用户名: 密码: 验证码:
城市景观水处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先系统综述了城市景观水污染的状况、原因以及国内外对城市景观水处理技术的研究状况。在此基础上,通过分析、比较确定采用物理化学法处理城市景观水,并以贵阳市南明河为对象,开展了深入的研究。最后进行了南明河河水净化的概念设计。
     本研究贯彻了科学发展观,符合建设资源节约型、环境友好型社会和发展循环经济的总体要求,遵循废弃物资源化利用、不产生“二次污染”的原则。针对城市湖泊、水库、河流等景观水体水量大、N和P等污染物浓度低的特点,采用沸石吸附和聚合氯化铝(PAC)+聚丙烯酰胺(PAM)混凝组合工艺,达到了脱氮除磷消除水体富营氧化、脱色除浊提高水体透明度的目的。主要进行了天然沸石和粉煤灰合成沸石(人造沸石)吸附N、P实验,也进行了硅藻土和活性炭的吸附实验;吸附和混凝组合实验。混凝剂PAC可由煤矸石加工制造,净水过后的粉煤灰合成沸石可直接用于农业土壤的改良和增肥。
     吸附动力学实验和热力学实验结果表明:①粉状沸石吸附N、P的速度相当快,30min左右反应即可达到平衡;②在实验条件下,日本人造沸石和天然沸石对NH3-N的去除率分别为60.20%和63.74%。粉煤灰对NH3-N去除率只有4.19%,但是用微波法合成人造沸石后去除率提高15倍,可达67.91%。③活性炭对有机氮有一定的吸附去除作用,对NH3-N开始有微弱的吸附作用,但是很快又解吸出来。硅藻土对NH3-N的去除作用很小。④天然沸石对TP去除率为41.67%。粉煤灰对TP去除率只有8.00%,但是用微波法合成人造沸石后去除率提高5倍,可达48.00%。日本人造沸石、活性炭、硅藻土含磷,这可能是在生产过程中混入的。⑤粉煤灰用微波法合成人造沸石后,对NH3-N、TP均有显著的吸附作用。合成的最佳时间为25min,在此条件下合成的人造沸石吸附性能最好。⑥天然沸石和粉煤灰合成沸石对NH3-N的等温吸附曲线在一定的浓度范围内可用弗兰德利希(Freundlich)吸附等温式和朗格缪尔(Langmuir)吸附等温式进行拟合。
     吸附和混凝组合实验结果表明:①沸石吸附和PAC+PAM混凝组合工艺可以有效去除景观水中的N、P营养物质、色度和浊度,从而提高景观水的透明度,达到碧水清清、清澈见底的效果。②在实验条件下,采用天然沸石的组合工艺对NH3-N的平均去除率分别为61.2%和73.7%,对TP的平均去除率分别为77.7%和83.0%,混凝沉淀10min后浊度和色度消失;采用洗后日本人造沸石的组合工艺对NH3-N的平均去除率分别为91.5%和92.5%,对TP的平均去除率分别为68.8%和55.0%,混凝沉淀10min后浊度和色度消失。③人造沸石和天然沸石的性状有差别,决定了组合工艺条件不同。使用天然沸石时,对浊度去除率最主要的影响因素是沸石投加量和PAM投加量,且两者有显著的交互作用,PAC的投加量影响较小,应主要从经济角度考虑。使用人造沸石时,对浊度去除率最主要的影响因素是沸石投加量和PAC投加量,且两者有显著的交互作用,PAM的投加量影响较小,应主要从经济角度考虑。④在实际应用中,沸石的投加量由景观水的水量、景观水中NH3-N和TP浓度及需要达到的浓度、实际水温时沸石的吸附性能决定,混凝剂PAC+PAM的用量由投加沸石后水的浊度、水温、pH值决定。⑤粉状沸石的吸附过程需要30min左右达到平衡,而PAC+PAM的混凝过程只需要10min左右就可以使水澄清。因此,整个组合工艺流程只需要40-50min左右的时间。
     因此,可得出研究结论:采用粉煤灰合成沸石吸附和PAC+PAM混凝组合工艺处理城市景观水是初步可行的。
This thesis primo system has summed up urban landscape water pollution status, cause and the research situation of urban landscape water treatment technology at home and abroad. Have followed the water handling city landscape here on the basis, by analysing, adopt a physical chemistry comparatively for sure, have carried out thorough research take Gui Yang City Nan Ming River as marriage partner together. Have carried out the conceptual design that Nan Ming River water purifies finally.
     Capital is studied having put science into effect developing a Taoist temple, is accords with the general requirement building the economize on resources type, amicable environment type society and developing circulation economy's, is abides by waste resource-rization make use of, the principle not producing "secondary pollution ". The wave water yield is big, low pollution thickness characteristics such as N and P specifically for landscape such as city lake, reservoir, river, adopt the zeolite adsorption and polymerization chlorinating aluminium(PAC) + polypropylene acidamides (PAM) to drift along curdling to constitute a handicraft, purpose having reached the wave transparency taking off a nitrogen oxidizing except that the phosphorus removes rich camp of wave, fading except confused rise. The dust having carried out the natural zeolite and fine coal mainly composes zeolite (imitation zeolite) adsorption N, the P experiment, adsorption experiment having also carried out Celatom and activated carbon; The adsorption sum drifts along curdling to constitute an experiment. Coagulant PAC may process fabrication from the gangue, clean water afterwards fine coal ash composes a zeolite but is used for agriculture soil directly to ameliorate and increase a fertilizer.
     The dynamics experiment and the thermodynamics experiment bear fruit indicate an adsorption: (l)Form of powder zeolite adsorption N, the P speed pretty quickly, 30 min retinue reaction is OK to reach balance; (2)Under experiment condition, the Japan imitation zeolite and the natural zeolite takeoff rate to NH3-N are 60.20% and 63.74% respectively. Fine coal ash only has 4.19% to NH3-N takeoff rate, takeoff rate improves 15 times, but amounts to 67.91% but after using microwave to follow the zeolite composing imitation. Activated carbon has the certain adsorption to dislodge an effect; (3)To the organic nitrogen, begins to have faint adsorbing, but desorb very quickly coming out to NH3-N. Celatom is very small to the NH3-N takeoff effect. (4) The natural zeolite to TP removeing rate is 41.67%. The pulverized coal ash only has 8.00% to TP removeing rate, but after microwave the synthesis permutite removeing rate enhancement 5 times, may reach 48.00%. The Japanese permutite, the activated charcoal, the diatomaceous earth contain the phosphorus, this possibly is mixes in the production process. (5)The pulverized coal ash after microwave the synthesis permutite, to NH3-N, TP has the remarkable adsorption. The synthesis best time is 25min, synthesizes the permutite adsorption performance under this condition to be best. (6)The natural zeolite and the pulverized coal ash synthesis zeolite may use Friendly to the NH3-N uniform temperature adsorption curve in the certain density scope to Freundlich adsorb the uniform temperature type and Langmuir adsorbs the uniform temperature type to carry on the fitting.
     With drifting along curdling, the combination experiment bear fruit indicates an adsorption: (l)The zeolite adsorption and PAC + PAM drift along curdling to constitute a handicraft being able to have boundary effect takeoff landscape water N, P nutrient substance, chroma sum are a turbidity, improve landscape thereby the water transparency, the effect reaching the clear, clear idea of blue water bottom. Adopt the natural zeolite combination handicraft to be 61.2% and 73.7% respectively to average NH3-N takeoff rate. (2)Under experiment condition, the average takeoff rate to TP parts for 77.7% and 83.0%, the turbidity and chroma disappear after drifting along curdling to precipitate 10 mins out; Adopt the combination handicraft washing the queen Japan imitation zeolite to be 91.5% and 92.5% respectively to average NH3-N takeoff rate, the average takeoff rate to TP is 68.8% and 55.0% respectively, the turbidity and chroma disappear after drifting along curdling to precipitate 10 mins out. (3)The imitation zeolite and natural zeolite properties have had the difference, decision to constitute technological conditions diversity. Takeoff rate throws usage affect a factor mainly being a zeolite most when natural zeolite, to the turbidity adding amounts and PAM jump into a add amounts, both have and the notable interaction, the PAC jumping into a adds amounts effect should think mainly from economy angle less. Takeoff rate throws usage affect a factor mainly being a zeolite most when imitation zeolite, to the turbidity adding amounts and PAC jump into a add amounts, both have and the notable interaction, the PAM jumping into a adds amounts effect should think mainly from economy angle less. (4)In actual application, the zeolite jumping into a adds amounts reason landscape water water yield, landscape water NH3-N and TP thickness and requires that the zeolite adsorption function decides, coagulant PAC + PAM dosages reasons throw the turbidity, the water temperature, pH value decision adding zeolite queen water time the thickness reaching, the actual water temperature. (5)Form of powder zeolite's the process adsorbing process requiring that 30 mins control an equilibration, but PAC + PAM drifting along curdles requires that 10 min retinue can make water clear right away. Therefore, the entire combination process flow needs the 40-50min or so time.
     Therefore, may reach the conclusion studying: Adopt fine coal ash the water composing the zeolite adsorption and PAC + PAM drifting along curdling to constitute a handicraft handling city landscape is that the first step is feasible.
引文
[1] 国家环境保护局.GB12941-91 景观娱乐用水水质标准[S].
    [2] 国家环境保护总局,国家质量监督检验检疫总局.GB3838-2002 地表水环境质量标准[S].
    [3] 国家标准化管理委员会,GB/T18921-2002 城市污水再生利用 景观环境用水水质[S].
    [4] 金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M] .北京:中国环境科学出版社,1990.
    [5] 贵阳市人民政府.南明河三年变清治理情况报告 [R/OL] .贵阳通.http://www.gytouch.com.cn/gyjianshe/naminghe/default2.asp.
    [6] 韩丽珍,潘虹,曹晋静.南明河细菌污染状况及分析[J].山地农业生物学报,2005,24(1):37-41.
    [7] 陈浒,王竞.南明河三江口至水口寺河段大型底栖无脊椎动物与水质研究[J].贵州师范大学学报:自然科学版,2005,23(1):14-18.
    [8] 陈浒,熊康宁,辜永河,等.利用大型底栖无脊椎动物和底泥汞对南明河水质的评价[J].贵州师范大学学报:自然科学版,2006,24(1):10-13.
    [9] 阳光,涂磊,秦睿,等.住宅小区景观用水水环境保护应用[J].云南环境科学,2004,23(1):25-26.
    [10] 毛俊琦.高尚住宅区湖水治理及循环利用[J].给水排水,2003,29(9):56-58.
    [11] 濮培民.健康水生生态系统的退化及其修复——理论、技术及应用[J].湖泊科学,2001,13(3):193-203.
    [12] 吴洁.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学,2001,21(6):540-544.
    [13] 戴莽.利用大型围隔研究沉水植被对水体富营养化的影响[J].水生生物学报,1999,23(2):97-101.
    [14] 沈治蕊.南京煦园太平湖富营养化及其防治[J].湖泊科学,1994,9(4):377-379.
    [15] 王国祥.用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染[J].植物资源与环境,1998,7(2):35-41.
    [16] 陈静,郭慧光,王鸿良,等.滇池草海蓝藻清除应急药剂筛选现场试验研究[J].云南环境科学,1999,18(2):30-33.
    [17] 比嘉照夫.人·くらし·生命が变わる,EM 环境革命[M].东京:综合 ??à 株式会社,1994.
    [18] 李雪梅,杨中艺,简曙光,等.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报(自然科学版),2000,39(1):81-85.
    [19] 曹式芳,庞金钊,杨宗政,等.生物技术治理富营养化景观水体的研究[J].天津轻工业学院学报,2002,4:1-3,7.
    [20] 陈金霞,徐王华,张小莉.生物修复技术在污染治理中的应用[J].上海化工,2000(9):4-7,20.
    [21] 康冰,罗明典.生物净化剂[J].精细与转用化学品,2002,24:15,20.
    [22] 郭薇.复合酶污水净化剂提高水体自净能力[N].中国环境报,2004-11-23(4).
    [23] 蔡娟,操家顺,吴蓓,等.复合酶制剂处理城市景观水体的试验研究[J].水资源保护,2006,22(2):31-32,73.
    [24] 钟梅英,胡小兵.景观水的生态系统处理[J].安徽工业大学学报,2006,23(1):41-43,46.
    [25]王东根.景观水生态处理技术及其在高尔夫球场应用研究[J].观点论文,172-179.
    [26] 刘延恺,陆苏,孟振全.河道曝气法——适合我国国情的环境污水处理工艺[J].环境污染与防治,1994,16(1):22-25.
    [27] 孙从军,张明旭.河道曝气技术在河流污染治理中的应用[J].环境保护,2001,(4):12-14.
    [28] 陈伟,叶舜涛,张明旭.苏州河河道曝气复氧探讨[J].上海环境科学,2001,20(5):233-234.
    [29] 徐续,操家顺.河道曝气技术在苏州地区河流污染治理中的应用[J].水资源保护,2006,22(1):30-33.
    [30] Seifert A.Naturnaeherer Wasserbau[J].Deutsche Wasserwirtschaft,1983,33(12):361-366.
    [31] Seifert A.Ministerium fuer Umwelt Badenwuettenberg[J].Stuttgart Hochwasserschutz und Oekologie,1988.
    [32] Schlueter U . Ueberlegungen zum mnaturnahen Ausbau von Wasseerlaeufen[J].Landschart und Stadt,1971,9(2):72-83.
    [33] Binder W,Juerging P,Karl J.Naturnaher Wasserbau Merka male und Grenzen[J].Garten und Landschaft,1983,93(2):91-94.
    [34] Hohmann J,Konold W.Flussbau massnah men an der Wutach und ihre Bewertung aus oekologischer Sicht[J].Deutsche Wasserwirtschaft,1992,82(9): 434-440.
    [35] H.Sller H,Wirsching U.Forschr.Miner.1985,63:21-43.
    [36] Berkgaut V,Singer A.Environ.Sci.Techno1.,1995,29:1748-1753.
    [37] Queral X,Alastrey A,L6pez-Soler A,et a1.Environ.Sci.Techno1.,1997,31:2527-2533.
    [38] Queral X,Plana F,Alastuey A,et a1.Fuel,1997,76:793-799.
    [39] Hollman G G,Steenbruggen G,Janssen-JurkoviCovh M.Fuel,1999,78:1225-1230.
    [40] Querol X,Moreno N,Umafia J C,et a1.1nt.J.Coal Geology,2002,50:413-423.
    [41] 李方文,魏先勋,马淞江,等.粉煤灰改性吸附材料的研究[J].重庆环境科学,2003,25(6):25-28,45.
    [42]吴德意,孔海南,赵统刚,等.合成条件对粉煤灰合成沸石过程中沸石生成和品质的影响[J].无机材料学报,2005,20(5):1153-1158.
    [43] 徐国想,范丽花,李学字,等.粉煤灰沸石合成及应用研究[J].IM&P化工矿物与加工,2006,9:32-34.
    [44] Mercer,B.W.et al..Ammonia Removal from Secondary Effluents bySelective Ion Exchange.JWPCF,1970,42(2):95-107.
    [45] Koon,J.H.,Kauiman,W.J.,J..Water Pollution Control Fed..1974,47:448.
    [46] Semmens M.J.,et al..Modeling Ammonium Exchange and Regeneration on Clinoptilolitr.Water Research,1981,15(6):655-666.
    [47] E.Chmielewska-Horvathova,J.Konecny,Z.Bosan.Ammonia Removal from Tannery Wastewater by Selective Ion Exchange on Slovak Clinoptilolite.AHCBAU,1992,20(5):269-272.
    [48] D.Bergero,M.Boccignone,et al..Ammonia Removal Capacity of European Natural Zeolite Tuffs : Application to Aquaculture Waste Water.Aquacult.Fish.Manage.,1994,25(8):813-821.
    [49] G.Singh,B.Prasad.Removal of Ammonia from Coke-plant Wastewater by Using Synthetic Zeolite.Water Environment Research,1997,69(2):157-161.
    [50] NA Booker,EL Cooney,AJ Priestley.Ammonia Removal from Sewage Using Australian Natural Zeolite,Water Science and Technology,1996,34(9):17-24.
    [51] S.Komarowski,Q.Yu.Ammonium Ion Removal from Wastewater Using Australian Natural Zeolite:Batch Equilibrium and Kinetic Studier.Environmental Technology,1997,18(11):1085-1097.
    [52] Emma L.Cooney,Nicholas A.Booker,et al..Ammonia removal from Wastewater Using Natural Australian Zeolite . I . Characterization of the Zeolite.Separation Science and Technology,1999,34(12):2307-2327.
    [53] Emma L.Cooney,Nicholas A.Booker,et al..Ammonia Removal from Wastewater Using Natural Australian Zeolite.II.Pilot-scale Study Using Continuous Packed Column Process.Separation Science and Technology,1999,34(14):2741-2760.
    [54] ML.Nguyen,CC.Tanner.Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites.New Zealand Journal of Agricultural Research,1998,41(3):427-446.
    [55] M.Rozic,S.Cerjan-Stefanovic,ea al..Ammoniacal Nitrogen Removalfrom Water by Treatment with Clays and Zeolites.Water Research,2000,34(14):3675-3681.
    [56] 章非娟.环境工程治理技术丛书:生物脱氮技术[M].北京:中国环境科学出版社,1992,9-10.
    [57] 刘伯元.沸石及其开发应用[J].地质与勘探,1994,30(5).
    [58] 肖举强,于连群.活化沸石去除水中氨氮的研究.兰州铁道学院学报,1995,14(1):79-82.
    [59] 韩惠茹.利用天然沸石处理含铵废水的工艺研究.工业水处理,1997,17(5):33-34.
    [60] 何杰,刘玉林.天然沸石对含酚废水的处理.矿产综合利用,1999,1:39-42.
    [61] 何杰,刘玉林.动态法研究天然沸石去除氨氮效果.水处理技术,1999,25(6):358-361.
    [62] 张晓丽,温俨.沸石去除废水中氨氮的实验研究.科技情报开发与经济,1999,9(1):14.
    [63] 李德生,黄晓东.生物沸石反应器在微污染水源水处理中的应用[J].环境科学,2000,21(5):70-73.
    [64] 李增新,李相仁.天然沸石在环境污染治理中的应用进展[J].环境污染治理技术与设备,2004,5(3):18-22.
    [65] 杜文华,芮曰,徐斌.城市景观水污染现状及处理技术[J].环境保护科学,2006,32(2).
    [66] 潘涌璋,郭大卫.天然沸石床处理受污染景观水体的试验[J].城市环境与城市生态,2006,19(1).
    [67] 王雅丽,高晓晋.沸石矿物处理富营养化水体研究[J].云南地质,2005,24(2):200-206.
    [68] 刘丽娜,刘至明,吴得意,等.粉煤灰吸附去除城市景观水体中磷的初步研究[J].环境科学与技术,2006,29(2):40-42.
    [69] 和丽萍.硅藻土处理城市生活污水技术试验研究[J].云南环境科学,2002,21(2):59-60.
    [70] 贺明和,吴纯德,金伟,等.硅藻土与混凝剂复配处理城镇生活污水的研究[J].工业水处理,25(5),2005,25-27.
    [71] 蒋小红.改性硅藻土处理城市污水技术研究[J] .给水排水,2006,32(1).
    [72] 王 庆 中 . 纳 米 微 空 硅 藻 精 土 水 处 理 技 术[EB/OL].http://www.qzhb.cn/ViewInfo.asp?id=7,2004-06-24.
    [73] 赵其仁,李林蓓.硅藻土开发应用及其进展[J].化工矿产地质,2005,27(2),96-102.
    [74] 张维.红枫湖、百花湖环境特征及富营养化[M].贵阳:贵州科技出版社,1999.
    [75] 中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020 年)[EB/OL].http://www.gov.cn/jrzg/2006-02/09/content_183787.htm.
    [76] 温东辉.天然沸石吸附——生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究[M].北京:中国环境科学出版社,2003.
    [77] 郭永龙,王焰新,蔡鹤生,等.水热条件下利用微波加热从粉煤灰合成沸石研究[J].地球科学—中国地质大学学报,2003,28(5):517-521.
    [78] 马骏,田彦文,王海彦.β沸石的微波制备及修饰[J].材料与冶金学报,2005,4(4):281-285.
    [79] 国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700