用户名: 密码: 验证码:
污泥的粉煤灰调理和污泥陶粒的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将粉煤灰作为污泥调理剂,首先对城市污水厂污泥进行了脱水预处理效果研究。随后,以污泥、粉煤灰为原料,添加粘土为粘结剂,研究了污泥陶粒的烧制工艺,进行了中试生产,并在水处理实验中考察了其应用性能。在上述实验研究过程中,探讨了粉煤灰对污泥脱水的影响机理;研究了污泥中高含量有机物以及助熔剂对污泥陶粒性能的影响及作用机理,从而揭示了污泥陶粒的膨胀机理。本论文的主要研究内容及结果如下:
     1.以污泥比阻(SRF)、脱水速度、滤饼含水率等为考察指标,并以阳离子型聚丙烯酰胺(PAM)为对照,通过单因素实验对城市污水处理厂的剩余污泥进行了脱水效果研究。结果表明,随着粉煤灰投加量的提高,污泥比阻持续降低。当粉煤灰投加量达到2g/(100mL污泥)时,污泥比阻从0.92×109s2/g降至0.32×109s2/g,降低了65.2%。单独投加粉煤灰对降低脱水污泥含水率效果最明显,当粉煤灰投加量为3g/(100mL污泥)时,滤饼含水率降至66.9%。PAM的投加,只能将污泥含水率降至80%左右,当继续投加粉煤灰至3g/(100mL污泥)时,滤饼含水率可降为71.8%。PAM与粉煤灰联合投加可使污泥脱水速度提高90%以上。
     2.通过化学成分分析、微观形貌观察(SEM)、粒径分布、表面电负性(Zeta电位)等表征手段,结合脱水效果实验,认为粉煤灰降低污泥比阻的主要原因在于粉煤灰颗粒结构疏松多孔,分散性好,强度较大,作为骨架均匀分散在污泥絮体结构中,使污泥滤饼形成了透水性更好的多孔结构,降低了压缩程度,水分进出通道比较畅通,从而表现为污泥比阻的降低。粉煤灰和污泥表面都带负电荷,不能对污泥起到电性中和作用,而且粉煤灰的投加不能促进污泥颗粒粒径的长大,因此粉煤灰不会对污泥产生絮凝作用。
     3.结合污泥、粉煤灰、粘土的化学成分分析,塑性指数测定以及热重-差热(DSC-TGA)分析,分别以硬度、吸水率、密度等为考察指标,对原料配比、预热温度与时间、烧结温度与时间等工艺参数对污泥陶粒性能的影响进行了单因素实验,确定制备污泥陶粒的工艺参数为:原料配比中污泥含量不超过50%,粘土不低于50%;预热温度为400℃,预热时间20min;烧制污泥陶粒滤料时,烧结温度为1050℃,烧结时间为5min;烧制膨胀陶粒时,烧结温度为1150℃,烧结时间10min。实验结果表明,烧结温度是影响陶粒物理性能的最关键因素。随着温度的升高,越来越多的原料成分熔化成为玻璃态物质,使陶粒体积收缩,密度增大,表面增稠而致密,吸水率降低;当温度超过1125℃后,由于产气反应的发生,陶粒体内气压增大,体积膨胀,密度开始降低。
     4.通过考察预热温度对污泥陶粒密度和吸水率的影响,揭示出污泥中高含量有机物对污泥陶粒的膨胀作用机理为:ⅰ)有机膨胀剂(污泥中的有机物)在预热阶段(<500℃)发生了脱水和碳化,生成还原性的碳;ⅱ)在烧结阶段(1150℃),先是无机膨胀剂中的碳酸盐(主要是CaCO3)、硫酸盐等分解为对应的氧化物和CO2、SO2,然后是Fe2O3在高温下分解为FeO、Fe3O4和O2,产生的这些气体使得陶粒体积产生一次膨胀;ⅲ)由氧化铁分解产生的02与预热阶段产生的还原碳生成CO和CO2,这些二次气体使得污泥陶粒体积产生二次膨胀。
     5.通过研究不同原料配比及烧结温度对污泥陶粒物理性能和微观结构的影响,揭示了污泥中的助熔剂与烧结温度之间的相互作用机制为:高温下,污泥中较多的碱金属和碱土金属氧化物使得Si-O(桥氧)键断裂,破坏了[SiO4]四面体骨架网络的稳态结构,使其更易解体,从而生成了更多的玻璃态熔融体。故污泥陶粒更容易烧结,即烧结温度更低,烧结时间更短。
     6.通过对比污泥-粘土陶粒和粉煤灰-粘土陶粒的密度和膨胀率随烧结温度的变化规律,揭示了污泥陶粒的膨胀机理:当温度低于烧胀温度(1150℃)时,熔融物质的数量是决定污泥陶粒物理性能的关键因素。而熔融物质的多少与助熔剂有关,助熔剂越多,则成陶材料的熔点越低,在相同温度下熔化生成玻璃态物质就越多,导致收缩更剧烈,颗粒密度更大。当烧结温度达到膨胀温度后,决定污泥陶粒物理性能的关键因素演变为所产生气体的压力。当气体压力足以克服表面张力时,体积膨胀。1150℃后,开始发生产气反应,在污泥陶粒中,这类反应主要是碳和氧化铁之间的氧化还原反应,而还原碳来自预热阶段污泥中有机物的热解。因此,碳和氧化铁的含量以及它们之间的比例是气体产生量的两个决定因素。污泥陶粒中有机物和铁含量都较高,因此,产气量较大,导致内部的空隙率高从而降低了颗粒密度。
     7.通过陶粒中矿物成分的X射线衍射(XRD)分析,发现粘土陶粒中主要是钙长石、钠长石等长石类矿物,而污泥陶粒中的矿物成分主要是石英。正是由于高温下原料粉末颗粒之间的熔融烧结,形成了这些长石以及石英等架状硅酸盐晶体和玻璃相无定形物质,才使陶粒具有较高的强度和较大的硬度。
     8.通过以上污泥陶粒的烧制工艺研究和膨胀机理探讨,认为污泥陶粒滤料的烧结是一个不完全烧结和不完全烧胀的过程。一方面,通过烧结,使颗粒间键合,形成一定的结合力,提高机械强度;另一方面,要在陶粒内部产生气体使其体积膨胀,从而形成多孔的微观结构,降低密度;第三还要通过降低助熔剂等成分的含量,使陶粒表面不易熔融,从而提高表面孔隙率。
     9.对污泥陶粒的重金属浸出率进行了测定,结果表明,污泥陶粒(污泥:粘土=1:1)的重金属浸出浓度都低于1ppm,对重金属的固化率都超过80%,对总Pb的固化率达到了99.1%。通过高温烧结,污泥中的大部分重金属元素很可能与Si4+、Al3+等网络形成元素发生了类质同象置换,从而被牢牢固定在新的矿物晶体结构中。污泥陶粒作为水处理滤料,其稳定性和安全性符合应用要求。
     10.分别在实验室旋转电炉和工业回转窑内进行了污泥陶粒动态试验和中试生产,证明污泥陶粒烧制工艺合理,生产过程容易控制,产品性能稳定,具备工业化放大条件。将中试产品应用于曝气生物滤池中,进行了生活污水处理实验,结果表明污泥陶粒滤料有利于微生物生长和繁殖,各项性能不逊于商品陶粒,并在氨氮的去除方面更具优越性,是一种性能良好的水处理填料。
     通过以上研究,对粉煤灰调理后脱水污泥的处置及资源化途径进行了展望。对于小型污水厂而言,通过投加粉煤灰后压滤脱水使滤饼含水率降至60%以下,可以最经济的卫生填埋方式解决污泥问题。对于大型城市污水厂而言,采用PAM与粉煤灰联合脱水后,添加辅料烧制污泥陶粒,可以同时实现污泥无害化、资源化。
At first, this paper used fly-ash as conditioner to study the dewatering pretreatment of sewage sludge. Then, the preparation and mechanisms of ceramsite were investigated by taking sludge and fly-ash as the raw material and clay as binder. A pilot-scale production was carried out based the process parameters of bench-scale. And the application performance of sludge ceramsite was investigated by the experiments of sewage treatment in biological aerated filter (BAF). In these experiments, the fly-ash influence mechanism to sludge dewatering was explored; the effects of high content of organic and flux in sludge on ceramsite were studied, which revealed the expansion mechanism of sludge ceramsite. The main contents and results are as follows:
     1. Through the single-factor experiments, contrast to cationic polyacrylamide (PAM),the effects of fly-ash on dewatering of sewage sludge were studied according to specific filtration resistance (SRF), dehydrated speed, and filter cake moisture content (FCMC) as investigation indexes. The results showed that with the rising of fly-ash dosage, SRF kept decreasing. When the dosage of fly-ash achieved 0.02g/mL, SRF fell from 0.92×109 s2/g to 0.32×109s2/g,65.2% was dropped, and so it was easy to filter. The most obvious effect on FCMC is addition of fly-ash only. When the fly-ash dosage is 0.03g/mL, FCMC fell to 66.9%. FCMC could only drop to 80% when adding PAM into sludge. But when adding fly-ash as 0.03g/mL at the same time, FCMC could be reduced to 71.8%. When adding PAM combined with fly-ash, the dehydrated speed will be increased more than 90%.
     2. By chemical composition analysis, microstructure observation (SEM), and surface electrical behavior (Zeta potential), combined with the dehydration experiments, it was thought that the improvement on SRF by fly-ash was because fly-ash particles were loose and porous, which evenly dispersed in sludge floc structure as skeleton to maintain the permeability of the filter cake during compression dewatering. The surface of fly-ash and sludge are both negatively charged, so there is no electrostatic charge neutralization. Fly-ash cannot promote the sludge size to grow up. Fly-ash won't produce flocculation to sludge.
     3. The raw materials, sludge, fly-ash and clay, were tested by chemical composition plastic index, and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). Taking the physical properties of ceramsite, including hardness, water absorption, and density, as the indexes, the effects of mass ratio of raw materials, preheating temperature and time, and sintering temperature and time on the performance were investigated by some single-factor experiments. The preparation parameters of sludge ceramsite were as follows:the mass ratio of sludge should not be more than 50% and clay not be less than 50%; preheating temperature is 400℃and time is 20min; for making sludge ceramsite filter materials, sintering temperature is 1050℃and sintering time is 5min; for making expansion ceramsite, sintering temperature is 1150℃, and time is 10min. The results showed that the sintering temperature is the most key factor in ceramsite preparation. As the temperature increases, more and more materials become melted glass phase, which made the ceramsite shrank, density increased, the surface thicken and dense, and water absorption decreased. When the sintering temperatures is above 1125℃, the reactions of gas producing occurred which increased the internal pressures, made the sludge ceramsite expanded, and the density began to decrease.
     4. The influences of preheating temperature on density and water absorption revealed the expansion mechanism of sludge ceramsite about the high content of organic composition:i) dehydration and carbonation occurred in organic foaming agent (organic content in sludge) and generated reducing carbon in the preheating process (<500℃); ii) in the sintering process (1150℃), carbonate (CaCO3) and sulfate in inorganic foaming agent firstly decomposed into corresponding oxides and CO2, SO2, and then Fe2O3 decomposed at high temperature into FeO, Fe3O4 and O2, and these gases bloated the body of sludge ceramsite; iii) the O2 produced by ferric oxide decomposition reacted with reducing carbon produced CO and CO2, these secondary gas made the ceramsite expanded again.
     5. Interaction mechanism about the flux in sludge and sintering temperature was revealed by the affection of mass ratio of raw materials and sintering temperature on ceramsite properties and microstructure observation:at high temperature, many alkali and alkaline metal oxides in sludge made Si-O (bridging oxygen) bond broken, which destroyed the steady structure of [SiO4] tetrahedron skeleton network, made it easier to collapse to generate more glass phases. For this reason, sludge ceramsite was easier to be sintered than fly-ash ceramsite, which meaned a lower sintering temperature and shorter sintering time.
     6. Expansion mechanism about sludge ceramsite was revealed by comparing the density and expansion rate of sludge-clay ceramsite and fly-ash-clay ceramsite varies with the sintering temperature:when temperature is below the bloating temperature (1150℃), the critical factor is the quantity of molten materials to determine the sludge ceramsite physical properties, which related to flux, the more flux, the lower melting point of framework material, the more glass phase materials melted at the same temperature, which lead to shrink harder and form a denser body. When reached bloating temperature, the gas pressure generated from reaction mentioned above turned to be the critical factor. When the gas pressure could overcome the surface tension, the body of cemamsite would expand. When the temperature is above 1150℃, the reaction of gas producing occurred. This kind of reaction in sludge ceramsite was mainly redox reactions between carbon and ferric oxide, and the reducing carbon was from the pyrolysis product of organic matters in preheating process. Therefore, the content of carbon and ferric oxide and their ratio were the factors determining the gas producing. For their higher organic matters and iron content in sludge ceramsite, the quantity of gas generated was more than fly-ash ceramsite, which lead to a higher porosity inside and a lower density.
     7. The results of X-ray diffraction (XRD) analysis showed that the main mineral compositions were anorthite, albite, and potassium feldspar, and in sludge ceramsite was mainly quartz. But for these melted and sintered materials between powder particles at high temperature, formed tectosilicate, such as feldspar and quartz, and amorphous substances, which made ceramsite with high strength and higher hardness.
     8. It was thought that the sintering of sludge ceramsite filter material was an incomplete sintering process by the investigation of preparation and expansion mechanism of sludge ceramsite. On the one hand, certain bonding force between power partical formed by sintering to improve the mechanical strength of sludge ceramsite. On the other hand, the body could be expanded and porous inside by gas production in order to have a lower density. And at the same time, it must to make the ceramsite surface melted not so easy by reducing the content of flux composition so as to improve the surface porosity.
     9. The heavy metal contents leached from sludge ceramsite (sludge:clay=1:1) were lower than lppm, and the solidified rates were all above 80%, even the curing rate of Pb was 99.1%. Most heavy metals were likely to replace with network forming elements, such as Si4+ and Al3+ as isomorphism state sintering at high temperature, thus were firmly fixed in the new crystal texture. The stability and security of sludge ceramsite were conformed to be satisfactory for wastewater treatment as filter material.
     10. The preparation procedure of sludge ceramsite was proved to be reasonable, easy to control, having industrialized amplification conditions, and the performance of products was stable by production testing in a bench-scale rotating furnace and pilot-scale rotary kiln respectively. The results of sewage treatment in biological aerated filter (BAF) showed that, the sludge ceramsite filter material was fit for bacteria growth, and its performance was no less than the commercial ceramsite. Moreover, it had advantage on ammonia nitrogen removal over the commercial ceramsite. So sludge ceramsite had good performance in wastewater treatment as filter material.
     From above researches, the disposal of dewatering sludge and recycling approaches after fly-ash condition were prospected. For small wastewater treatment plant, if only the moisture content of filter cake could be below 60% through pressure filtration dehydration by dosing fly-ash, it could choose sanitary landfill, the most economical way, for sludge disposal. For large municipal sewage treatment plant, adding auxiliary materials to prepare sludge ceramsite after dehydration by PAM joint with fly-ash, could achieve the aim of harmless and recycling of sludge simultaneously.
引文
[1]甄广印,赵由才,宋玉,曹先艳.城市污泥处理处置技术研究.有色冶金设计与研究[J],2010,31(5):41-45.
    [2]卢志,张毅,H. Hanssen, R. D. Thierbach,李志强.德国汉堡污水处理厂污泥循环处理模式探讨[J].中国给水排水,2007,23(10):105-108.
    [3]余杰,田宁宁等.中国城市污水处理厂污泥处理处置问题探讨分析[J].环境工程学报,2007,1(1):85.
    [4]赵逢念.利用电厂余热干化焚烧城市污泥的工程实践[D].山东大学本科毕业论文,2010.12.
    [5]张鸿龄,孙丽娜,郝栋,孙铁珩.粉煤灰、城市污泥。尾矿砂配施用于无土排岩场生态修复人工土壤的持水性能研究[J].农业环境科学学报,2008,27(1):160-164.
    [6]白莉萍,伏亚萍.城市污泥应用于陆地生态系统研究进展[J].生态学报,2009,29(1):416-422.
    [7]周立祥主编.固体废物处理处置与资源化[M].北京:中国农业出版社,2007.7.
    [8]宁平主编.固体废物处理与处置[M].北京:高等教育出版社,2007.1.
    [9]何品晶,顾国维等编著.城市污泥处理与利用[M].北京:科学出版社,2003.
    [10]李笃中,何品晶.污泥性质、胶羽结构与处置[J].科技导报,2004,9:26-30.
    [11]R. M. Wu, D. J. Lee, T. D. Waite, J. Guan. Multilevel structure of sludge flocs [J]. Journal of Colloid and Interface Science,2002,252:383-392.
    [12]Lee D J. Floc structure and bound water content in excess activated sludges [J]. J Chin. Ⅰ. Chem. Engrs,1994,25:201-207.
    [13]王绍文,秦华主编.城市污泥资源利用与污水土地处理技术[M].北京:中国建筑工业出版社,2007.
    [14]李兵,张承龙,赵由才主编.污泥表征与预处理技术[M].北京:冶金工业出版社,2010.8.
    [15]W.R. Knocke, C.M. Dishman, G.F. Miller. Measurement of chemical sludge floc density and implications related to sludge dewatering[J]. Water Environ. Res, 1993,65 (6):735-743.
    [16]余林锋,汤兵,余国骏.超声波调理污泥的研究进展[J].化工环保,2007,27(5):426-430.
    [17]Y. Chen, Y. S. Chen, G. Gu. Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering [J]. Chem. Eng. J,2004,99:137-143.
    [18]刘军,顾国维.对影响污泥脱水性能的污染性质的评价[J].污染防治技术,1994,97(3):16-18.
    [19]张艳萍,彭永臻,王亚宜,张树军,乔海兵,胡建阁.调节好氧消化pH值提高污泥沉降和脱水性能[J].环境污染治理技术与设备,2006,7(2):34-37.
    [20]朱睿,吴敏,杨健,魏传银,张滨.浓缩污泥中胞外聚合物组分与脱水性的关系[J].北京大学学报(自然科学版),2010,46(3):385-388.
    [21]Murthy S N, Novak J T. Factors affecting floc properties during aerobic digestion: implications for dewatering [J]. Water Environment Research,1999,71(2): 197-202.
    [22]Jin B, Britt M W, Paul L. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge [J]. Journal of Chemical Engineering,2004,98:115-126.
    [23]朱南文,张乐华,徐建波.阳离子聚电解质调理污泥的一般作用规律[J].中国给水排水,2003,19(9):54-56.
    [24]J Ruhsing Pan, C Huang, C Gang Fu. Effect of surfactant on alum sludge conditioning and dewaterability [J]. Water Science and Technology,2000,41(8): 17-22.
    [25]杨崇豪,赵丽敏,刘秉涛.粉煤灰调理自来水厂排泥水污泥的比阻[J].中国给水排水,2005,21(11):56-58.
    [26]戴维良.上海市竹园第二污水处理厂污泥脱水性能的研究[J].中国给水排水,2009,25(21):62-64.
    [27]Y. Q. Zhao. Correlations between floc physical properties and optimum polymer dosage in alum sludge conditioning and dewatering [J]. Chemical Engineering Journal,2003,92:227-235.
    [28]Eriksson L, Alm B. Characterization of activated sludge and contioning with cationic polyeletrolytes [J]. Wat. Sci. Tech,1993,28(1):203-212.
    [29]Durand-Pianna G. Flocculation and adsorption properties of cationic polyelectrolytes toward Na-montmorillionite dilute suspensions [J]. Colloid Interface Science,1987,11(9):474-480.
    [30]胡锋平.低浓度剩余活性污泥调理剂的优选[J].江西农业大学学报,2005,27(1):43-45.
    [31]胡锋平,汪琳媛,管晓涛.双污泥调理剂调理氧化沟剩余活性污泥试验研究[J].环境科学与技术,2008,31(12):28-30.
    [32]Langer S J, Klute R. Rapid mixing in sludge conditioning with polymers[J]. Water Science Technology,1993,28(1):233-242.
    [33]王磊,夏菲菲,陈依,李叶,陈昆柏.城市污水厂生化污泥调理脱水研究[J].环境卫生工程,2010,18(3):4-6.
    [34]王铮,张勤,张正红,冯功平,冯亚兵,朱凌云.高分子混凝剂对污泥脱水性能的影响[J].重庆建筑大学学报,2003,25(6):89-93.
    [35]郦光梅,金宜英,李欢,聂永丰,李雷.无机调理剂对污泥建材化的影响研究[J].中国给水排水,2006,22(13):82-84.
    [36]利用粉煤灰制备污泥脱水剂的试验[J].桂林工学院学报,2000,20(5):57-60.
    [37]Yang Y F, Gai G S, Cai Z F, et al. Surface modification of purified fly ash and application in polymer [J]. Journal of Hazardous Materials,2006,133(123): 2276-2282.
    [38]宋宪强,雷恒毅,余光伟,白涛,黎忠,邓伟聪.新型复合混凝剂改善污泥脱水性能的研究[J].中国给水排水,2007,23(13):87-90.
    [39]黄志华,胡勇有,程建华.两性高分子污泥脱水剂PADA的合成与表征[J].高分子材料科学与工程,2008,24(6):50-53.
    [40]Shuji Sakohara, Eiichi Ochiai, Tomoaki Kusaka. Dewatering of activated sludge by thermosensitive polymers[J]. Separation and Purification Technology,2007, 56:296-302.
    [41]Krishnamurthy S, Viraraghavan T. Chemical conditioning for dewatering municipal wastewater sludges [J]. Energy Sources,2005,27(1-2):113-122.
    [42]Watanabe Y, Tanaka K. Innovative sludge handling through pelletization/ thickening [J]. Water Research,1999,33(15):3245-3252.
    [43]林红艺.城市生活污泥化学混凝脱水的研究[J].化工技术与开发,2010,39(8):59-60,63.
    [44]Lee C H, Liu J C. Enhanced sludge dewatering by dual polyelectrolytes conditioning [J]. Water Research,2000,34(18):4430-4436.
    [45]陈银广,杨海真,吴桂标,顾国维.表面活性剂改进活性污泥的脱水性能及其作用机理[J].环境科学,2000,21(5):97-100.
    [46]Yinguang Chen, Yin-Sheng Chen, Guowei Gu. Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering [J]. Chemical Engineering Journal,2004,99:137-143.
    [47]袁园,杨海真.表面活性剂及酸处理对污泥脱水性能影响的研究[J].四川环境,2003,22(5):1-8.
    [48]何文远,杨海真,顾国维.酸处理对活性污泥脱水性能的影响及其作用机理[J].环境污染与防治,2006,28(9):680-682,706.
    [49]高孟臣,张馨予,曲东旭.浅谈微生物絮凝剂(MBF)物质组成和应用[J].陕西建筑,2010,36(16):147-148.
    [50]刘自莲,施永生,李鹏.污泥调理剂[J].云南化工,2005,32(5):55-58.
    [51]段宏伟,王琳,施永生.各种调理剂在污泥脱水过程中的应用[J]云南化工,2006,33(4):67-69
    [52]何宁,李寅,陈坚等.生物絮凝剂的最新研究进展及其应用[J].微生物学通报,2005,32(2):104-108.
    [53]赵鑫鑫,尹华,张娜,叶锦韶,彭辉,秦华明,何宝燕.微生物絮凝剂对城市污水厂浓缩污泥脱水性能的影响[J].工业水处理,2008,28(11):24-26.
    [54]张娜,尹华,秦华明,何宝燕,彭辉,叶锦韶,赵鑫鑫.微生物絮凝剂改善城市污水厂浓缩污泥脱水性能的研究[J].环境工程学报,2009,3(3):525-528.
    [55]张印堂,陈东辉,陈亮.壳聚糖絮凝剂在活性污泥调理中的应用[J].上海环境科学,2002,21(1):49-53.
    [56]邹鹏,宋碧玉,王琼.壳聚糖絮凝剂的投加量对污泥脱水性能的影响[J].工业水处理,2005,25(5):35-37.
    [57]吕斌,王弘宇,杨小俊.污泥脱水性能调理技术研究进展[J].山西建筑,2009,35(9):80-182.
    [58]刘秉涛,娄渊知,徐菲.聚合氯化铝/壳聚糖复合絮凝剂在活性污泥中的调理作用[J].环境化学,2007,26(1):42-45.
    [59]Young Park K, Kyu-Hong A, Kyu Maeng S, et al. Feasibility of sludge ozonation for stabilization and conditioning. Ozone:Science and Engineering [J].2003, 25(1):73-80.
    [60]Nurdan B. Biological sludge conditioning by Fenton's reagent[J]. Process Biochemistry,2004,39(11):1503-1506.
    [61]Buyukkamaci N. Biological sludge conditioning by Fenton's reagent[J]. Process Biochem,2004,39:1503-1506.
    [62]Ming C L, Chien J L, Chih H L, et al. Dewatering of activated sludge by Fenton's reagent [J]. Adv Environ Res,2003,7:667-570.
    [63]钟恒文,二宫加奈.生污泥的Fenton氧化处理[J].中国给水排水,2003,19(8):46-47.
    [64]Stedman L. Chemical conditioning for sludge [J]. Water,2005,21, (12):23-24.
    [65]朱亮,张文妍.水处理工程与管理[M].北京:化学工业出版社,2000.
    [66]Chang G. R., Liu J. C, Lee D. J.. Co-conditioning and dewatering of chemical sludge and waste activated sludge [J]. Water Research,2001,35(3):786-794.
    [67]Lai J Y, Liu J C. Co-conditioning and dewatering of alum sludge and waste activated sludge [J]. Water Science and Technology,2004,50 (9):41-48.
    [68]王涛.污泥浓缩脱水及相关技术研究进展[J].中国环保产业,2008,2:32-35.
    [69]Chu C. P., Liu Z. W., Lee D. J., Chang Ben-Ven, Peng Xiaofeng. Using boiling for treating waste activated sludge [J]. Tsinghua Science and technology,2002, 7(2):155-159.
    [70]Tae-In Ohm, Jong-Seong Chae, Jeong-Eun Kim, Hee-kyum Kim, Seung-Hyun Moon. A study on the dewatering of industrial waste sludge by fry-drying technology [J]. Journal of Hazardous Materials,2009,168:445-45.
    [71]黄玉成,张维佳,金秋冬,郝利娜.自然冷融法对污泥沉降及脱水性能研究[J].安全与环境工程,2008,15(4):43-46.
    [72]殷绚,阙子龙,吕效平等.超声波声强及处理时间对污泥结合水的影响[J].化工进展,2005,24(3):307-312.
    [73]杨顺生.德国污泥资源化利用——污泥分解技术及其效果[C].全国固体废物处理与综合利用高峰会会刊,北京,2007.1.
    [74]Ewa W. Application of microwaves for sewage sludge conditioning[J]. Water Research,2005,39(19):4749-4754.
    [75]田禹,方琳,黄君礼.微波辐射预处理对污泥结构及脱水性能的影响[J].中国环境科学,2006,26(4):459-463.
    [76]李帅,边炳鑫,周正.磁场对活性污泥脱水性能的影响[J].环境科学研究,2007,20(3):119-123.
    [77]李帅,边炳鑫,周正.磁场对污泥沉降影响的数理统计分析[J].苏州科技学院学报(工程技术版),2006,19(3),30-33,68.
    [78]Marcin S, Tomasz K, Lidia W. Determination of permanent, electromagnetic field influence on sewage sludges conditioning [J]. Environmental Protect ion Engineering,2002,28(1):49-53.
    [79]Bien J B, Strzelczyk M, Wolskp P. Magnetic and chemical conditioning of sewage sludge [J]. Environment Protection Engineering,2004,30(4):183-187.
    [80]Jean D S. Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment [J]. Water Sci Tech,2000,42 (9):97-102.
    [81]Lafitte-Trouque S. The use of ultrasound and gamma-irradiation as pretreatments for the anaerobic digestion of waste activated sludge atmesophilic and thermophilic temperatures [J]. Bioresour Technol.2002,84(2):113-115.
    [82]沈劲锋,殷绚,谷和平等.超声与阳离子型聚丙烯酰胺联合作用对剩余活性污泥脱水的影响[J].化学工业与工程技术,2005,26(6):22-25.
    [83]薛向东,金奇庭,朱文芳.超声对污泥流变性及絮凝脱水性的影响[J].环境科学学报,2006,26(6):897-902.
    [84]Gronroos A, Kyllonen H, Korpijarvi Kirsi, et al. Ultra-sound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion [J]. Ultrason Sonochem,2005,12(1-2):115-120.
    [85]Watanabe T. Effective sludge solubilization treatment by simultaneous use of ultrasonic and electro chemical processes [J]. Water Sci Tech,2006,53(6): 37-42.
    [86]彭晓峰,陶涛,陈剑波,朱敬平,李笃中.国际污泥研究现状初探[J].科学杂志,24(4),191-194.
    [87]Sorensen, P. B., Hansen, J.A.. Extreme solid compressibility in biological sludge dewatering [J]. Water Science and Technology,1993,28 (1),133-143.
    [88]J. T. Novak, J. H. O'Brien. Polymer conditioning of chemical sludges [J]. J. WPCF,1975,47 (10):2397-2410.
    [89]K. B. Thapa, Y. Qi, S. A. Clayton, A. F. A. Hoadley. Lignite aided dewatering of digested sewage sludge [J]. Water Res.,2009,43:623-634.
    [90]Y.Q. Zhao. Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2002,211:205-212.
    [91]Hirota, M., Okada, M., Misaka, Y., Kato, K.. Dewatering of organic sludge by pulverized coal [J]. Journal of Water Pollution Control Federation,1975,47(12): 2774-2782.
    [92]Albertson, O.E., Kopper, M.. Fine-coal-aided centrifugal dewatering of waste activated sludge [J]. Journal Water Pollution Control Federation,1983,55(2), 145-156.
    [93]Smollen, M., Kafaar, A.. Investigation into alternative sludge conditioning prior to dewatering [J]. Water Science and Technology. In:Proceedings of the 1997 International Specialized Conference on Sludge Management, June 26-28,1997, 36(11):115-119.
    [94]Zhao Y Q, Bache D H.. Conditioning of alum sludge with polymer and gypsum [J]. Colloids and Surfaces A:Physical, chemical and Engineering Aspects,2001, 194(1-3):213-220.
    [95]黄志斌,陈亮,高莉莉等.Ca2+ 和PAM对污泥流变性和脱水性能的影响[J].污染防治技术,2003,16(4):48-51.
    [96]Zall, J., Galil, N., Rehbum, M.. Skeleton builders for conditioning oily sludge [J]. Journal of Water Pollution Control Federation,1987,59:699-706.
    [97]T.C. Hsu, C.C. Yu, C.M. Yeh. Adsorption of Cu2+ from water using raw and modified coal fly ashes [J]. Fuel,2008,87:1355-1359.
    [98]崔源生.如何利用矿渣和粉煤灰.商砼在线,http://stonw.com/jszl/hunjishu/1/1 219.html 2010.4.18.
    [99]R. F. Nelson and B. D. Brattlof. Journal WPCF,1979,51:1024.
    [100]王静,宋存义,孙文亮,常冠钦.添加粉煤灰对污泥比阻影响的研究[J].环境污染治理技术与设备,2006,7(3):65-67.
    [101]师荣梅,宁平,赵健蓉,杨月红.粉煤灰和硅藻土对昆明污水厂污泥的脱水研究[J].昆明理工大学学报(理工版),2008,33(5):65-67,85.
    [102]Jung Eun Lee, Jae Keun Lee, Dong Soo Kim. A study of the improvement in dewatering behavior of wastewater sludge through the addition of fly ash [J]. Korean J. Chem. Eng.,2010,27(3):862-867.
    [103]杨崇豪,袁孟云,张利伟,韩云中.中小型污水处理厂污泥脱水比阻调理剂研究[J].华北水利水电学院学报,2007,28(1):88-90.
    [104]杨斌,杨家宽,唐毅,谢永中,肖波.粉煤灰和生石灰对生活污水污泥脱水影响研究[J].环境科学与技术,2007,30(4):98-99.
    [105]杨久俊,张茂亮.粉煤灰活性激发影响因素研究[J].粉煤灰综合利用,2007,5:15-17.
    [106]Changya Chen, Panyue Zhang, Guangming Zeng, Jiuhua Deng, Yu Zhou, Haifeng Lu. Sewage sludge conditioning with coal fly ash modified by sulfuric acid [J]. Chemical Engineering Journal,2010,158:616-622.
    [107]章继龙,陈泽智,朱红梅.粉煤灰在精对苯二甲酸废水剩余污泥调理中的作用[J].工业用水与废水,2005,36(3):62-64,78.
    [108]李国学,孟凡乔,姜华等.添加钝化剂对污泥堆肥处理中重金属(Cu, Zn, Mn)形态影响[J].中国农业大学学报,2000,5(1):105-111.
    [109]S. Wang, T. Viraraghavan. Wastewater sludge conditioning by fly ash [J]. Waste Manage.1997,17:443-450.
    [110]张鸿龄,孙丽娜,孙铁晰.粉煤灰对钝化污泥重金属有效性影响[J].辽宁工程技术大学学报(自然科学版),2008,27(6):944-946.
    [111]唐鸣放,王白雪,郑怀礼.城市污泥处理与绿化利用[J].土木建筑与环境工程,2009,31(4):103-106.
    [112]谢礼国,郑怀礼,吴幼权,张鸥.粉煤灰改性及钝化污泥实验研究[J].土木建筑与环境工程,2010,32(1):120-124.
    [113]黄兰.粉煤灰对污泥脱水性能及氮、磷流失的影响研究[J].中国资源综合利用,2009,27(11):15-17.
    [114]Fatma Olcay Topac, Huseyin Savas Baskaya, Ufuk Alkan. The effects of fly ash incorporation on some available nutrient contents of wastewater sludges [J]. Bioresource Technology,2008,99:1057-1065.
    [115]钱觉时,岳燕飞,谢从波,陈伟.掺加页岩后污泥沉降浓缩效果与利用[J].土木建筑与环境工程,2010,32(2):140-144.
    [116]李惠,丁锐.利用厌氧污泥生产轻质陶粒的研究现状及前景分析[J].2009,25(11):78-80.
    [117]Riley C.M.. Relation of chemical properties to bloating of clays [J]. American Ceramic Society,1951,34(4):121-128.
    [118]US Anny Engineer Distriet Baltimore. Proeeedings:International workshop on Dredged Material Benifieial Uses. Baltimore Maryld.1997.
    [119]Monteiro S N, Alexandre J, Margem J I, et al. Incorporation of Sludge Waste from Water Treatment Plant into Red Ceramic [J]. Construction and Building Materials,2008,22:1281-1287.
    [120]范锦忠.利废、节能、减排促进人造轻骨料行业的健康、持续发展[J].砖瓦,2008,6:37-41.
    [121]Nakouzi S, Mielewski D, Ball J C, et al. Novel Approach to Paint Sludge Recycling [J]. Journal of Material Research.1998,13(1):53-60.
    [122]周少奇.城市污泥处理处置与资源化[M].广州:华南理工大学出版社,2002.44-45.
    [123]刘莲香.污水处理厂污泥于陶粒生产中的综合利用[J].陶瓷研究与职业教育,2003,1:35-40,22.
    [124]阮传祥.利用污泥、淤泥生产陶粒[J].粉煤灰,2005,5:34,39.
    [125]王兴润,金宜英,杜欣等.城市污水厂污泥烧结制陶粒的可行性研究[J].中国给水排水.2007,23(7):11-15.
    [126]杜欣,金宜英,张光明,王兴润,聂永丰.城市生活污泥烧结制陶粒的两种工艺比较研究[J].环境工程学报,2007,1(4):109-114.
    [127]Mun K J. Development and Tests of Lightweight Aaggregate Using Sewage Sludge for Nonstructural Concrete [J]. Construction and Building Materials. 2007(21):1583-1588.
    [128]范锦忠.利用污泥生产节能型人造轻集料一陶粒[J].粉煤灰,2006,5:36-38.
    [129]Xinrun Wang, Yiying Jin, Zhiyu Wang, Yongfeng Nie, Qifei Huang, Qi Wang. Development of aggregate from dry sewage sludge and coal ash [J]. Waste management.2009,29:1330-1335.
    [130]王兴润,金宜英,聂永丰,李丽,王琪.污泥制陶粒技术可行性分析与烧结机理研究[J].环境科学研究,2008,21(6):80-84.
    [131]XingrunWang, Yiying Jin, ZhingyuWang, Rasool Bux Mahar, Yongfeng Nie. A research on sintering characteristics and mechanisms of dried sewage sludge [J]. Journal of Hazardous Materials,2008,160:489-494.
    [132]B. V. Elkins, G.E. Wilson, R.M. Gersberg. Complete reclamation of wastewater and sludge [J]. Water Sci. Technol.1985,17:1453-1454.
    [133]M. George. Concrete aggregate fromwastewater sludge [J]. J. Concrete Int.8, 1986:27-30.
    [134]J. H. Tay, W. K. Yip, K. Y. Show. Clay-blended sludge as lightweight aggregate concrete material [J]. J. Environ. Eng. Div. ASCE,1991,117: 834-844.
    [135]J. H. Tay, K.Y. Show, Resource recovery of sludge as a building and construction material-a future trend in sludge management [J]. Water Sci. Technol.,1997,36:259-266.
    [136]M. M. Jorda'n, M. B. Almendro-Candel, M. Romero, J.Ma. Rincon. Application of sewage sludge in the manufacturing of ceramic tile bodies [J]. Appl. Clay Sci.,2005,30:219-224.
    [137]Erika Furlani, Sergio Bruckner, Dino Minichelli, Stefano Maschio. Synthesis and characterization of ceramics from coal fly ash and incinerated paper mill sludge [J]. Ceramics International,2008,34:2137-2142.
    [138]张国伟,杨波,奚旦立.河道底泥制备陶粒滤料的研究[J].环保科技,2007,13(1):39-43.
    [139]张云峰.城市污水厂污泥资源化利用研究—污泥陶粒的研制及其应用[D].福州:福州大学,2004.
    [140]李玉林.利用城市污水厂污泥制备陶粒的试验研究[J].中国环保产业,2008,3:32-35.
    [141]李寿德,刘蓉,陈烈芳,宋淑敏,高隽.利用工业污泥焙烧陶粒的试验研究[J].砖瓦,2008,11:52-54.
    [142]郭子娴,胡甜甜,刘天龙,吕剑明.贵阳城市污水处理厂污泥生产轻质陶粒的研究[J].中国环保产业,2009,10:55-57.
    [143]金宜英,杜欣,王志玉,王兴润,聂永丰.采用污水厂污泥制陶粒的烧结工艺及配方研究[J].中国环境科学2009,29(1):17-21.
    [144]轻集料及其试验方法[S](GB/T 17431.1-1998)
    [145]朱斌,王海亮,陆在宏.给水厂脱水污泥烧结陶粒试验[J].给水排水,2005,31(2):35-36.
    [146]贺君,王启山,任爱玲.给水厂与污水厂污泥制陶粒技术研究[J].环境工程学报,2009,3(9):1653-1657.
    [147]王慧萍,黄劲,丁庆军,胡曙光.利用污泥和粉煤灰生产高强优质轻集料的研究[J].武汉理工大学学报,2004,26(7):38-40.
    [148]仇心金.利用粉煤灰、污泥、淤泥生产超轻和高强陶粒的试验研究[J].粉煤灰,2009,3:40-41.
    [149]张振文,胡彭青,周海华,柳俊哲.基于固体废弃物的高性能陶粒的研究[J].低温建筑技术,2010,139:11-13.
    [150]蔡昌风,褚倩,王玉莲.粉煤灰工业污泥烧结陶粒的制备与应用[J].上海环境科学,2006,5(2):51-54.
    [151]蔡昌凤,徐建平,褚倩等.粉煤灰/污泥烧结陶粒的研制与应用[J].环境污染与防治,2007,29(1):26-29.
    [152]刘景明,陈立颖,宋存义,苏力军,魏小文.由化工脱水污泥烧制陶粒[J].北京科技大学学报,2008,Vol.30 No.10:1090-1094.
    [153]邹金龙,代莹.滤料中重金属迁移特性及其在BAF中的应用[J].环境科学,2007,28(10):2404-2408.
    [154]Xu G R, Zou J L, Dai Y. Utilization of dried sludge for making ceramsite [J]. Water Science and Technology,2006,54(9):69-79.
    [155]何艳君,闫振甲.陶粒生产实用技术[M].北京:化学工业出版社,2006:196.
    [156]Guoren Xu, Jinlong Zou, Guibai Li. Ceramsite Made with Water and Wastewater Sludge and its Characteristics Affected by SiO2 and Al2O3[J]. Environ. Sci. Technol.2008,42,7417-7423.
    [157]J.L. Zou, G.R. Xu, G.B. Li. Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO, and MgO [J]. Journal of Hazardous Materials,2009,165:995-1001.
    [158]G.R. Xu, J.L. Zou, G.B. Li. Ceramsite obtained from water and wastewater sludge and its characteristics affected by (Fe2O3+CaO+MgO)/(SiO2+Al2O3) [J]. Water research,2009,43:2885-2893.
    [159]齐元峰,岳钦艳,岳敏,高宝玉,吴苏清,郗斐.粘土中铁含量对烧制轻质/超轻污泥陶粒的影响[J].功能材料,2010.41(8):1327-1331.
    [160]K.L. Lin, K.Y. Chiang, D.F. Lin. Effect of heating temperature on the sintering characteristics of sewage sludge ash [J]. J. Hazard. Mater.,2006, B128: 175-181.
    [161]G.R. Xu, J.L. Zou, G.B. Li. Effect of sintering temperature on the characteristics of sludge ceramsite [J]. Journal of Hazardous Materials,2008, 150:394-400.
    [162]G.R. Xu, J.L. Zou, G.B. Li. Stabilization of heavy metals in ceramsite made with sewage sludge [J]. Journal of Hazardous Materials,2008,152:56-61.
    [163]G.R. Xu, J.L. Zou, G.B. Li. Stabilization of heavy metals in sludge ceramsite [J]. Water research,2010,44:2930-2938.
    [164]严捍东.电镀污泥与海滩淤泥复合烧制陶粒重金属固化效果的试验分析[J].化工进展,2005,24(4):383-386.
    [165]Su-Chen Huang, Fang-Chih Chang, Shang-Lien Lo, Ming-Yu Lee, Chu-Fang Wang, Jyh-Dong Lin. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash [J]. Journal of Hazardous Materials,2007,144:52-58.
    [166]李振卿,单明阳.用含重金属的污泥烧制轻骨料并应用于透水混凝土路面砖[J].建筑砌块与砌块建筑,2007,1:36-40.
    [167]Merino I, Arevalo L F, Romero F. Characterization and possible uses of ashes from wastewater treatment plants [J]. Waste Management,2005,25:1046-1054.
    [168]Merino I, Arevalo L F, Romero F. Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives [J]. Waste Management,2007,27:1829-1844.
    [169]C. R. Cheeseman, G. S. Virdi. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash [J]. Resources, Conservation and Recycling,2005,45:18-30.
    [170]Ing-Jia Chiou, Kuen-Sheng Wang, Ching-Ho Chen, Ya-Ting Lin. Lightweight aggregate made from sewage sludge and incinerated ash [J]. Waste Management, 2006,26:1453-1461.
    [171]Chen-Chiu Tsai, Kuen-Sheng Wang, Ing-Jia Chiou. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge [J]. Journal of Hazardous Materials, 2006, B134:87-93.
    [172]邓成,陈伟,范英儒,罗晖,钱觉时.原状脱水污泥复合页岩制备砖和陶粒的前景.三峡环境与生态[J].2010,32(5):35-37,46.
    [173]钱觉时,邓成,陈平,王智,罗晖,陈伟.三峡库区生活污水污泥的建材利用途径分析.三峡环境与生态[J],2009,2(1):17-21,46.
    [174]罗晖,钱觉时,陈伟,邓成,黄义雄.污水污泥页岩陶粒烧胀特性[J].硅酸盐学报,2010,38(7):1247-1252.
    [175]Chen Jiangang, Kong Hainan, Wu Deyi. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition[J]. J Hazard. Mater.,2007,139(8):293-300.
    [176]薛金凤,氯波,余兴林等.高强大比表面积粉煤灰滤料的研制[J].粉煤灰综合利用,2006,12(2):47-48.
    [177]王平升.山东铝厂赤泥制备水处理用多孔陶粒滤料[J].有色金属,2005,57(2):142-144.
    [178]Houghton J I, Quarmby J, Stephenson T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer [J]. Water Sci Technol,2001,44(2-3):373-379.
    [179]《用于水泥和混凝土中的粉煤灰》[S](GBT1596-2005)
    [180]彭敏,周亚民,阮湘元.粉煤灰形貌元素组成的SEM/EDS分析[J].广东化工,2009,36(193).
    [181]M. Ahmaruzzaman. A review on the utilization of fly ash [J]. Progress in Energy and Combustion Science,2010,36:327-363.
    [182]A. J. M. Herwijn. Fundamental aspects of sludge characterization [D]. Ph.D. Thesis, Technical University Eindhoven, The Netherlands,1996.
    [183]D. H. Bache, M. D. Hossain. Optimum coagulation conditions for coloured water in terms of floc properties [J]. J. Water SRT Aqua.,1991,40(3):170-178.
    [184]C. C. Wu, C. Huang, D. J. Lee. Effects of polymer dosage on alum sludge dewatering characteristics and physical properties [J]. Colloid Surf, A: Physicochem. Eng. Aspect,1997,122 (1-3):89-96.
    [185]方军良,陆文雄,徐彩宣.粉煤灰的活性激发技术及机理研究进展[J].上海大学学报(自然科学版),2002,8(3):255-260.
    [186]Jung Eun Lee, Jae Keun Lee, Dong Soo Kim. A study of the improvement in dewatering behavior of wastewater sludge through the addition of fly ash[J]. Korean J. Chem. Eng.2010,27 (3):862-867
    [187]曹仲宏,徐泽,赵乐军,胡伟,胡大卫,王玉秋.添加剂对脱水污泥中重金属形态的影响[J].中国给水排水,2007,23(23):82-86.
    [188]樊先平,洪樟连,翁文剑编著.无极非金属材料科学基础[M].杭州:浙江大学出版社,2004.8.
    [189]C. C. Tsai, K. S. Wang, I. J. Chiou. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge [J]. J. Hazardous Materials.,2006, B134:87-93.
    [190]Riley C M. Relation of chemical properties to bloating of clays [J]. American Ceramic Society,1951,34(4):121-128.
    [191]李家驹主编.陶瓷工艺学[M].北京:中国轻工业出版社,2001,57-143(上),25-36(下).
    [192]李清海,张衍国,和晋华.环卫科技网http://www.cn-hw.net/html/27/20100 3/14258 2.html 2010.3.30
    [193]Tsai, C.C., Wang K.S., Chiou I.J.. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced [J]. Journal of Hazardous Materials,2006, B134:87-93.
    [194]Ducman V., Mirtic B. The applicability of different waste materials for the production of lightweight aggregates [J]. Waste Management,2009,29: 2361-2368.
    [195]陈烈芳.烧胀粉煤灰陶粒的膨胀机理研究[J].砖瓦,2005,11:7-11.
    [196]关长斌,郭英奎,赵玉成主编.陶瓷材料导论[M].哈尔滨:哈尔滨工程大学出版社,2005.
    [197]韩秀丽主编.无机材岩相学[M].北京:化学工业出版社,2005.11.
    [198]匡少平主编.铬渣的无害化处理与资源化利用[M].北京:化学工业出版社.
    [199]张自杰主编.排水工程(第四版)(下册)[M]北京:中国建筑工业出版社,1999:119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700