用户名: 密码: 验证码:
流化式自供热型制生物燃油关键装置设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是石油消费和进口大国,石油消耗量仅次于美国,位居世界第二位。同时,国内石油产能严重不足,进口依存度不断扩大。2009年中国石油净进口量2.19亿吨,表观消费量4.08亿吨,进口依存度首次突破50%;2010年中国石油净进口量2.49亿吨,表观消费量约为4.49亿吨,进口依存度已高达55%以上;预计到2012年进口依存度将高达75%以上。如此高的石油进口依存度,已威胁我国能源安全,一旦国际石油供应出现问题,比如战争,我国的能源供应将会受到严重打击,甚至国民经济都有瞬间陷入瘫痪的危险。另一方面,我国是一个农业大国,仅农作物秸秆年产生量约7亿吨,扣去现有各种利用,大约3亿吨可作为燃料使用,林业废弃物年可获得量约9亿吨,如仅将这两类生物质资源进行转化,就可得到6亿吨生物燃油,按热值推算,相当于3亿吨重油,因此将秸秆等农林废弃物转化成具有一定经济价值和高技术含量的石油替代产品,不仅缓解我国能源紧张的状况,而且增加了农民的就业岗位和个人收入,另外,将生物质通过热裂解技术转化后的石油替代产品——生物燃油具有不含硫、减少环境污染、C02零排放、符合CDM(清洁发展机制)要求。本文正是在这样的背景下,针对生物质制生物燃油技术进行的研究,其目的在于为生物质热裂解制生物燃油装置设计提供先进的理论支持和技术保障。
     本文对国内外生物质流化式热裂解技术的研究进行了总结和论述,根据流化式热裂解工艺的特点,总结前人的研究经验,提出了流化式自供热型制油装置反应器的理论和实验研究,在研究过程当中取得如下成果:
     根据热裂解反应动力学原理,为流化式自供热型反应器,建立生物质热裂解反应动力学方程,并对方程求解,得到生物质热裂解产物曲线;在实验室利用热裂解实验装置进行实验,将通过实验取得热裂解产物曲线与方程求得的热裂解产物曲线进行了对比分析,验证了热裂解方程的可靠性;在生物燃油冷凝过程的研究中,根据已知晓的生物燃油成分,计算出冷凝温度不同阶段,对应的理论冷凝量,通过与相同阶段温度的冷凝实验结果相比对,验证理论结果,确定出最合理的冷凝温度范围,为系统冷凝工艺提供理论依据。
     根据气固两相流的原理,提出了一种在普通圆柱型流化床内部加圆锥体的内锥式流化床反应器设计思路,通过冷态实验结果表明,流化效果优于普通圆柱型流化床。同时因为流化状态的复杂性,建立气固两相流流动方程,利用Fluent模拟仿真软件,采用欧拉模型,对内锥式流化床进行颗粒运动状态、浓度与速度的数值模拟,并将模拟结果与普通圆柱型流化床进行比较分析。
     构建了基于内锥式流化床反应器的系统组成模式,对系统进行了工艺分析,从理论上对系统进行了热平衡研究与分析,从经济性角度提出了除电力拖动以外的生产用能仅用副产物炭粉和不凝气供热的设想,并通过转化率对副产物产率影响的研究,得出自供热条件下的最优转化率,为生物质制油系统不依赖外部热源而自身达到热平衡的这种先进的设计提供了理论指导。
     针对本文提出的自供热系统和仅用副产物炭粉和不凝气为整个系统供热的设想,根据燃烧理论对气—固混合燃烧装置进行了设计理论研究。另外,为了将燃烧后排放烟气中的热能在流化干燥中利用,根据流化干燥理论对流化干燥和输送装置进行了设计理论研究。
     上述研究及结果可为基于内锥式流化床反应器的自供热裂解制生物燃油系统的设计提供理论指导和研发借鉴。有望为中国的生物燃油生产的规模化、工业化提供理论参考。
Our country is a big country of petroleum consumption and importing, the amount of petroleum consumption is only next to the United States in the world. At the same time, domestic oil production is severity shortage, import dependency of petroleum expands unceasingly. Net import amount of petroleum of China is 2.19 billion tons in 2009, apparent consumption is 4.08 tons, import dependency is first up to 50%; Net import amount of petroleum of China is 2.49 billion tons in 2010, apparent consumption is 4.49 tons, import dependency is more than 55%; import dependency is expected to as high as 75% in 2012. Such high levels of oil import dependence, our country's energy security has been threatened, once the international oil supply has problems, such as war, our energy supply will be hit hard, even the national economy have the instant paralyzed danger. On the other hand, our country is a large agricultural nation, annual production of crops straw is about 7 million tons, except for all kinds of use, about 3 million tons can.be used as fuel, also annual production of forestry waste is about 9 million tons. If these two types of biomass resources can be effectively used,6 million tons of biofuels can be achieved, if calculating as the calorific value, which is equal to 3 million tons of heavy fuel oil. Therefore transforming crops straw and forestry waste into oil alternative products which have certain economic value and high technical contents, not only can ease the energy shortage status, and can increase farmer's employment chances and personal income. In addition, biomass can be transformed to the alternative products of oil through pyrolysis technology-biofuels do not contain sulfur, can reduce the pollution for the environment, zero emissions of CO2 and comply with the requirements of clean development mechanism (CDM). In this context, the paper carries out biomass biofuels technology research, its purpose lies in providing an advanced theoretical support and technical guarantee for the design of biomass pyrolysis bio-fuel device.
     Biomass fluidized pyrolysis technology in aboard and domestic country are summarized and discussed in the paper, according to the characteristics of fluidization type pyrolysis technology, summarizing the predecessor's research experiences, presenting the processing routes, system composition mode and key devices of fluidization type self-heating biomass pyrolysis system-theoretical analysis and experimental research of fluidization type self-heating biomass pyrolysis reactor have be done, the obtained achievements of research process are as follows:
     According to the pyrolysis reaction kinetics theory, the kinetic equation of biomass pyrolysis reaction has been established for the fluidization type self-heating biomass pyrolysis reactor, the biomass pyrolysis product curves can be achieved by solving the equation; using pyrolysis experiment device to carry out experiments, the comparison analysis of the pyrolysis product curves got by experiments and equations has been done, the reliability of pyrolysis equation has been verified; in the study of the biofuels condensation process, based on the known biofuels components, to calculate the different stages of the condensation temperature corresponding the theory condensation amount, through the comparisons of the condensing experimental results of the same stages temperature to verify the validity of the theoretical results, and to determine the most reasonable condensing temperature ranges.
     According to the theory of gas-solid two-phase flow, proposing a new design thinking of the inner cone type fluidized bed which adding a cone in the inner of the common cylindrical fluidized bed, the cold experimental results show that the fluidization effect is better than the common cylindrical type fluidized bed. At the same time, as the complexity of fluidized state, to establish flow equations of the gas-solid two-phase flow, using FLUENT simulation software, adopting Euler model, the numerical simulation of particle motion state, concentration and speed has been done respectively for the inner cone type fluidized bed, also the comparison analysis of the simulation results of the ordinary cylinder and the inner cone type fluidized bed has been done.
     Based on the inner cone type fluidized bed reactor, the system components mode has been build up, the system process analysis and the thermal equilibrium research and analysis on the system have also been done, from the economy view, the assumption that the production energy can be obtained by the by-products charcoal and non-condensable gas except for the electric driving, and through the effect of the conversion ratio on the by-product production rate, the optimal conversion rate under the self-heating conditions has been built, the theoretical guidance has been provided for the advanced design that the biofuels system does not depend on the outside heat but can achieve heating balance themselves.
     According to the proposed assumptions that the system can realize self-heating and heating can be obtained only by the by-products charcoal and non-condensable gas for the whole system, also according to the principle of burning, the design theory research of the gas-solid mixing burning device has been carried out. In addition, in order to put the heat energy of smoke and fumes after burning into use in the fluidization dry process, the design theory research of the fluidization dry and transporting device according to the fluidization dry theory has been carried out.
     The theoretical guidance and research reference based on the inner cone type fluidized bed reactor of self-heating pyrolysis biofuels system can be provided according to the above research and results. It is expected to provide the theoretical reference for the scale and industrialization of China's biofuels production.
引文
[1]汤倩,金银亮.中国新能源发展战略研究[J].现代商贸工业,2010,17:14
    [2]王琦.生物质快速热裂解制取生物油及其后续应用研究[D],2008:7~5
    [3]Spalding-Fecher R,Winkler H,Mwakasonda S.Energy and the world summit on sustainable development:what next?Energy Policy,2005,33(1):99~112
    [4]Oman H.Energy sources for the world's post-petroleum era.Ieee Aerospace and Electronic Systems Magazine,2003,18(11):35~39
    [5]李俊峰,时璟丽,王仲颖.欧盟可再生能源发展的新政策及对我国的启示.可再生能源,2007,25(3):1~3
    [6]米泉龄,王瑞婷,张雪静.生物质能的开发与利用[J].林产工业,2010,4:51~53
    [7]刘国喜,庄新妹,夏光喜.生物质气化技术讲座(一)——生物质气化是生物质能高层次利 用的良好途径[J].农村能源,1999,5:20~22
    [8]刘荣章,曾玉荣,翁志辉.我国生物质能源开发技术与策略[J].中国农业科技导报,2006,8(4):40~45
    [9]马志强,谢磊,朱永跃.我国生物质能开发利用现状及对策建议[J].生产力研究,2009,14(4):106~107
    [10]何张陈.江苏省农作物秸秆(生物质)发电不同技术路线案例的后评估研究[D].东南大学,2009
    [11]邓可蕴.21世纪我国生物质能发展战略[J].中国电力,2007,33(9):82~84
    [12]王香爱.清洁能源——生物质秸秆的研究进展[J].应用化1,2009,38(2):289~292
    [13]迟茜,曹扬.大力发展生物质发电的可行性[J].行业发展,2008(2):45
    [14]丁恒.生物油降解菌的分离鉴定及其在土壤中降解特性的研究[D].合肥工业大学,2008
    [15]关百钧.世界森林能源现状与发展趋势[J].世界林业研究,2000(6):13~21
    [16]乔繁盛.大力开发新能源和可再生能源[J].可再生能源开发利用,2010(12):17~21
    [17]杜丽娟.生物质催化裂解制可燃气的研究[D].武汉工业学院,2008
    [18]戈晶晶,朱秀亮.新能源的下一个热点.新经济导刊,2007(6)
    [19]马文超,陈冠益,颜蓓蓓等.生物质燃烧技术综述.生物质化学工程,2007,41(1):
    [20]黄英超,李文哲,张波.生物质能发电技术现状与展望.东北农业大学学报,2007,38(2):270~274
    [21]龚雅弦.发展生物质能产业的影响因素研究[D].上海交通大学,2008.
    [22]Vender Boschrh,Jansea,M.C. IN:Biomass Gasif. Pyrolysis[M]. Newburg:CpL press, 1977:345~353
    [23]Solanavsia Y.,Assessment of Liquefaction and Pyrolysis Systems[J]. Biomass and Bioenergy,1992,12(5):45~49
    [24]丛璐等.生物质能及应用技术[J].沈阳工程学院学报:自然科学版,2009(1):9~13
    [25]Bridgwater A V,Peacocke G V C.Fast pyrolysis processes for biomass.Renewable &Sustainable Energy Reviews,2000,4(1):1-73
    [26]何芳,易维明,柏雪源.国外利用热裂解生产生物油的装置.山东工程学院学报,1999,13(3):61~64
    [27]廖艳芬,王树荣,谭洪.生物质热裂解制取液体燃料技术的发展.能源工程,2002:1~5
    [28]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社,2003:202~203
    [29]Bridgwater A V.Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal,2003,91(2-3):87~102
    [30]Vender Boschrh,Jansea,M.C. IN:Biomass Gasif. Pyrolysis[M]. Newburg:CpL press, 1977,345~353
    [31]Bridgwater A V.Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal,2003,91(2-3):87~102
    [32]王黎明,王述洋.国内外生物质热裂解液化装置的研发进展.太阳能学报,2006,27(11):1180~1184
    [33]何芳,易维明,柏雪源.国外利用生物质热裂解生产生物油的装置.山东工程学院学报,1999,13(3):61~64
    [34]陈于勤,汪华林.生物质热加工液化技术评述.能源技术,2005,26(3):109~113,116
    [35]廖艳芬,王树荣,谭洪等.生物质热裂解制取液体燃料技术的发展.能源工程,2002(2):1~5
    [36]Bridgwater A V.Thermal conversion of biomass and waste:the status.Available at: http://www.icheme.org/literature/conferences/gasi/Gasification%20Conf%20Papers/ Session%202%20presentation-Bridgewater.pdf, accessed Jan.3,2004
    [37]栾敬德,刘荣厚,武丽娟.生物质快速热裂解制取生物油的研究[J].农机化研究.2006(12):206~210
    [38]Bridgewaster A. V.,peacocke G.V.C. Fast pyrolysis proeesses for biomass[J]. Renewable & Sustainable Energy Reviews,2000,4:1~73
    [39]F. Ates, Putune, A.E. Putun. Fast pyrolysis of sesame stalk:yields and structural analysis of bio-oil. Analytical and Applied Pyrolysis,2004,71:779~790
    [40]刘荣厚.生物质闪速热裂解特性及闪速热裂解实验研究[D].沈阳农业大学,1997
    [41]王黎明等.国内外生物质热裂解液化装置的研发进展[J].太阳能学报,2006(11):41~45
    [42]傅利华,郑典模,孙云.生物质快速热裂解液化技术的研究进展[J].江西化工,2007,6(2):45~49
    [43]何明明.生物质快速热裂解生物油产率和组分的影响因素[J].木材加工机械,2010(1),45~49
    [44]吴汉靓.流化床反应器生物质快速热裂解生物油特性的实验研究[D].上海交通大学,2009
    [45]丁经纬.基于高速摄像法的流化床内颗粒运动特性研究[D].浙江:浙江大学,2003
    [46]王述洋.生物质热裂解动力学建模及锥式闪速热裂解装置设计理论研究[D].东北林业大学,2002
    [47]洪军.生物质热裂解制油机理实验研究及流化床闪速热裂解装置设计[D].浙江大学,2002
    [48]Underwood G.Commercialisation of fast pyrolysis products.In:Hogan E, Robert J, Grassi G,8ridgewater AV, editors.Biomass Thermal Processing-Proceeding of the First CanadalEuropean Community R&D Contractors Meeting.CPL Scientific
    [49]B.Scholze a,C.Hanser b, D.Meier.Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part Ⅱ.GPC, carbonyl goups,and 13C-NMR Journal of Analytical and Applied Pyrolysis.58-59 (2001)387~400
    [50]A.V.Bridgwater,J.M.Double. Production costs of liquid fuels from biomass. Fuel,1991,70:1209-1224
    [51]Groux B.Technique de Carbonisation et de Pyrolyse.Bio-Alternative SA, Switzerland. In:Mattucci E.,Grassi G, Palz W, editors.Pyrolysis as a Basic Technology for Large Agro-Energy Projects, Proceedings of a Workshop held in L'Aquila,Italy,15tn-16tn Oct.1987.Commission of the European Communities(EUR 11382 EN),Belgium,1989:205
    [52]Van de Kamp WL,Smart JP.Evaluation of the combustion characteristics of pyrolytic oils derived from biomass.In:Grassi G. Moncada P,Zibetta H,editors. Proceedings of Energy from Biomass Contractors Meeting, CEC DG Xll Biomass unit(F/4),1991:31~79
    [53]许明.生物质中热值热裂解制气技术实验与应用研究[D].浙江大学,2002
    [54]朱锡锋,陆强.生物质快速热裂解制备生物油.科技导报,2007,25(21):69~75
    [55]柏雪源,易维明,王丽红.玉米秸秆在等离子体加热流化床上的快速热裂解液化研究[J].农业工程学报,2005,12(12):127~130
    [56]刘艳阳.生物质热裂解制取生物油的实验研究[D].吉林农业大学,2005
    [57]Mandon Van de Velden,Jan Baeyens,Ioannis Boukis. Modeling CFB biomass pyrolysis reactors. BIOMASS & BIOENERGY,2007
    [58]L. Conti, G. Scano, J. Boufala. Bio-oils from arid land plants:Flash pyrolysis of EUPHORBIA CHARACIAS bagasse. Biomass and energy,1994,7(1-6):291~296
    [59]M. Steinberg,P. T. Fallon,M. S. Sundaram. Flash pyrolysis of biomass with reactive and non-reactive gas.8iomass,1986,9:293~315
    [60]C. D. Blasi. Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind. Eng Chem. Res.1996.35:37~46
    [61]刘荣厚.生物质快速热裂解制取生物油技术的研究进展[J].沈阳农业大学学报,2007(1)
    [62]王述洋.生物质热裂解动力学建模及锥式闪速热裂解装置设计理论研究[D].东北林业大学,2002
    [63]廖艳芬.纤维素热裂解机理实验研究[D].浙江大学.2003
    [64]杨海平.油棕废弃物热裂解的实验及机理研究[D].华中科技大学.2005
    [65]Van de Velden M, Baeyens J, Seville JPK, Fan X. The solids flow in the riser of a circulating fluidized bed viewed by positron emission particle tracking. Powder Technology 2007,in press, doi:10.1016/j.powtec.2007.07.027
    [66]Manon Van de Veldena, Jan Baeyensa, Ioannis Boukisb. Modeling CFB biomass pyrolysis reactors. Biomass and Bioenergy 9 (2007):123~135
    [67]谭洪.生物质热裂解机理实验研究[D].浙江大学.2005.
    [68]Di Blasi C.Kinetics and modeling of biomass pyrolysis. In:Bridgwater AV, editor. Fast pyrolysis of biomass:a handbook,vol.3. Newbury,UK:CPL Press;2005:121~46
    [69]Gorton WC, Knight JA (1984) cited by Di Blasi C. Kinetics and modeling of biomass pyrolysis. In:Bridgwater AV, editor. Fast pyrolysis of biomass:a handbook, vol.3. Newbury:CPL Press; 2005.121-46
    [70]Reina J, Velo E,Puigjaner L. Thermogravimetric study of the pyrolysis of waste wood. Thermochimica Acta 1998;320:161~7
    [71]Thurner F,Mann U (1981) cited by Di Blasi C. Kinetics and modeling of biomass pyrolysis. In:Bridgwater AV, editor. Fast pyrolysis of biomass:a handbook, vol.3. Newbury:CPL Press; 2005.121-46
    [72]朱锡锋,陆强.生物质快速热裂解制备生物油.科技导报,2007,25(21):69~75
    [73]刘永艳.大功率生物燃气制供气装置选型及燃烧装置设计理论[D].东北林业大学,2007
    [73]熊昌国,洪章,张芸.生物质燃气烘干粮食的实验和应用研究[J].四川农机,2005(2)
    [75]林宗虎,徐通模.实用锅炉手册[M].北京:化学工业出版社,1999.6,34~51
    [76]王智微,李宗凯,沈幼庭等.一氧化碳在循环流化床燃烧室中的燃烧模型[J1.清华大学学报.2000,14(2):110~113
    [77]雷廷宙,师新广,李海军等.生物质燃气专用灶具的设计[J].农业工程学 报.2001,17(4):165~167
    [78]张科选,王永振,张祥华.低变质烟煤热裂解实验探讨[J].陕西煤炭技术,1997(4)
    [79]胡震岗,黄信仪.燃料与燃烧概论[M].清华大学出版社,1995
    [80]Satoru Ishizuka,Tetsuya Motodamari.Rapidly mixed combustion in a tubular flame burner,proceedings of the Combustion Institute,2007,31(1):1085~1092
    [81]Dupont, M. Porkashanian, A. Williams and R. Woolley,Reduction of NOx formation in natural gas burnerflames[J]. Fuel, No.4,1993
    [82]Helie,J.Trouve,A.Turbulent flame propagation in partially premixed combustion. Symposium (International) on Combustion[J].1998,1:891~898
    [83]Harris,J.A.andSouth, R.,Flame Stability Principles and Practice,Gas Engineering and Management,May,1978
    [84]何芳,徐梁,柏雪源等.生物质热裂解过程吸热量[J].太阳能学报,2006(3),237~241
    [85]I.Ph. Boukis, P. Grammelis, S. Bezergianni, A.V. Bridgwater. CFB air-blown flash pyrolysis. Part Ⅰ:Engineering design and cold model performance. Fuel 86 (2007) 1372~ 1386
    [86]Maniatis K. Fluidized bed gasification of biomass. PhD thesis, Aston University; 1986.
    [87]H.K.Versteeg, W. Malalasekera, An Induction to Computational Fluid Dynamics:The Finite Volume Method. Wiley, New York,1995
    [88]D. Gidaspow, R. Bezburuah, and J. Ding. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. In Fluidization Ⅶ, Proceedings of the 7th Engineering Foundation Conference on Fluidization,1992:75~82
    [89]M. Syamlal, W. Rogers, and O'Brien T. J. MFIX Documentation:Volume 1,Theory Guide. National Technical Information Service, Springfield,VA,1993.DOE/METC-9411004, NTIS/DE9400087
    [90]D. G. Schaeffer. Instability in the Evolution Equations Describing Incompressible Granular Flow. J. Diff. Eq,66:19-50,1987
    [91]M. Syamlal and T. J. O'Brien. Computer Simulation of Bubbles in a Fluidized Bed. AIChE Synp. Series.85:22-31.1989.
    [92]S. Ogawa, A. Umemura, Oshima. On the Equation of Fully Fluidized Granular Materials. J. Appl. Math. Phys.1980,31:483
    [93]C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy. Kinetic Theories for Granular Flow:Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field. J. Fluid Mech,140:223-256.1984
    [94]S. Ogawa, A. Umemura, and N. Oshima. On the Equation of Fully Fluidized Granular Materials. J. Appl. Math. Phys.,31:483,1980
    [95]费祥麟.高等流体力学[M].西安交通大学出版社,1989:71
    [96]赵军.悬浮流化式生物质热裂解液化装置设计理论及仿真研究[D].东北林业业大学,2009
    [971 Van de Velden M, Baeyens J, Seville JPK, Fan X. The solids flow in the riser of a circulating fluidized bed viewed by positron emission particle tracking. Powder Technology 2007, in press,doi:10.1016/j.powtec.2007.07.027
    [98]Manon Van de Veldena, Jan Baeyensa,Ioannis Boukisb. Modeling CFB biomass pyrolysis reactors. Biomass and Bioenergy 9 (2007) 123~135
    [99]Di Blasi C.Kinetics and modeling of biomass pyrolysis. In:Bridgwater AV, editor. Fast pyrolysis of biomass:a handbook,vol.3. Newbury, UK:CPL Press;2005:121~46
    [100]Gorton WC, Knight JA (1984) cited by Di Blasi C. Kinetics and modeling of biomass pyrolysis. In:Bridgwater AV, editor. Fast pyrolysis of biomass:a handbook, vol.3. Newbury:CPL Press; 2005.46~121
    [101]Reina J,Velo E, Puigjaner L. Thermogravimetric study of the pyrolysis of waste wood. Thermochimica Acta 1998;320:7~161
    [102]Thurner F, Mann U (1981) cited by Di Blasi C. Kinetics and modeling of biomass pyrolysis. In:Bridgwater AV,editor. Fast pyrolysis of biomass:a handbook, vol.3. Newbury:CPL Press; 2005.46-121
    [103]I.Ph.Boukis,P.Grammelis,S.Bezergianni,A.V.Bridgwater.CFB air-blown flash pyrolysis. Part Ⅰ:Engineering design and cold model performance.Fuel 86 (2007) 1372~1386
    [104]Botterill, J. S., Williccms, J. R., Trans. Inst. Chem. Engrs.,41,1963:217~230
    [105]Wen C Y,Chang T M. Particle-to-particle heat tansfer in-air fluidized beds [C]. Proceedings of International Symposium on Fluidization, edited by Drinkenburg, A. A. H., Eindhoven,1967, Part 2:491~506
    [106]田凤国.内循环流化床气固流动数值模拟与实验研究[D].上海交通大学,2007
    [107]Ranz W E. Friction and transfer coefficients for single particles and packed beds [J] Chemical Engineering Progress,1952,48:247~253
    [108]Mandon Van de Velden, Jan Baeyens, Ioannis Boukis. Modeling CFB biomass pyrolysis reactors. BIOMASS & BIOENERGY,2007
    [109]L. Conti, G. Scano,J. Boufala. Bio-oils from arid land plants:Flash pyrolysis of EUPHORBIA CHARACIAS bagasse. Biomass and energy,1994,7(1-6):291~296
    [110]M. Steinberg,P. T. Fallon, M. S. Sundaram. Flash pyrolysis of biomass with reactive and non-reactive gas.8iomass,1986,9:293~315
    [111]C. D. Blasi. Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind. Eng Chem. Res.1996.35:37~46
    [112]雷廷宙,师新广,李海军等.生物质燃气专用灶具的设计[J].农业工程学报.2001,17(4):165-167
    [113]张科选,王永振,张祥华.低变质烟煤热裂解实验探讨[J].陕西煤炭技术,1997(4)
    [114]胡震岗,黄信仪.燃料与燃烧概论[M].清华大学出版社,1995
    [115]Satoru Ishizuka,Tetsuya Motodamari.Rapidly mixed combustion in a tubular flame burner, proceedings of the Combustion Institute,2007,31(1):1085~1092
    [116]Dupont,M. Porkashanian, A. Williams and R. Woolley, Reduction of NOx formation in natural gas burnerflames[J]. Fuel, No.4,1993
    [117]Helie,J.Trouve,A.Turbulent flame propagation in partially premixed combustion. Symposium (International) on Combustion[J].1998,1:891~898
    [118]J oseph A.Senecal. Flame extinguishing in the cup-burner by inert gases[J]. Fire Safety Journal,2005,40(6):579~591
    [119]Harris,J.A.andSouth,R.,Flame Stability Principles and Practice,Gas Engineering and Management,May,1978
    [120]何芳,徐梁,柏雪源等.生物质热裂解过程吸热量[J].太阳能学报,2006(3),237-241
    [121]I.Ph. Boukis, P. Grammelis, S. Bezergianni, A.V. Bridgwater. CFB air-blown flash pyrolysis. Part Ⅰ:Engineering design and cold model performance. Fuel 86 (2007) 1372-1386
    [122]Maniatis K. Fluidized bed gasification of biomass. PhD thesis, Aston University,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700