用户名: 密码: 验证码:
生物质热解制氢机理和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质制氢研究是可再生能源的重要方向之一,本文提出了由常压移动床热解、二次热裂解、水蒸气转化和变换反应组成的生物质热解制氢技术路线,通过实验和数学模拟计算,研究了生物质向富氢气体转化的基本规律。
     利用热重仪分析了农业残余物热解的规律和特征参数,获得了热解反应速率、反应时间和转化率的定量结果,不同原料呈现出一致的热解反应机制,表观动力学参数计算表明,可以用单段一级反应过程描述生物质热解反应。
     设计并建立了常压移动床连续热解制氢实验系统,对生物质热解过程的释氢现象进行了系统实验研究,研究表明高温有利于提高气体产率和氢气浓度,在不使用空气和氧等介质的条件下获得了品质较高的中热值富氢气体。
     将Gibbs自由能最小化方法和Miller模型相结合,对热解过程进行数值求解,从动力学和热力学平衡角度研究了热解过程,发现和分析了生物质向富氢气体转化的现象、反应规律和影响因素,预测了与实验吻合的产物组成。
     探讨了通过水蒸汽转化和变换反应对热解气进行重整的方案,进行了生物质热解制氢系统的能量平衡计算,分析了氧化钙参与热解对提高系统效率的作用,确定了优化的工艺参数,玉米秸和稻壳氢产率可分别达到48.18 mol/kg和45.85mol/kg,气体中氢气浓度达到74.78%和73.35%,理想能量转换率达到77.9%和83.4%。
Biomass-to-hydrogen (BTH) is an important research direction in renewable energy field. In this thesis, a new route of biomass pyrolysis for hydrogen-rich gas production was proposed, which is composed of moving bed pyrolysis at atmospheric pressure, secondary thermal cracking, steaming reforming and shifting. The basic principles in BTH conversion were investigated with combination of experiments and simulating calculations.
     The systemic research on the pyrolysis character of agricultural residues was carried out by thermogravimetries, and the quantitative data of porolysis reaction rate, reaction time and conversion rate were obtaineded. The TG curves of different feedstocks showed accordant reaction mechanism. The calculation results of apparent kinetic revealed that the biomass pyrolysis can be approximately regarded as a one-order reaction.
     The moving bed reactor was designed adopted for continuous pyrolysis at atmospheric pressure. The phenomenon of hydrogen releasing in biomass pyrolysis were systemic investigated. The experiments proved that higher temperature was propitious to the yield of gas and hydrogen. The clean mid-Btu hydrogen-rich gas was generated without using any air and oxygen.
     The combination of the minimum principle of Gibbs free energy and Miller Model were applied to simulate the kinetics and thermodynamics equilibrium of the pyrolysis process. The BTH process, reaction trend, and influence factors were analyzed, and the products distribution according to experiments could be predicted.
     The steam reforming and shifting were proposed to join in the route, the energy balance calculation was carried out, the function of Calcium oxide participating in the pyrolysis was discussed, and the optimized process parameters were fixed on. Under the optimized condition, the hydrogen yield, from corn straw and rice husk, could reach 48.18 mol/kg and 45.85 mol/kg, with hydrogen concentration of 74.78% and 73.35%, and perfect energy efficiency of 77.9% and 83.4% respectively.
引文
[1] Thomas A. M., Carolyn C. E., Robert J. E., Hydrogen from biomass: State of the art and research challenges, IEA/H2/TR-02/001, 2002. 3~12
    [2] Tsaros C. L., Arora J. L., Burnham K. B., The manufacture of hydrogen from coal, Proceedings of the 1st World Hydrogen Energy Conference, Vol.1, Miami Beach, FL, 1976, 4A-3 ~ 4A-26
    [3] Soo, S. L., Gibbs, R. T., Ma, K. T., A steam process for producing hydrogen from coal. Hydrogen Energy System II, Proceedings 2nd World Hydrogen Energy Conference, Zurich, Switzerland, Pergamon Press, 1978, 957~998
    [4] Dihu R. J., Patel J. G., U-Gas process for production of hydrogen from coal, Int. J. Hydrogen Energy, 1983, 8 (3): 175~182
    [5] Rabah M. A., Eldighidy S. M., Low-cost hydrogen production from waste, Hydrogen Energy Progress VI, Proceedings of the 6th World Hydrogen Energy Conference, Vienna, Austria, 1986, 1362~1370
    [6] McDonald R. M., Swan J. E., Donnelly P. E. et al, Protein extracted grass and lucerne as feed stocks for transport fuel production, Transactions of the New Zealand Institution of Engineers, Electrical/Mechanical/Chemical Engineering, 1981, 8 (2): 59~64
    [7] Saha R. K., Gupta B. R., Sen P., Production of hydrogen in an autothermal fluidised gasifier, Hydrogen Energy Progress IV, Proceedings of the 4th World Hydrogen Energy Conference, Pasadena, CA, 1982, 69~77
    [8] Saha R.K., Gupta B. R., Sen P., Production of Hydrogen in an autothermal fluidized gasifier, Int. J. Hydrogen Energy, 1984, 9 (6): 483~486
    [9] Cocco G., Costantinides A., Produzione di idrogeno da biomasse mediante irolisigassificazione, Rivista Dei Combustibili, 1988, 42 (10): 255~264
    [10] Hauserman W. B., Timpe R. C., Catalytic gasification of wood for hydrogen and methane production. Energy & Environmental Research Center, University of North Dakota, 1992, 1~38.
    [11] Hauserman W. B., High yield hydrogen production by catalytic gasification of coal or biomass. Hydrogen Energy Progress IX, Proceedings of the 9th World Hydrogen Energy Conference, 1992, 63~72.
    [12] Hauserman W. B., Relating catalytic coal or biomass gasification mechanisms to plant capital cost components. Hydrogen Energy Progress X, Proceedings of the 10th World Hydrogen Energy Conference, Vol.1, Cocoa Beach, FL, 1994, 471~479.
    [13] Hauserman W. B., High yield hydrogen production by catalytic gasification of coal or biomass. Int. J. Hydrogen Energy, 1994, 19 (5): 413-419
    [14] Timpe R. C., Hauserman W. B., Kulas R. W. et al, Hydrogen production from fossil fuels and other regionally available feedstocks, Hydrogen Energy Progress XI, Proceedings of the 11th World Hydrogen Energy Conference, Vol. 1, Stuttgart, Germany, 1996, 489~498
    [15] Cox J. L., Tonkovich A. Y., Elliott D. C et al, Hydrogen from biomass: A fresh approach, Proceedings of the Second Biomass Conference of the Americas, Portland, Oregon, 1995, 657~675
    [16] Rapagna F. P., Hydrogen from biomass by steam gasification. Hydrogen Energy Progress XI, Proceedings of the 11th World Hydrogen Energy Conference, Vol. 1, Stuttgart, Germany, 1996), 907~912
    [17] Rapagna S., Foscolo P. U., Catalytic gasification of biomass to produce hydrogen rich gas. Int. J. Hydrogen Energy, 1998, 23 (7): 551~557
    [18] Bakhshi N. N., Dalai A. K., Srinivas S. T., Conversion of various biomass -derived chars to hydrogen/high Btu Gas by gasification with steam, Proceedings of the 4th Biomass Conference of the Americas, Oakland, CA, 1999, 985~990
    [19] Iqbal M., Dalai, A. K., Thring R.W. et al, Potential of producing hydrogen and high Btu gas from steam gasification of Lignins, 33rd Intersociety Engineering Conference on Energy Conversion, Colorado Springs, CO, 1998, 1~6
    [20] Srinivas S. T., Dalai A. K., Bakhshi N. N., Potential of producing hydrogen and high Btu gas from Steam gasification of biomass-derived Chars. Canadian Society for Chemical Engineering Conference, London, Canada, 1998, 4~7
    [21] Chaudhari S. T., Bej S. K., Bakhshi N. N. et al, Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas. Energy and Fuels, 2001, 15: 736~742
    [22] Chaudhari S. T., Ferdous D., Dalai A. K. et al, Pyrolysis and steam gasification of westvaco kraft lignin for the production of hydrogen and medium Btu gas, Progress in Thermochemical Biomass Conversion, Tyrol, Austria, 2000, 17~22
    [23] Jose Corella, Alberto Orio, Pilar Aznar, Biomass gasification with air in fluidized bed: reforming of the gas composition with commercial steam reforming catalysts. Ind. Eng. Chem. Res., 1998, 37: 4617~4624
    [24] Aznar M. P., Caballero M. A., Gil J. et al, Hydrogen by biomass gasification with steam-O2 mixtures and steam reforming and CO-shift catalytic beds downstream of the gasifier, Proceedings of the 3rd Biomass Conference of the Americas, Vol. I, Montreal Quebec, Canada, 1997, 859~860
    [25]吕鹏梅,熊祖鸿,常杰等,生物质催化气化制取富氢燃气的研究,环境污染治理技术与设备,2003,4(11):31~34
    [26]吕鹏梅,熊祖鸿,王铁军等,)生物质流化床气化制取富氢燃气的研究,太阳能学报,2003,24(6):758~764
    [27]吕鹏梅,常杰,付严等,生物质流化床气化制取富氢燃气,太阳能学报,2004,25(6):769~775
    [28] Steinberg M., Clean carbon and hydrogen fuels from coal and other carbonaceous raw materials, BNL-39630, 1987
    [29] Steinberg M., The flash hydro-pyrolysis and methanolysis of coal with hydrogen and methane, Int. J. Hydrogen Energy, 1987, 12(4): 251~266.
    [30] Steinberg M., The conversion of carbonaceous materials to clean carbon and coproduct gaseous fuel, 5th European Conference On Biomass for Energy and Industry, Lisbon, Portugal, 1989, 12~14
    [31] Turn S., Kinoshita C., Zhang Z. et al, An experimental investigation of hydrogen production from biomass gasification, Int. J. Hydrogen Energy, 1998, 13(8): 641~648
    [32]陈冠益,李强,H. Spliethoff等,生物质热解气化制取氢气,太阳能学报,2004,25(6)776~781
    [33] Sun L., Xu M.,Sun R. F., Secondary decomposition of pyrolysis gas for hydrogen-rich gas production, Pyrolysis and Gasification of Biomass and Waste, CPL Press, UK, 2003,283~288
    [34] Sun L., Xu M., Sun R.F., Indirectly heated pyrolysis for selected biomass materials, Proceedings of the ASME Turbo Expo 2004, Vol. 7, Vienna, Austria, 2004,179~183
    [35] Zhang X. D, Xu M., Sun R. F. et al, Study on biomass pyrolysis kinetics,ASME Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 493~496
    [36] Sun L., Zhang X. D., Yi X. et al, Study on efficient hydrogen production from biomass, Proceedings of the ASME Turbo Expo 2006, Barcelona, Spain, 2006, 1~6
    [37] Modell M., Reforming of glucose and wood at the critical conditions of water, American Society of Mechanical Engineers, 1977, 11~14
    [38] Modell M., Reid R. C., Amin S., Gasification process, U. S. Patent, 4,113,446. 1978-Sept.
    [39] Manarungson S., Mok W.S., Antal Jr. M. J., Hydrogen production by gasification of glucose and wet biomass in supercritial water, Hydrogen Energy Progress VIII, Proceedings of the 8th World Hydrogen Energy Conference, Honolulu, Hawaii, 1990, 345~355
    [40] Antal Jr. M. J., Xu X., Stenberg J., Hydrogen production from high-moisture content biomass in supercritical water, Proceedings of the 1994 U.S. DOE Hydrogen Program Review, 1994, 451~462
    [41] Antal Jr. M., Matsumura Y., Onuma M. T. et al, Hydrogen production from high-moisture content biomass in supercritical water. Proceedings of the 1995 U.S. DOE Hydrogen Program Annual Review, Coral Gables, Florida, 1995, 757~795
    [42] Antal Jr. M. J., Adschiri T., Ekbom T. et al, Hydrogen production from high- moisture content biomass in supercritical water, Proceedings of the 1996 U.S. DOE Hydrogen Program Annual Review, Vol. 1, 1996, 499~511
    [43] Antal Jr. M. J., Xu X. Total, Catalytic, supercritical steam reforming of biomass, Proceedings of the 1997 U.S. DOE Hydrogen Program Review, Herndon, Virginia, 1997, 149~162
    [44] Antal Jr. M. J., Xu X., Hydrogen production from high moisture content biomass in supercritical water. Proceedings of the 1998 U.S. DOE Hydrogen Program Review, 1998, 639~654
    [45] Antal Jr. M. J., Allen S., Lichwa J. et al, Hydrogen production from high-moisture content biomass in supercritical water, Proceedings of the 1999 U.S. DOE Hydrogen Program Review, 1999, 1~24
    [46] Antal Jr. M. J., Allen S. G., Schulman D. et al, Biomass gasification in supercritical water, Industrial & Engineering Chemistry Research, 2000, 39( 11): 4040~4053
    [47] Elliott B. C., Butner R. J., Sealock L. J. Jr., Low-temperature gasification of high-moisture biomass, Research in Thermochemical Biomass Conversion, Ed. A.V. Bridgwater and J.L. Kuester, Elsevier, London, 1988, 696~710
    [48] Elliott D. C., Neuenschwander G. G., Baker E. G. et al,). Bench-scale reactor tests of low-temperature, catalytic gasification of wet industrial wastes, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Vol. 5, 1990 102~106
    [49] Elliott D. C., Neuenschwander G. G., Baker E. G. et al, Low-temperature, catalytic gasification of wastes for simultaneous disposal and energy recovery, Energy from Biomass & Wastes IV, IGT Conference, 1991, 1013~1021
    [50] Elliott D. C., Phelps M. R., Sealock L. J. et al, Chemical processing in high-pressure aqueous environments continuous flow reactor process development experiments for organics destruction, Ind & Eng. Chem. Res., 1994, 33: 576~574
    [51] Minowa T., Ogi T., Yokoyama S. Y., Hydrogen production from wet cellulose by low temperature gasification using a reduced nickel catalyst, Chemistry Letters, 1995, 937~938
    [52] Minowa T., Ogi T., Yokoyama S., Hydrogen production from lignocellulosic materials by steam gasification using a reduced nickel catalyst, Developments in Thermochemical Biomass Conversion, Vol. 2, 1997, 932~941
    [53] Minowa T., Ogi T., Hydrogen production from cellulose using a reduced nickel catalyst, Catalysis Today, 1998, 45: 411~416
    [54] Minowa T., Fang Z., Hydrogen production from cellulose in hot compressed water using reduced nickel catalyst: Product distribution at different reaction temperature, Journal of Chemical Engineering of Japan, 1998 31(3): 488~491
    [55] Minowa T., Inoue S., Hydrogen production from biomass by catalytic gasification in hot compressed water, Renewable Energy, 1999, 16: 1114~1117.
    [56] Minowa T., Fang Z., Hydrogen production from biomass by low temperature catalytic gasification. Progress In Thermochemical Biomass Conversion, Tyrol, Austria, 2000, 167~173
    [57]郝小红,郭烈锦,超临界水中湿生物质催化气化制氢研究评述,化工学报,2002,53(3):221~228
    [58]郝小红,郭烈锦,超临界水生物质催化气化制氢实验系统与方法研究,工程热物理学报,2002,23(2):143~146
    [59]毛肖岸,郝小红,郭烈锦等,超临界水中纤维素气化制氢实验研究,工程热物理学报,2003,24(3):388~390
    [60]吕友军,冀承猛,郭烈锦,农业生物质在超临界水中气化制氢的实验研究,西安交通大学学报,2005,39(3):238~242
    [61]郝小红,郭烈锦,吕友军等,生物质超临界水气化制氢反应动力学分析,西安交通大学学报,2005,39(7):681~705
    [62]关宇,郭烈锦,张西民等,生物质模型化合物在超临界水中的气化,化工学报,2006,57(6):1426~1431
    [63] Chornet E.,Czernik S.,Wang D. et al, Biomass to hydrogen via pyrolysis and reforming, Proceedings of the 1994 U.S. DOE Hydrogen Program Review, Livermore California, 1994, 407~432
    [64] Wang D., Montane D?., Chornet E., Catalytic steam reforming of biomass-derived oxygenates: Acetic acid and hydroxyacetaldehyde, Applied Catalysis, 1996, 143: 245~270
    [65] Czernik S., Wang D., Chornet E., Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil, Proceedings of the 1998 U.S. DOE Hydrogen Program Review, Alexandria, United States, 1998, 557~576
    [66] Wang D., Czernik S., Chornet E., Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils, Energy & Fuels, 1998, 12(1): 19~24
    [67] Chornet E., Biomass to Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming, Proceedings of the 2001 U.S. DOE Hydrogen Program Review, 2001
    [68] Czernik S., French R., Feik C. et al, Production of hydrogen from biomass . derived liquids, Proceedings of the 2001 U.S. DOE Hydrogen Program Review, 2001
    [69] Michael L. B., Jack B. H., John P. L. et al, Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars, AIChE Journal, 1989, 35(1): 120~128
    [70] Theodore R. N., Jack B. H., John P. L. et al, Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Ind. Eng. Chem. Process Des. Dev. 1985, 24: 836~844
    [71] Hugh N. S., Rafael K., Secondary reactions of flash pyrolysis tars measured in a fluidized bed pyrolysis reactor with some novel design features, Fuel, 1989, 68: 275~282
    [72] Colomba, Kinetic and heat transfer control in the slow and flash pyrolysis of solids, Ind.Eng. Chem. Res., 1996, 35: 37~46
    [73] Hastaogli M. A., Berruti F., A gas-solid reaction model for flash wood pyrolysis. Fuel, 1989, 68: 1408~1415
    [74] Milosavljevic I., Suuberg E. M., Cellulose thermal decomposition kinetics: Global mass loss kinetics, Ind. Eng. Chem. Res., 1995, 34: 1081~1091
    [75] Raveendran K., Ganesh A. K., Khilar C., Influence of mineral matter on biomass pyrolysis characteristics, Fuel, 1995, 74(12): 1812~1822
    [76]万仁新,生物质能工程,北京:中国农业出版社,1991,232~233
    [77]吴创之,马隆龙,生物质能现代化利用技术,北京:化学工业出版社,2003
    [78] Demirbas A., Arin G., An overview of biomass pyrolysis, Energy Sources, 2002, 24(5): 471~482
    [79] Maggi R., Delmon B., Comparison between slow and flash pyrolysis oils from biomass, Fuel, 1994, 73(5): 671~677
    [80] Beaumont O., Schwob Y., Influence of physical and chemical parameters on wood pyrolysis, Ind. Eng. Chem. Process Des.,1984, 23: 637~641
    [81] Cetin E., Moghtaderi B., Gupta R. et al, Influence of pyrolysis conditions on thestructure and gasification reactivity of biomass chars, Fuel, 2004, 83(16): 2139~2150
    [82] Sensoz S., Can M., Pyrolysis of pine chips: Effect of pyrolysis temperature and heating rate on the product yields, Energy Sources, 2002, 24(4): 347~355
    [83] Dai X., Wu C., Li H. B. et al, The fast pyrolysis of biomass in CFB reactor, Energy & Fuels, 2000, 14(3): 552~557
    [84] Encinar J. M., Beltran F. J., Ramiro A. et al, Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables, Fuel Processing Technology, 1998, 55(3): 219~233
    [85] Babu B. V., Chaurasia A. S., Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum, Energy Conversion and Management, 2004, 45(9-10): 1297~1327
    [86] Fagbemi L., Khezami L., Capart R., Pyrolysis products from different biomasses: application to the thermal cracking of tar, Applied Energy, 2001, 69(4): 293~306
    [87] Yu Q. Z., Brage C., Chen G.X. et al, Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor, Journal of Analytical and Applied Pyrolysis, 1997, 40: 481~489
    [88] Chen G., Andries J., Spliethoff H., Catalytic pyrolysis of biomass for hydrogen rich fuel gas production, Energy Conversion and Management, 2003, 44(14): 2289~2296
    [89] Onay O., Kockar O.M., Slow, fast and flash pyrolysis of rapeseed, Renewable Energy, 2003, 28(15): 2417~2433
    [90] Horne P. A., Williams P. T., Influence of temperature on the products from the flash pyrolysis of biomass, Fuel, 1996, 75(9): 1051~1059
    [91] Li S., Xu S., Liu S., et al, Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas, Fuel Processing Technology, 2004, 85(8-10): 1201~1211
    [92] Francesco F., Colantoni S., Bartocci P. et al, Rotary kiln slow pyrolysis for syngas and char production from biomass and waste: Part 1: Working envelope of the reactor, Proceedings of ASME Turbo Expo 2006, 2006
    [93] Francesco F., Colantoni S., Bartocci P. et al, Rotary kiln slow pyrolysis for syngas and char production from biomass and waste: Part 2—Introducing products yields in the energy balance, Proceedings of ASME Turbo Expo 2006, 2006
    [94]李水清,李爱民,严建华等,生物质废弃物在回转窑内热解研究—Ⅰ.热解条件对热解产物分布的影响,太阳能学报,2000,21(4):333~340
    [95]李水清,李爱民,任远等,生物质废弃物在回转窑内热解研究—Ⅱ.热解终温对产物性质的影响,太阳能学报,2000,21(4):341~348
    [96] Bridgwater A. V., Peacocke G. V., Fast pyrolysis processes for biomass, Renewable and Sustainable Energy Reviews, 2000, 1~79
    [97] Beaumont O., Schwob Y., Influence of physical and chemical parameters on wood pyrolysis. Ind. Eng. Chem. Process Des., 1984, 23: 637~641
    [98] Ates F., Putun A.E., Putun E., Fixed bed pyrolysis of Euphorbia rigida with different catalysts, Energy Conversion and Management, 2005, 46(3): 421~432
    [99] Orfao J., Antunes F., Figueiredo J., Pyrolysis kinetics of lignocellulosic materials -three independent reaction model, Fuel, 1999, 78: 349~358
    [100] Varhegyi G., Antal J. J., Jakab E. et al, Kinetic modeling of biomass pyrolysis, Journal of Analytical and Applied Pyrolysis, 1997, 42(1): 73~87
    [101] Antal J. J., Varhegyi G., Cellulose pyrolysis kinetics: The current state of knowledge, Ind. Eng. Chem. Res., 1995, 34(3): 703~717
    [102] Safi M. J., Mishra I. M., Prasad B., Global degradation kinetics of pine needles in air, Thermochimica Acta, 2004, 412(1-2): 155~162
    [103] Stenseng M., Jensen A., Johansen K. D., Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry, Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 765~780
    [104] ]Volker S., Rieckmann Th.,Thermokinetic investigation of cellulose pyrolysis -impact of initial and final mass on kinetic results, Journal of Analytical and Applied Pyrolysis, 2002, 62: 165~177
    [105] Antal M. J., Friedmant H. L., Rogers F. E., Kinetics of cellulose pyrolysis in nitrogen and steam, Combustion Science and Technology, 1980, 21: 141~152
    [106] Koufopanos C. A., Maschio G., Lucchesi A., Kinetic modeling of the pyrolysis of biomass and biomass components, Can. J. Chem. Eng., 1989, 67: 75~83
    [107] Babu B. V., Chaurasia A. S., Modeling, simulation and estimation of optimum parameters in pyrolysis of biomass, Energy Conversion and Management, 2003, 44(13): 2135~2158
    [108] Gaur S., Reed T. B., An atlas of thermal data for biomass and other fuels, NREL, De-AC36-83CH10093,1995
    [109]廖艳芬,纤维素热裂解机理试验研究,[博士学位论文],浙江大学,2003
    [110]宋春才,农作物秸秆的热解及在水中的液化研究,[博士学位论文],大连理工大学,2003
    [111]谭洪,生物质热裂解机理试验研究,[博士学位论文],浙江大学,2005
    [112]杨海平,油棕废弃物热解的实验及机理研究,[博士论文],华中科技大学,2005
    [113] Bassilakis R., Carangelo R. M., Wojtowicz M. A., TG-FTIR analysis of biomass pyrolysis, Fuel, 2001, 80: 1765~1786
    [114] Jong de W., Pirone A., Wojtowicz M. A., Pyrolysis of miscanthus giganteus and wood pellets: TG-FTIR analysis and reaction kinetics, Fuel, 2003, 82(9): 1139 ~1147
    [115] Saade R. G., Koziski J. A., Numerical modeling and TGA/FTIR/GCMS investigation of fibrous residue combustion, Biomass and Bioenergy, 2000, 18(5): 391~404
    [116]刘仁庆编著,纤维素化学基础,北京:科学出版社,1985
    [117]刘振海主编,热分析导论,北京:化学工业出版社,1991
    [118] Sharma T., Rajeswara R. T., Kinetics of pyrolysis of rice husk, Bioresources Technology, 1999, 67: 53~59
    [119]宋春财,胡浩权,朱盛维等,生物质秸秆热重分析及几种动力学模型结果比较,燃料化学学报, 2003, 31(4):311~316
    [120] Zhang X. D., Xu M., Sun R. F. et al, , Study on biomass pyrolysis kinetics, Proceedings of ASME Turbo Expo2005, 2005
    [121]赖艳华,吕明新,马春元等,秸秆类生物质热解特性及其动力学研究,太阳能学报,2004,23(2):203~206
    [122] Doyle C. D.,Kinetic analysis of thermogravimetric data, J. Appl. Polymer Sci., 1961, 5: 285~292
    [123] House J. D., House J. E., Thermochim. Acta., 1983, 80 (2): 196
    [124] Coats A. W., Redfern J. P., Kinetic parameters from thermogravimetric data, Nature, 1964, 201: 68~69
    [125]南京林产工业学院,木材热解工艺学,北京:中国林业出版社,1983
    [126] Milne T. A., Abatzoglou N., Evans R. L., Biomass gasifier "tars": their nature, formation and conversion,NREI/TP-570-25357, 1998
    [127] Antal J. J., Varhegyi G., Cellulose pyrolysis kinetics: The current state of knowledge, Ind. Eng. Chem. Res., 1995, 34(3): 703~717
    [128] Varhegyi G., Antal J. J., Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse, Energy & Fuels, 1989, 3: 329~335
    [129] Shafizadeh F., Chin P. P., Thermal deterioration of wood. ACS Symp Ser., 1977, 43: 57~81
    [130] Thurner F., Mann U., Kinetic investigation of wood pyrolysis, Ind Engng Chem Process Des. Dev., 1981, 20: 482~488
    [131] Chan W.R., Kelbon M., Krieger B. B., Modelling and experimental verification of physical and chemical processes during pyrolysis of large biomass particle, Fuel, 1985, 64: 1505~1513
    [132] Font R., Marcilla A., Verdu E. et al, Kinetics of pyrolysis of almond shells and almond shells impregnated with CoCl2 in a fluidised bed reactor and in a Pyroprobe 100, Ind Engng Chem Res., 1990, 29: 1846~1855
    [133] Janse A. M., Westerhout R. W. , Prins W., Modelling of flash pyrolysis of a single particle, Chemical Engineering and Procedding, Vol. 39, 2000, 239~252
    [134] Miller R. S., Bellan J., A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics, Combust Sci and Tech, 1997, 126: 97~137
    [135] Elliott D. C., Relation of reaction time and temperature to chemical composition of pyrolysis oils, In: E. J. Soltes and T. A. Milne, eds, ACS Symposium Series 376, Pyrolysis Oils from Biomass, Denver, CO. April 1987
    [136] Evans R. J., Milne T A., Chemistry of tar formation and maturation in the thermochemical conversion of biomass, In: A.V Bridgwater and D.GcB. Boocock, eds, Developments in Thermochemical Biomass Conversion, Blackie Academic & Professional, London, 1997, 803~816
    [137]张全国,孔书轩,刘圣勇等,生物质燃气净化技术及其装置研究,中国沼气,2000,18(l): 43~45
    [138] Boroson M. L., Howard J. B., Longwell L. P. et at, Product yields and kinetics from the vapour phase cracking of wood pyrolysis tars, AIChE Journal, 1989, 35(1): 120~128\
    [139] Yeboah Y D., Longwell J. P., Howard J. B. et al, Effect of calcined dolomite on the fiuidized bed pyrolysis of coal, Ind. Eng. Chem. Process Des. Dev., 1980, 19: 646 ~653
    [140] Ellig D., Chiu K., David W. et al,Pyrolysis of volatile aromatic hydrocarbons and n-heptane over calcium oxide and quartz, Ind. Eng. Chem. Process Des. Dev., 1985, 24(4) 1080~1087
    [141] Donnot A., Magne P., Deglise X., Dolomite as catalyst of tar cracking, In: Bridgwater A.V and Kuester J. L, eds., Research in Thermochemical Biomass Conversion, Elsevier Applied Science, London, 1988, 2590~2594
    [142] Magne P., Donnot A.,Deglise X., Dolomite as a catalyst of tar cracking: comparison with industrial catalysts, In: Grassi Cs, Gosse G., Do Santos,eds, Biomass for Energy And Industry, 5th EC Conference, Elsevier, London, 1990, 2590~2591
    [143] Sjostrom K., Taralas C., Liinanki L., Sala dolomite catalysed conversion of tar from biomass pyrolysis, In: Bridgwater A.V. and Kuester J. L,eds,Research in Thermochemical Biomass Conversion, Elsevier Applied Science, London, 1988, 974~986
    [144] Vassilatos V., Taralas Q., Sjostrom K., Bjornbom E., Catalytic cracking of tar in biomass pyrolysis in the presence of calcined dolomite, Can. J. Chem. Eng,1992, 70: 1008-1013
    [145] Taralas G., Vassilatos V., Sjostrom K. et al,Thermal and catalytic cracking of n-heptane in the presence of CaO, MgO and calcined dolomites, Can. J. Chem. Eng., 1991, 69: 1413~1419
    [146] Rensfelt E., Ekstrom C., Fuel gas from municipal waste in a intergrated circulating fluid-bed gasification/gas-cleaning process, Energy Biomass Wastes, 1989, 12: 891~906
    [147] Alden H., Espenas B. Gc., Rensfelt E., Conversion of tar in pyrolysis gas from wood using a fixed dolomite bed, In: Bridgwater A. V and Kuester J.K,eds., Research in Thermochemical Biomass Conversion, Elsevier Applied Science London, 1988, 987~1001
    [148] Pekka A., Simell J. B., Catalytic purification of tarry fuel gas, Fuel, 1990, 69: 1219~1225
    [149] Pekka A., Jukka K., Leppalahti J. B. et al, Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials, Fuel, 1992, 71: 211~218
    [150] Simell P., Kurkela E., Stahlberg P., Formation and catalytic decomposition oftars from fluidized-bed gasification. In: Bridgwater A. V, eds., Advances in Thermochemical Biomass Conversion, Blackie Academic & Professional, London, 1993, 265~279
    [151] Ekstrom C., Lindman N., Pettersson R., in: R. P. Overend, T. A.Milne, L. K. Mudge, eds., Fundamentals of Thermochemical Biomass Conversion, Elsevier Applied Science, London and New York, 1985, 601
    [152] Mudge L. K., Baker E. G., Brown M. D. et al, Research in thermochemical biomass conversion, Elsevier Applied Science, London and New York, 1988, 1141
    [153] Aznas M. P., Delgado J., Corella J. et al, Biomass for energy, industry and environment (6th EC Conference), Elservier, Amsterdam, 1992, 707
    [154] Blackadder W. H., Rensfelt E., Thermochemical processing of biomass, Butterworth, 1984, 137
    [155] Roine A., HSC chemistry for windows, Chemical reaction and equilibrium software with extensive thermochemical database, HSC chemistry 4.0, Outokumpu Research Oy. Finland, 1999
    [156] Aspen Technology, Aspen Plus User Guide, U. S. A., Aspen Technology, 2000
    [157] Aspen Technology, Aspen Plus Physical Property Methods and Models, U. S. A., Aspen Technology, 2000
    [158] Aspen Technology, Aspen Plus Getting Started Solids, U. S. A., Aspen Technology, 2000
    [159] Bale C. W., Chartrand P., Degterov S. A. et al, FactSage Thermochemical Software and Databases. Calphad, 2002, 26(2): 189~228
    [160] Jensen P.A., Frandsen F.J., Dam-Johansen K., et al, Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis, Energy & Fuels, 2000, 14(6): 1280~1285
    [161] Mathieu P., Dubuisson R., Performance analysis of a biomass gasifier, Energy Conversion and Management, 2002, 43(9-12): 1291~1299
    [162] Kee R. J., Miller J. A., Jefferson T. H., CHEMKIN: A General purpose, problem independent, transportable, fortran chemical kinetics code package, Sandia Report, SAND80-8003, 1980
    [163] Kee R. J., Rupley F. M., Miller J. A., CHEMKIN 2II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetic, Sandia Report, SAND89-8009, 1989
    [164] Kee R. J., Rupley F. M., Meeks K. et al, CHEMKIN 2III: A fort ran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetic. Sandia Report, SAND96-8216, 1996
    [165] Glarborg P., Kee R. J., Grcar J. F. et al, PSR: A fortran program for modeling well-stirred reactors, Sandia Report, 1991
    [166] Janse A. M., Westerhout R. W., Prins W., Modelling of flash pyrolysis of a single wood particle, Chem Engng Process, 2000, 39(3): 239~252
    [167] Di Blasi C., Modeling intra- and extra-particle processes of wood fast pyrolysis, AIChE J., 2002, 48(10): 2386~2397
    [168] Lee D. H., Yang H. P., Yan R., et al. Prediction of gaseous products from biomass pyrolysis through combined kinetic and thermodynamic simulations, Fuel, 2007, 86: 410~417
    [169] Blasi C. D., Signorelli G., Russo C. D. et al, Product distribution from pyrolysis of wood and agricultural residues, Ind. Eng. Chem. Res., 1999, 38: 2216~2224
    [170] Li S., Xu S., Liu S. et al, Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology, 2004, 85(8-10): 1201~1211
    [171] Wojtowicz M. A., Bassilakis R., Smith W. W. et al, Modeling the evolution of volatile species during tobacco pyrolysis, Journal of Analytical and Applied Pyrolysis, 2003, 66(1): 235~261.
    [172] Williams P. T., Nugranad N., Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy, 2000, 25: 493~513
    [173] Robert J. E., Thomas A. M., Molecular characterization of the pyrolysis of biomass, Energy & Fuels, 1987, 1(2): 123~137
    [174] Benson S. W., Thermochemical Kinetics, New York, Wiley, 1968, chap. 2
    [175] Williams P. T., Nugranad N., Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy, 2000, 25: 493~513
    [176] Reed T., Biomass gasification and principles, Park Ridge, Noyes Data Corporation, New Jersey, 1981, 123
    [177]宋维端,肖任坚,房鼎业,甲醇工学,北京:化工工业出版社,1991, 41~85
    [178]刘少文,李永丹,甲烷重整制氢气的研究进展,武汉化工学院学报,2005,27(1):20~27
    [179]王卫,王凤英,申欣等,甲烷制备合成气工艺开发进展,精细石油化工进展,2007,7(7):27~31
    [180]姜圣阶等,合成氨工学,第二卷,北京:石油化学工业出版社,1978
    [181] Felder R. M., Rousseau R. W.,Elementary principles of chemical processes, New York,Wiley, 2004
    [182]李振山,蔡宁生,赵旭东等,CaO与CO2循环反应动力学特性,燃烧科学与技术,2006, 12(6):481~485
    [183] Balasubramanian B., Lopez A., Kaytakoglu S. et al, Hydrogen from methane in a single-step process, Chem Eng Sci, 1999, 54 (15 /16) : 3543~3552
    [184]陈小华,郑瑛,郑楚光等,CaO再碳酸化的研究,华中科技大学学报:自然科学版, 2003, 31 (4) : 54~55
    [185] Yukitaka K., Keiko A., Yoshio Y., Study on aregenerative fuel reformer for a zero-emission vehicle system, J. Chem. Eng. Japan, 2003, 36 (7) : 860~866
    [186]岑可法,姚强,骆仲泱等,高等燃烧学,杭州:浙江大学出版社,2002,533~540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700