G.沥青改质分析方法手册.刘建安,安静芷,李静译.北京:石油化工出版社,1995.
    [15] Luthra M. A visualization technique for estimating bitumen recovery from oil sands: (Master Degree Thesis). Canada: University of Alberta, 2001.
    [16] 高杰,李文.加拿大油砂资源开发现状及前景.中外能源,11.4,2006.
    [17] 扎赉特旗图牧吉油砂开采综合加工项目.内蒙古新闻网,10.27,2005.
    [18] 新型油砂分离技术填补国内空白.中国技术创新青岛网,11.2,2006.
    [19] Hepler L G, Hsi C. AOSTRA Technical Handbook on Oil sands, Bitumen and Heavy Oils. AOSTRA Technical Publication Series, 1989.
    [20] Hepler L G, Smith R G. The Alberta Oil sands: Industrial Procedures for Extraction and Some Recent Fundamental Research. AOSTRA Technical Publication Series, 1994.
    [21] Qi D, Keng H C. Hot water extraction process mechanism using model oil sands. Fuel, 1996, 75(2):220-226.
    [22] Stasiuk E N, Schramm L L. Some effects of chemical additions to nascent primary froth from the hot water floation of bitumen from Athabasca oil sand. Fuel Processing Technology, 1998, 56(3):243-261.
    [23] Stasiuk E N, Schramm L L. The influence of solvent and demulsifier additions on nascent froth formation during flotation recovery of Bitumen from Athabasca oil sand. Fuel Processing Technology, 2001, 73(2):95-110.
    [24] 周建伟,李术元.油砂沥青热水抽提机理和沥青粘度性质研究.第九届全国化学工艺学术年会论文集,2005:577-58.
    [25] 严格.内蒙古油砂热碱水洗分离实验研究.油田化学,2005,22(4):375-377.
    [26] Sury K N. Low temperature bitumen recovery process. U.S.Patent. 4946597. 1990, 8.
    [27] Spence J, Siy R, Sury K. Aurora Extraction Process:1995 OSLO Cold Water Extraction Research Pilot Test Program, Syncrude Research Report 96, 6.7, 1996.
    [28] Misra M, Miller J D. Comparison of water-based physical separation processes for U.S. tar sands. Fuel Processing Technology, 1991.27(1):3-20.
    [29] Li S Y, Wang J Q, Tan H Pet al. Study of Extraction and Pyrolysis of Chinese oil sands. Fuel, 1995,74(8):1191-1193.
    [30] Khraisha Y H. Study of Extraction and Pyrolysis of Jordan Tar Sand. International Journal of Energy Research, 1999, 23(10):833-839.
    [31] 高志农,许东华.青海油砂矿的物理化学特性.分析测试学报,2002,21(6).
    [32] 罗满银,夏德宏,刘卫东,刘先贵.油砂热解特性研究及其在热法取油系统中应用探讨.锅炉制造,2007,2(1):73-76.
    [33] Gishler P E. The Fluidization Technique Applied to Direct Distillation of Oil from Alberta Bituminous Sands. Can, J, Res, 1950, 23, 62-70.
    [34] Fletcher J V, Deo M D, Hanson F V. Fluidized bed pyrolysis of a Uinta Basin oil sand. Fuel, 1995,74(3):311-316.
    [35] Hanson F V, Cha S M, Deo M D et al. Pyrolysis ofoil sand from the Whiterocks deposit in a rotary kiln. Fuel, 1992, 71(12):1455-1463.
    [36] Haenset V. Controiling Temperstures in Fluidized Solid Systems for Conversion of Hydrocarbons. US, Patent 2,733,193.1, 1956,
    [37] Stewart J, Falton S C, LangeA W J. Recovery of Oil from Bituminous Sands. US, Patent 2772209.11.27, 1956.
    [38] Nathan M F, Skaperdas G T, Grubb G C. Fluid Coking of Tar Sands. US, Patent 3320152. 1969, 5, 16.
    [39] Rammler R W. Production of Synthetic Crude Oil from Oil Sand by Application of the Lurgi Ruhrgas Process. Can.J.Chem.Eng., 1970, 48:552-560.
    [40] Steinmetz I. Cracking of Mix of Tar Sands Froth Product. US, Patent 3,466,240.9.9, 1969.
    [41] Nathan M F, Skaperdas G T, Grubb G C. Fluid Coking of Tar Sands. Can.Patent 823,183.9,1969.
    [42] Egloff G, Morrell J C.Trant,Am,Inst.Chem.Eng, 1926,18,p,347.
    [43] Egloff G, Morrell J C. Cracking of bitumen derived from Alberta tar sands. Can.Chem.Metall. 1927,11:88.
    [44] Sterba M.J. Athabaca. Oil Sands Conf, Research Council of Alberta, Edmonton, Alta, 1951,p,257.
    [45] Pasternack D B. Low-Ash Asphalt and Coke from Athabasca Oil-Sands Oil. Athabasca Oil Sands research council. 1963, 45:207-229.
    [46] Boomer E H, Saddington A W. Hydrongenation of bitumen from bituminous sands of Alberta.Can.J.Rea, 1930, 2:376-383.
    [47] Boomer E H, Edwards J. Hydrogenation of bitumen from bituminous sands of Alberta. Can.J.Rea.,1931, 4:517-539.
    [48] Warren T E. Canada Departmen Mines Branch Republic, 1930, 31, p, 115.
    [49] Andrews T. On the properties of matter in gaseous and liquid state under various conditions of temperature and pressure. Phil Trans Roy Soc(London), 1869, 178:45-50.
    [50] 侯爱琴,戴瑾瑾.超临界流体技术在染整加工中的应用研究.纺织学报,2001,22(6):69-71.
    [51] 元玉台,李会鹏等.超临界流体技术及在石油化工和环境保护种的应用.石油炼制与化工,2000, 31(3): 27.
    
    [52] Savage.P.E, Gopalan, S, Martino, C.J et al. Reaction at supercritical conditions: Application and Fundamentals. AIChE J, 1995, 41(7):1723-1778.
    
    [53] Gopalan, S, Savage, P.E. A Reaction Network Model for Phenol Oxidation in supercritical water. AIChE J, 1995,41(8), 1864.
    
    [54] Hanny. J.B, Hogarth. J. On the solubility of solids in gases. Proc Roy Soc(London). 1879, 29:234-240.
    
    [55] Zosel K. Separation with supercritical gases: practical applications.Angewandte Chemie (International Edition in English), 1978, 17(10): 702-709.
    
    [56] Zosel K. Process for the Decaffeination of Coffee. US 4247570,1981.
    
    [57] Schneider.G.M. Physicochemical aspect of fluid extraction. Fluid Phase Equilib, 1983,10: 141-157.
    
    [58] Maiwald M, Schneider G M. Near-Infrared Spectroscopic Investigations on Phase Behaviour and Hydrogen Bonding of 'w'-Heptanolactam in Supercritical Chlorotrifluoromethane. J.Supercrit. Fluids, 1995, 8:25-29.
    
    [59] Bjom W, Mamoru N, Dirk T et al. Sample purification for spectroscopic high-pressure investigations by dynamic supercritical fluid extraction. J. Supercrit. Fluids, 1996, 16:157-165.
    
    [60] Hu H Q, Zhang J, Guo.S C et al. Extraction of Huadian oil shale with water in sub-and supercritical states. Fuel, 1999, 78(6):645-651.
    
    [61] Hu H Q, Guo S C, Heden K. Extraction of lignite with water in sub-and supercritical states. Fuel Processing Technology, 1998, 11(7):269-277
    
    [62] Hu H Q, Guo S C. Kinetic study of supercritical extraction of oil shales. Fuel Processing Technology, 1992,31(2):79-90.
    
    [63] Song C C, Hu H Q, Zhu S W et al. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy & Fuels, 2004, 18 (1):90-96. !
    
    [64] Hu H Q, Guo S C, Heden K. Extraction of lignite with toluene in sub-and supercritical states. Fuel Science&Technology International, 1993, 11(7):883-895.
    
    [65] Ye S M, Jiang C Y, Pan Q M et al. Dynamic supercritical fluid devolatilization of polymers. Chinese Journal of Chemical Engineering, 2005, 13(6):732-735.
    
    [66] Jiang C Y, Cheng R, Gao.J R et al. Supercritical fluid assisted mass transport in polyester films. Huagong Xuebao/Joumal of Chemical Industry and Engineering(China), 2005, 56(7): 1187-1191.
    
    [67] Wang L H, Cheng Y Y. Solubility of puerarin in ethanol+supercritical carbon dioxide. Journal of Chemical and Engineering Data, 2005, 50(5): 1747-1749.
    
    [68]张镜澄.超临界流体萃取.化学工业出版社,2000.
    
    [69] Berkowitz N, Calderon J. Extractionof oil sand bitumens with supercritical water. Fuel Processing Technology, 1990, 25(1):33-44.
    
    [70] Chakina, A. Supercritical extraction of tar sands bitumen. Proceedings of International Conference- on High Pressure Science and Technology, 1997, 1389-1394.
    
    [71] Rose, J. L, Monnery, W. D, Chong, K et al. Experimental data for the extraction of Peace River bitumen using supercritical ethane. Fuel, 2001, 80(8):l 101-1110.
    
    [72] Rose.J.L, Surcek.W.Y. Fraction of peace rivers bitumen using supercritical ethane and carbon dioxide. Industrial and Engineering Chemistry Research. 2000, 39:3875-3883.
    
    [73] Han B X, Yang G Y, Ke J. Phase equilibria of supercritical propane-Fengcheng bitumen system and the density and viscosity of the liquid phase. Fluid Phase Equilibria, 1998, 143 (1-2):5-l 1.
    
    [74] Subramanian M, Hanson F V. Supercritical fluid extraction of bitumens from Utah oil sands. Fuel Processing Technology, 1998, 55(1):35-53.
    [75] 李树杰,陈彦玲.中国石油安全隐忧与对策.当代财经,2005,6:20-23.
    [76] 何金祥.解决我国石油问题需走一条综合的途径.国土资源,2005,7:63-64.
    [77] 梁文杰.重质油化学.东营:石油大学出版社,1999,17-24.
    [78] Xiao L, Xu G Y, Zhang Z Q et al. Adsorption of sodium oleate at the interface of oil sand/aqueous solution. Physicochem.Eng.Aspects, 2003, 224:199-206.
    [79] Elaine N S, Laurier L S. The influence of solvent and demulsifier additons on nascent froth formation during flotation recovery of bitumen from Athabasca oil sands. Fuel Processing Technology, 2001, 73(2):95-110.
    [80] Drelich J, Lelinski D, Hupka J et al. The Role of Gas Bubbles in Bitumen Release During Oil Sand Digestion. Fuel, 1995, 74(8):1150-1155.
    [81] Liu J J, Xu Z H, Masliyah J. Role of Fine Clays in Bitumen Extraction from Oil Sands. AIChE Journal, 2004, 50(8): 1917-1927.
    [82] Alexander K L, Li D. Effects of Bitumen Films over Air Bubble Surfaces on Bitumen Drop-Air Bubble Attachment. Colloids and Surfaces, 1996, 106:191-202.
    [83] Takamura K, Chow R S. A Mechanism for Initiation of Bitumen Displacement from Oil Sand. J. Can.Pet. Tech, 1983, 22:22-30.
    [84] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data. Nature.1964, 201: 68-69.
    [85] Doyle C D. Kinetic analysis ofthermogravimetric data. J. Appl.PolymeSci. 1961, 5:285-292.
    [86] Kissinger H E. Variation of peak temperature with heating rate in different rate in differential thermalanalysis. J Res. Nat. But.Standards, 1956, 57:217-221.
    [87] Hashimoto K, Miura K, Watanabe T. Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment. AIChE Journal, 1982,28 (5): 737-746.
    [88] Miura K. A new and simple method to estimate f(E) and k_o(E) in the distributed activation energy model from three sets of experimental data. Energy & Fuels. 1995, 9:302-307.
    [89] Miura K. Maki Y. A simple method for estimating f(E) and k_o(E) in the Distributed Activation Energy Model. Energy & Fuels, 1998, 12(5):864-869.
    [90] 刘旭光,李保庆.分布活化能模型的理论分析及其在半焦气化和模拟蒸馏体系中的应用.燃料化学学报,2001,29(1):54-59.
    [91] Uden P C. Pure Appl.Chem. 1993, 65: 2405.
    [92] Thomas P W. Introduction to pyrolysis capillary gas chromatography. Journal of chromatography A, 1999, 842: 207-220.
    [93] Peterson W S, Gishler P E. Small Fluidized Solid Pilot Plant for Direct Distillation of Oil from Alberta bituminous sands. Athabasca oil sands conference research council of Alberta Edmonton, 1951,207.
    [94] Peterson W S, Keller H, Gishler P E. Fluidized Solids Coking of Canadian Heavy Crude Oils.Can.J.Technol. 1956, 34:104-120.
    [95] Gishler P E, .Peterson W S. Treatment of bituminous sand. Canada .Patent 530920.2.2,1951.
    [96] Stawart J. Controlling temperature in fluidized solid systems for conversion of hydrocarbons.U.S.Patent 2733193. 1. 31, 1956.
    [97] Rammior R W. Production of synthetic crude oil from oil sand by application of the Lurgi process. Can.J.Chem.Eng, 1970, 48:552-560.
    [98] Tse H F. Pyrolytic Methods of treating bituminous tar sands and preheating of sand. U.S.Patent 3518181.1970.1.30.
    [99] Bennett J D. Method of damping vibration and article. U.S.Patent, 3623972. 1971.11.30.
    [100] Egloff G, Marrell J C. Cracking of bitumen derived from Alberta tar sands. Can.Chem.Metall, 1927.11.38.
    [101] Ball M W. Development of Athabasca oil sand. Trans. Can.Inst.Min.Metall. 1941.44:58-91.
    [102] Sterba M J. Proc.Athabasca oil sands. Conf. Research Council of Alberta.Edmonton, 1951:257.
    [103] Peterson W S, Gishler P E. Oil from Alberta bituminous sand. Pet.Engr, 1951, 23: 66-74.
    [104] Pesternack D S. Thermal cracking of Athabasca oil sands. A study of asphaltic components of Alberta oils and asphalta. J.Can.Pet.Technol, 1961,5(6): 141-144.
    [105] Henderson J H, Weber L. Physical upgrading of heavy crude oils by the application of heat. J.Can.Pet.Technol, 1965.4:206-212.
    [106] Speight J G. Thermal cracking of Athabasca bitumens.Athabasca asphaltenes and Athabasca heavy oil. Fuel, 1970.49:134-145.
    [107] Speight J G. High temperature mess spectroscopy of Athabasca asphaltene and the relationship to cracking process. A m.Chem. Soc.Div. Fuel.Pet.Chem, 1971, 15:57-61.
    [108] Boomer T E H. Saddington A W. Hydrogenation of bitumen from bituminous sands of Alberta. Can.J.Res, 1931,4:517-539.
    [109] 邬国英,杨基和.石油化工概论.中国石化出版社,2000,p,40.
    [110] 邬国英,杨基和.石油化工概论.中国石化出版社,2000,p,74.
    [111] 朱子彬,王欣荣等,煤快速热解获得液态烃和气态烃的研究Ⅲ气体停留时间的考察,化工学报,1995,46(6):710-716.
    [112] Haar L, Gallagher J S, Kell G S. NBS/NRC Steam Tables. New York: Hemisphere Publishing Corp,1984.
    [113] Akerlof G C, Oshry H I. The dielectric constants of water at high temperatures and in equilibrium with its vapor. J Am Chem Soc, 1950, 72:2844-2847
    [114] M iguel Herrero, Alejandro Cifuentes and Elena Ibafiez. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 2006, 98(1):136-148.
    [115] Luik H, Luik L. Extraction of fossil fuels with sub- and supercritical water. Energy Sources, 2001,23(5):449-459.
    [116] Muammer C, Peter M. Extraction of solid fuels with sub-and supercritical water. Fuel, 1994,73(11):1776-1780.
    [117] Hawthorne S B, Yang Y, Miller D J. Extraction of organic pollutants from environmental solids with sub-and supercritical water. Analytical Chemistry, 1994, 66 (18): 2912-2920.
    [118] Deshpande G V, Holder G D, Bishop A A et al. Extraction of coal using supercritical water. Fuel,1984, 63(7): 956-960.
    [119] Sinag A. Sub-and supercritical water extraction of goynuk oil shale. Energy Sources, 2004, 26(9):885-890.
    [120] Heger K, Uematsu M, Franck, E.U. Ber. Bunsenges. Phys. Chem., 1980, 84, 758-762.
    [121] Schwarz C E, Nieuwoudt I, Knoetze J H. Application of the principle of congruence to high-pressure phase equilibria of alkanes in supercritical propane. The :Journal of-Supercritical Fluids, 2007,40(2):189-193.
    [122] Munuklu P, Wubbolts F, Jansens P J et al. The phase behavior of systems of supercritical CO_2 or propane with edible fats and a wax. The Journal of Supercritical Fluids, 2006, 39(1):1-5.
    
    [123] Piqueras C, Bottini S, Damiani D. Sunflower oil hydrogenation on Pd/Al_2O_3 catalysts in single-phase conditions using supercritical propane. Applied Catalysis A: General, 2006, 313(2): 177-188.
    
    [124] Schwarz CE, Nieuwoudt I, Knoetze J H. Solubility measurements of high molecular mass w-alkanes, H-alcohols and alcohol ethoxylates in supercritical propane. Fluid Phase Equilibria, 2006, 207(1-2): 169-174.
    
    [125] Wang J D, Chen J Z,Yang Y R.Solubility of titanocene dichloride in supercritical propane. Fluid Phase Equilibria, 2004, 220(2): 147-151.
    
    [126] Illés V, Szalai O, Then M et al. Extraction of hiprose fruit by supercritical CO_2 and propane. The Journal of Supercritical Fluids, 1997, 10(3):209-218.
    
    [127] Hyatt. J. A. Liquid and supercritical carbon dioxide as organic solvents. J Org Chem, 1984, 50:97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700