用户名: 密码: 验证码:
河口冲刷的理论与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口区人类活动比较复杂,港口、桥梁、堤防和过江(海)隧道等水上或水下结构物众多,这些建筑物一旦被毁坏,对社会、经济影响极大,而河口冲刷则是导致建筑物毁坏的最重要因子之一。研究河口冲刷以便为工程安全设计提供科学依据,就具有十分重要的现实意义。本文采用理论与数值模拟两种方法深入探讨河口冲刷问题。
     河口冲刷本质上是泥沙起动问题。论文基于因次分析法和前人交叉石英丝试验成果,建立起一个因次和谐的、适合非均匀沙任一粒级的粘性力表达式。将起动概率视为推移力矩与上举力矩之和大于重力矩和粘性力矩之和的概率,对作用力臂作统计处理后,从作用流速遵循正态分布出发,首次导出粘性沙和无粘性沙统一的非均匀沙起动概率公式。该式表明起动概率是水流强度的函数,而非均匀沙水流强度,跟颗粒的相对粒径、几何方差、干密度等因素有关。基于以上分析,最后推导出非均匀沙的起动摩阻流速公式。
     根据粘性非均匀沙起动概率公式和起动切应力公式,分别建立起流量泛函形式的可预测极端水流条件下河床最大冲刷深度的计算公式。针对极端水流条件时河床断面形态未知问题,从理论上探讨了各点均处于临界起动动态平衡状态的断面曲线微分方程。根据最大冲刷计算的泛函公式预测了钱塘江河口研究河段极端洪水作用的最大冲刷深度,并讨论了断面最大冲刷深度可能出现的位置。结果表明水流条件是影响河床冲刷深度的关键因子,河岸水深对河床冲刷深度的影响相对较小;床沙非均匀性对河床冲刷深度有一定影响,泥沙非均匀程度越大,则较粗颗粒的暴露度大,同样水流作用下的冲刷水深也越大。
     采用定床数学模型模拟了钱塘江河口洪水作用下的潮流场,并就潮流场对多桥的复杂响应进行数值试验。结果显示,极端洪水期间河口段流场主要受落潮流控制,涨潮流对其影响甚微;多桥对河口潮流场存在联合作用,桥墩阻水作用引起桥上游进潮量减小在多桥时甚为可观;桥梁对潮位的影响相互叠加,与无桥情形相比,在所有桥的上游或下游,潮位差变大,而多桥范围内,潮位差变小。
     建立了适合大幅度冲淤河口的二维动床洪水数学模型。分别用动床和定床模型对钱塘江河口1995年和1997年洪水位作了模拟,定床模型预报洪水水位会产生高达0.94m的误差,而动床模型预报精度极高,最大误差不超过0.15m。动床模型为洪水位的精确预报提供了一种可行的计算方法。
Human activities in estuaries are frequent. There are so many hydraulic structures such as ports, bridges, embankments, rivers or submarine tunnels. The city economy and society will be greatly influenced by their destruction. Scour in estuaries was one of the most significant factors which led to the destruction of structures. The study on estuarine erosion provides a scientific basis with the safety design of engineering. In this dissertation, scour in estuaries is profoundly discussed from the angles of theory and numerical simulation.
    Scour is essentially attributed to incipient motion of sediment. Firstly, on the basis of both dimensional analysis and previous cross-quartz-thread experiment, the expression for cohesive force is derived, which is dimension harmony, and suited to nonuniform sediment. Incipient probability is regarded as the probability that the sum of drag force moment and lift force moment is larger than that of gravitational moment and cohesive force moment. After statistical treatment with arms of acting force, the formula of incipient probability for both the cohesive and cohesionless nonuniform sediments is obtained from normal distribution of velocity. The formula indicates the incipient probability is a function of flow intensity, related with such factors as the relative size and geometric variance of particle, and the dry density. A formula of incipient frictional velocity is then deduced.
    Respectively based on incipient probability and shear stress, functional formulae are established for predicting the maximum scour depth under extreme flood. Differential equations are theoretically studied to describe the form of cross-section in the threshold motion status. The functional formulae are used to predict the scour depth in the Qiantang River estuary. The location of maximum scour depth is also discussed. The results demonstrate that both the flow condition and nonuniformity of sediment affect scour depth. The more nonuniform the sediment is, the greater the scour depth becomes.
    The tidal current field in Qiantang River estuary is numerically simulated with fixed-bed model. As a result, during the extreme flood the flow is entirely controlled by ebb current. A series of numerical tests on the response of tidal current to multi-bridges are also made, and the result is complicated. In the region where effect of multiple bridges occurs, tidal current velocity obviously reduces, and the gradational decrease of velocity at the same point exists along with the increase in bridge number. The influence
引文
[1]. A. Kurniawan, M. S. Altinakar, W. H. Graf. Scour depth and flow pattern of eroding plane jets [J]. International Journal of Sediment Research, 2004, 19(1): 15—27.
    [2]. Alf Tφruma, Franziska Kuhnenb, Andreas Menze. On berm breakwaters. Stability, scour, overtopping[J] Coastal Engineering, 2003,49(3):209-238.
    [3]. Amoros, C. The concept of habitat diversity between and within ecosystems applied to river side-arm restoration [J]. Environmental Management, 2001, 28(6): p 805-817.
    [4]. A.R. Kambekar, M.C. Deo. Estimation of pile group scour using neural networks[J]. Applied Ocean Research, 2003, 25(4):225-234.
    [5]. Avent R, Richard Alawady. Mohamed Bridge scour and substructure deterioration: Case Study [J] Journal of Bridge Engineering, 2005, 10(3): 247-254.
    [6]. A. Vijaya kumar, S. Neelamani, S. Narasimha Rao. Wave pressures and uplift forces on and scour around submarine pipeline in clayey soil [J].Ocean Engineering, 2003, 30 (2): 271-295.
    [7]. Ayse Yuksel, Yesim Celikoglu, Esin Cevikl, Yalcm Yuksel. Jet scour around vertical piles and pile groups [J]. Ocean Engineering, 2005,32(3-4): 349-362.
    [8]. B. Mutlu Sumer, Jφrgen Fredsφe. Local scour at roundhead and along thetrunk of low crested structures[J]. Coastal Engineering, 2005, 52(10-11): 995- 1025.
    [9]. B. Mutlu Sumer, Jφrgen Fredsoe. The Mechanics of Scour in the Marine Environment. [M] World Scientific, 2002.
    [10]. B. Mutlu Sumer, Richard J.S,Whitehouse, Alf Tφrum. Scour around coastal structures: a summary of recent research [J] Coastal Engineering, 2001, 44:153- 190.
    [11]. Bart Makaske. Anastomosing rivers: a review of their classification, origin and sedimentary products [J]. Earth-Science Reviews, 2001, 53:149-196.
    [12]. Chang Wen-Yi,Lai Jihn-Sung,Yen Chin-Lien. Evolution of scour depth at circular bridge piers[J]. Journal of Hydraulic Engineering, 2004, 130( 9): 905-913.
    [13]. Chintala, Ramesh S. Castor River block hole stabilization [J]. International Water Resources Engineering Conference - Proceedings, 1998, 2:1619-1624.
    [14]. Cotton, George K. Longitudinal channel response due to in-stream mining[J]. Hydr aulic Engineering - Proceedings of the 1990 National Conference, 1990, 957-962.
    [15]. Dag Myrhaug, Havard Rue. Scour below pipelines and around vertical piles in random waves [J]. Coastal Engineering, 2003, 48: 227-242.
    [16]. Dag Myrhaug, H(?)vard Rue. Scour around group of slender vertical piles in random waves [J]. Applied Ocean Research, 2005, 27(1):56-63
    [17]. Delft3D-FLOW User Manual[R]. The Netherlander: WL|Delft Hydraulics, 2001.
    [18]. Delft3D-MOR User Manual[R]. The Netherlander: WL|Delft Hydraulics, 2001.
    [19]. E. D. Andrews. Marginal bedload transport in a gravel-bed stream [J]. Water Resources Research, 1994, 30(7): 2241-2250.
    [20]. Einstein H.A. Formula for the Transportation ofBedload [J]. ASCE, 1942, 107: 561-597.
    [21]. Fassnacht, Steven R. Persistence of a scour hole on the E ast Channel of the Mackenzie Delta, N.W.T. [J]. Canadian Journal of Civil Engineering, 2000, 27(4): 798-804.
    [22]. Federal Highway Administration. Evaluating Scour at Bridges [R]. Washington D C. Federal Highway Administration, 1993.
    [23]. Hayashi, S. Hydraulic studies on the phenomenon of scour at the base caused by free falling nappe over sediment control dams[J]. International Symposium on Erosion Debris Flow and Disaster Prevetion, 1995, 395~400.
    [24]. Hassan, Marwan A. The transport of gravel in an ephemeral sandbed river [J]. Earth Surface Processes and Landforms, 1999, 24(7): 623-640.
    [25]. Hassan, Marwan A. Movement of pebbles on a sand bed river, Botswana [J]. IAHS Publication (International Association of Hydrological Sciences), 1995, 232: 437-442.
    [26]. Justine Kemp. Flood channel morphology of a quiet river, the Lachlan downstream from Cowra, southeastern Australia. [J] Geomorphology 2004, 60: 171-190.
    [27]. K. Jyothi, J.S. Mani, M.R. Pranesh. Numerical modelling of flow around coastal structures and scour prediction [J]. Ocean Engineering, 2002, 29(4):417-444.
    [28]. Kuhnle R A. Incipient motion of sand-gravel Sediment mixture [J]. Journal of Hydr. Engi, ASCE. 1993, 119(112): 1400-1415.
    [29]. Larcombe, P. Cyclone pumping, sediment partitioning and the development of the Great Barrier Reef shelf system: A review [J]. Quaternary Science Reviews, 2004, 23(1): 107-135.
    [30]. Lavelle J w, Mofjeld H. Bibliography on sediment threshold velocity [J]. Journal of Hydraulic Engineering (ASCE), 1987,113 (3):389-393.
    [31]. Liang, D. F., Cheng, L., Numerical modeling of scour below a pipeline in currents. Part Ⅰ: Flow simulation [J]. Coastal Engineering, 2005, 52(1): 25 -42.
    [32]. Liang, Dongfang, Cheng, Liang. Numerical modeling of flow and scour below a pipeline in currents: Part Ⅱ. Scour simulation. [J]. Coastal Engineering, 2005, 52(1):43-62.
    [33]. Liang, D. et al. Numerical study of the Reynolds-number dependence of two-dimensional scour beneath offshore: pipelines in steady currents [J]. Ocean Engineering, 2005, 32(13): 1590- 1607.
    [34]. Li Weber, Lan-Yin.Computer model for gravel pit headcut simulation [J]. Sediment Transp Model Proc Int Symp, 1989, 783-788.
    [35]. Maarten G. Kleinhansl, Leo C. van Rijn. Stochastic Prediction of Sediment Transport in Sand-Gravel Bed Rivers [J]. Journal of Hydraulic Engineering (ASCE), 2002, 128(4):0733-9429.
    [36]. Mantz, P. A. Incipient transport of fine grains and flanks by fluids-extended Shields diagram [J]. Hydr. Div. (ASCE), 1977,103 (6): 601-615.
    [37]. Mao Chang-xi. A general formula for local scour below hydraulic structures [A]. Proc of 6th Inter Symposium on River Sedimentation [C]. New Delhi: 1995, 1013-1017.
    [38]. Miehiue,M ,and Hinokidani, O Calculation of 2-Dimensional Bed Evolution around Spur-dike [J].Annual Journal of Hydraulic Engineering, JSCE, 1992,(36):61-66 (In Japanese).
    [39]. M. Lin a, D.-S. Jeng. A 3-Dmodel for ocean waves over a Columb-damping poroelastic seabed[J] Ocean Engineering, 2004, 31(5):561-585.
    [40]. M. Rambabu, S. Narasimha Rao, V. Sundar. Current-induced scour around a vertical pile in cohesive soil [J]. Ocean Engineering, 2003, 30 (7): 893-920.
    [41]. Okada Katsuya, Muraishi Hisashi. Statistical judgement about stability of protection against scour around pie [J]. Doboku Gakkai Rombun-Hokokushu Proceedings of the Japan Society of Civil Engineers, 1989, 403: 65-74.
    [42]. Okada Katsuya. Flood-Time Stability Evaluation for Anti-scour Concrete Block Work for Pier Protection [J]. Quarterly Reports - Railway Technical Research Institute (Japan), 1986, 27(1):11-14.
    [43]. Paintal,A.S. A Stochastic Model of Bed Load Transport [J]. Journal of Hydraulics Division (ASCE),1971, 97(4): 527-553.
    [44]. Partheniades, E. Erosion and Deposition of Cohesive Materials in River Mechanics [M]. H.W. Shen (ed.) V.2, 1971.
    [45]. Pritchard, D. W. What is an estuary: physical viewpoint Estuaries [M].George H. Lauff, American Association for the Advancement of Science, 1967, 3-5.
    [46]. Parmeshwar L.Shrestha, Gerald T.Orlob, Multiphase Distribution of Cohesive Sediments and Heavy Metal in Estuarine System [J]. Journal of Environmental Engineering (ASCE), 1996, 122(8):730~740.
    [47]. Rooseboom, A. Equilibrium scour in rivers with sandbeds [J] Water S.A., 1992, 18(4): 287-292.
    [48]. Rijn L. C. van. Principles of Sediment Transport in Rivers Estuaries and Coastals Seas [M]. The Netherlands:AQUA Publications, 1993.
    [49]. S. Baglio, C. Faraci, E. Foti, R. Musumeci. Measurements of the 3-D scour process around a pile in an oscillating flow through a stereo vision approach [J]. Measurement, 2001, 30:145-160.
    [50]. Shaw, J.D. Growth of balsam poplar and black cottonwood in Alaska in relation to landform and soil [J]. Canadian Journal of Forest Research, 2001, 31 (10): 1793-1804.
    [51]. Shields, A. Application of similarity principles and turbulence research to bed-load movement [J]. Mitteilunger der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, 1936, 26:5-24.
    [52]. Silvia S. Ginsberg a, Gerardo M.E. Perillo Deep-scour holes at tidal channel junctions, Bahia Blanca Estuary, Argentina [J]. Marine Geology, 1999, 160:171-182.
    [53]. S.I. Voropayev, F.Y. Testik, H.J.S. Fernando, D.L. Boyer. Burial and scour around short cylinder under progressive shoaling waves[J].Ocean Engineering, 2003,30 (13): 1647-1667
    [54]. Sun Zhi-lin, Donahue J. Statistically derived bedload formula for any fraction of nonuniform sediment [J] Journal of Hydraulic Engieering ASCE, 2000, 126(2): 105-111.
    [55]. Sun Zhi-lin, Donahue John. Equilibrium bed-concentration of nonuniform sediment [J] Journal of Zhejiang University Science, 2003, 4(2): 186-194.
    [56]. Sumer, B Mutlu, Richard J. S. Whitehouse, Alf Tφrum. Scour around coastal structures: a summary of recent research [J]. Coastal Engineering, 2001, 44(2): 153-190.
    [57]. Tamai, Nobuyuki et al. Depth-averaged flow computation at a river confluence [J]. Proceedings of the Institution of Civil Engineers: Water and Maritime Engineering, 2003,156(1):73-83
    [58]. Thorne, Colin R. Relationship between scour depth and bend radius of curvature on the Red River [A]. Proceedings - National Conference on Hydraulic Engineering, 1991, 67-72
    [59]. Vanoni V A. Sedimentation Engineering [M]. ASCE. Task Committee, 1975
    [60]. Wang Harry V, Kim Sung-Chan. Simulation of tunnel island and bridge piling effects in a tidal estuary [A]. Proceedings of the International Conference on Estuarine and Coastal Modeling. 2000:250-269.
    [61]. Wasimi, Saleh A. Estimation of channel depth during floods by canonical correlation analysis [J]. Journal of Hydraulic Engineering, 1993, 119(1): 81-94.
    [62]. Williams, David T. Use of HEC-2 and HEC-6 to determine levee heights and revetment toe scour depths[A]. Proceedings - National Conference on Hydraulic Engineering, 1994, 1075-1079.
    [63]. Yang, C, T. Incipient motion and sediment transport [J]. ASCE, 1973, 99(10): 1679-1704.
    [64]. Yalin, M.S. Mechanics of Sediment Transport [J]. Oxford Pergaman Press, 1972.
    [65].陈绪坚,胡春宏.基于最小可用能耗率原理的河流水沙数学模型[J].水利学报,2004.8:38-45.
    [66].陈森美,楼越平.钱塘江富春江电站至闸口标准江堤规划[D]浙江省河口海岸研究所技术报告,1997.
    [67].曹祖德,李蓓等.波、流共存时的水体挟沙力[J]2001,22(4):151-155
    [68].陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002.
    [69].陈秀万等.洪水灾害损失评估系统、遥感与GIS技术应用研究[M].北京:中国水利水电出版社,1999.
    [70].崔占峰,张小峰.三维紊流模型在丁坝中的应用[J].武汉大学学报,2006,39(1):15-20.
    [71].戴泽衡,蒋纬.钱塘江河口河床演变及治理实践[J].河口与海岸工程,1994(3)
    [72].戴泽衡,李光炳.钱塘江河口河床演变及治理[M].河流泥沙国际学术讨论会论文集,第1卷,北京:光华出版社,1980.
    [73].窦国仁.再论泥沙起动流速[J].泥沙研究,1999,(6):1-9.
    [74].窦国仁.论泥沙起动流速[J].水利学报 1960,(4):45-60.
    [75].冯红春等.非潜没透水丁坝冲刷深度计算公式初探[J].中国农村水利水电,2002,(5):46-49.
    [76].高冬光.公路与桥梁水毁防治[M].北京:人民交通出版社,2002,
    [77].蒋焕章.公路水文勘测设计与水毁防治[M].北京:人民交通出版社,2002
    [78].郭志学等.近底水流结构对非均匀沙起动影响的研究[J].四川大学学报(工程科学版),2002,34(6):24—27.
    [79].郭志学等.以公切角表征的非均匀沙起动流速[J].水力发电学报,2003,30(1):89-94.
    [80].韩海骞.潮流作用下桥墩局部冲刷研究[D].浙江大学硕士学位论文,2006.
    [81].韩其为,何明民.非均匀沙起动机理及起动流速[J].长江科学院院报,1996,3:13-37
    [82].韩其为,何明民.泥沙运动统计理论[M].北京:科学出版社,1984.
    [83].韩其为.泥沙起动规律和起动流速[M].北京:科学出版社,1999.
    [84].韩其为.推移质中的几个理论问题研究[J].中国水利,2004,(18):48-52.
    [85].韩曾萃等.钱塘江河口治理开发[M].北京:中国水利水电出版社,2003.
    [86].何文社.非均匀沙运动特性研究[D].四川大学博士学位论文,2002,四川成都.
    [87].何文社,雷孝章,刘兴年,曹叔尤.等效粒径和非均匀沙起动条件研究[J].力学与实践,2003,5(6):21—22.
    [88].河流泥沙国际学术讨论会论文集(第2卷)[A],北京:光华出版社,1980.
    [89].华东院.富春江电厂首次安全定期检查设计复核专题报告之二《设计洪水及洪水调查复核报告》,1992.
    [90].黄国如等.用径向基函数神经网络模型预报感潮河段洪水位[J].水科学进展,2003,14(2):158-162.
    [91].黄金池等著.水流冲刷与管道埋设[M].北京:中国建材工业出版社,1998.
    [92].黄胜,卢启苗.河口动力学[M],北京:水利电力出版社,1995.
    [93].黄岁梁,陈稚聪等.粘性类土的起动模式研究[J].水动力学研究与进展 A辑,1997 12(1):5—11.
    [94].季永兴,李国林,莫敖全.刁南兴长兴岛南沿丁坝坝头冲刷坑深度探析[J]人民长江,2002,33(4):13—14.
    [95].蒋昌波,白玉川等.海河口粘性淤泥起动规律研究[J]水利学报,2001,(6):51-56.
    [96].解刚,刘兴年等.非均匀沙分级起动切应力探讨[J].水利水电科学进展2003,(6):1-3.
    [97].金中武、范北林穿黄工程河段冲刷问题研究综述[J]长江科学院院,2002,19,47-50.
    [98].孔令双.河口海岸波浪、潮流、泥沙数值模拟[D].青岛:青岛海洋大学博士学位论文,2001,山东青岛.
    [99].李春初等著.中国南方河口过程与演变规律[M].北京:科学出版社,2004.
    [100].李国斌.淹没丁坝水流试验研究及三维数值计算[D].南京:南京水利科学研究院,1989.
    [101].李国华等 淤泥临界起动及冲刷率试验研究[J].水道港口,1995,(3):20-26
    [102].李磊岩.海底管线管跨段动力响应分析及其实验研究[D].中国海洋大学硕士学位论文,2004.
    [103].李孟国,曹祖德.海岸河口潮流数值模拟的研究与进展[J].海洋学报,1999,21(1):110—125.
    [104].李孟国.海岸河口水动力数值模拟及对泥沙运动研究的应用[D].青岛:青 岛海洋大学博士学位论文,2002.
    [105].李义天等.河流水沙灾害及其防治[M].武汉:武汉大学出版社,2004.
    [106].蒋昌波,吕昕,杨宜章.丁坝绕流的二维大涡数值模拟[J].长沙交通学院学报,1999,15(3):68~72.
    [107].连惠邦.防砂坝下游河床局部冲刷现象之研究[J].水土保持研究,1995,2(3):45-49.
    [108].练继建,赵子丹.波浪作用下软泥床面的粘性泥沙悬扬[J].水利学报,1998,(8):47-51
    [109].梁丙臣.海岸、河口区波一流联合作用下三维悬沙数值模拟及其在黄河三角洲的应用[D]青岛:中国海洋大学学位论文,2005.
    [110].林秉尧.泥沙起动流速随机特征的初步分析[J] 泥沙研究,2000,(1):46-49.
    [111].刘大有.二相流体动力学[M]北京:高等教育出版社,1993.
    [112].刘沛清,冬俊瑞,余常昭.挑射水流对岩基河床冲刷的探讨[J] 长江科学院院报 1994,11(4):3-9.
    [113].刘兴年.粗细化过程中的非均匀沙起动流速[J].泥沙研究,2000,(4):10-13.
    [114].毛昶熙.堤防渗流与防冲[M].北京:中国水利水电出版社,2003.
    [115].雒文生,宋星原.洪水预报与调度[M].武汉:湖北科学技术出版社,2000.
    [116].庞家珍,司书亨.黄河河口演变[M].河流泥沙国际学术讨论会论文集(第1卷),光华出版社,1980.
    [117].潘军峰,冯军权等.丁坝绕流及局部冲刷坑二维数值模拟[J].四川大学学报(工程科学版),2005,37(1):15-18.
    [118].彭静,玉井信行.丁坝坝头冲淤的三维数值模拟[J].泥沙研究,2002,(1):25-29.
    [119].彭静,河源能久,玉井信行.线性与非线性紊流模型及其在丁坝绕流中的应用[J].水动力学研究与进展A辑,2003,18(5):589~594.
    [120].彭静.丁坝水流及冲刷可视化与三维数值模拟[M].郑州:黄河水利出版社,2004.
    [121].钱宁译 爱因斯坦(HansAlbertEinstein)著.明渠水流的挟沙能力[M].北京:水利出版社,1956.
    [122].钱宁,张仁等.河床演变学[M]北京:科学出版社,1987.
    [123].钱宁,万兆惠.泥沙运动力学[M]北京:科学出版社,1983年.
    [124].钱七虎.从河床冲淤分析沉管法修建长江水下隧道问题[J].现代隧道技术,2006 43(8):1-4.
    [125].乔彭年等著.中国河口演变概论[M].北京:科学出版社,1994.
    [126].秦荣昱.不均匀沙的起动规律[J].泥沙研究,1980(1):81-91.
    [127].齐璞,赵方林等编.黄河高含沙水流运动规律及应用前景[M].北京:科学出版社,1993.
    [128].全国水利水电施工技术信息网组编.水利水电工程施工手册[R].北京:中国电力出版社,2005.
    [129].沙玉清.泥沙运动的基本规律.开动流速[J].泥沙研究,1956,(4):14-25.
    [130].沙玉清.泥沙运动学引论[M].北京:中国工业出版社,1965.
    [131].时钟,陈伟民.长江口北槽最大浑浊带泥沙过程[J].泥沙研究,2000,(1):28-39.
    [132].拾兵等 任意面上非均匀沙起动流速矢量式[J]水力学研究与进展 A辑2003,(4):505-509
    [133].史英标等,钱塘江河口洪水特性及动床数值预报模型[J].泥沙研究,2005,(1):7-13.
    [134].水利水电工程设计洪水计算手册[R].北京:水利电力出版社,1995.
    [135].苏重光,连惠邦.防砂坝下游天然河床受坝顶溢流冲刷之研究[J]台湾水利季刊,1993,41(2):35—41
    [136].孙志林.非均匀沙床面平衡浓度[J].水利学报,2000,(10):82-86.
    [137].孙志林等.瓯江河口推移质的造床作用[J].杭州大学学报(自然科学版),1992,19(4):455—460.
    [138].孙志林,祝永康.Einstein推移质公式探讨[J].泥沙研究,1991,(3):20-26.
    [139].孙志林等.非均匀沙分级起动规律研究[J].水利学报,1997,(10):25-32.
    [140].孙志林等.非均匀沙床面平衡浓度[J].水利学报,2000,(10):82-86.
    [141].孙志林,孙志锋.粗化过程中的推移质输沙率[J]浙江大学学报(理学版)2000,27(4):449-453.
    [142].孙志林,田林.非均匀沙分级推移质公式[J].水利学报,2001,(5):65-70.
    [143].唐存本.论泥沙起动规律[J]水利学报,1963,(2):1-12.
    [144].唐宏涛、吴伟.河流弯道水流特点与冲刷深度探讨[J].浙江水利科技,2004,(1):7—9.
    [145].万兆惠 宋天成等.水压力对细颗粒泥沙起动流速影响的试验研究[J]泥沙研究,1990,(4):64—71.
    [146].王军.丁坝局部冲深计算的理论探讨[J].合肥工业大学学报(自然科学版),22(4):81-84.
    [147].王世俊,李春初,唐兆民.河口冲刷时间的研究进展与问题[J].台湾海峡,2004,23(1)116-122.
    [148].王兴奎等.河流动力学[M].北京:科学出版社,2004,155-180.
    [149].王御华,恽才兴.河口海岸工程导论[M].北京:海洋出版社,2004.
    [150].韦直林.小浪底水库运用初期黄河下游河道冲刷模拟计算[J].四川大学学报(工程科学版).2005,37(2):10-15.
    [151].魏林宏.时空尺度对洪水模拟的影响研究[D].南京:河海大学博士学位论文,2004.
    [152].吴保生,邓玥.三门峡水库纵剖面的调整[J] 水利学报,2005,36(5):549-554.
    [153].武汉水利电力学院.河流动力学[M].工业出版社,1960.
    [154].夏令.波浪作用下的泥沙起动及海底管线周围局部冲刷[D].杭州:浙江大学硕士学位论文,2006.
    [155].夏云峰,孙梅秀,李昌华.用水深平均紊流模型计算淹没丁坝流场[J].水利水运科学研究,1993,(2):109-118.
    [156].肖盛燮,王平义,吕恩琳.模糊数学在土木与水利工程中的应用[M].北京:人民交通出版社,2004.
    [157].谢鉴衡,陈嫒儿.非均匀沙起动规律初探[J] 武汉水利电力学院学报,1988,(3)28-37.
    [158].谢金赞等译 萨莫依洛夫著 河口演变过程的理论及其研究方法[M] 北京:科学出版社,1958
    [159].徐有成等.钱塘江河口洪水特性[J].水利水电科技进展 2003,23(5):4-6.
    [160].严宗毅等.低雷诺数流理论[M].北京:北京大学出版社,2002.
    [161].杨具瑞等.坡面非均匀沙起动规律研究[J].水力发电学报,2004,23(3): 102-106.
    [162].杨具瑞,方铎等.非均匀沙起动规律研究[J].水利学报,2002,(10):82-86.
    [163].杨美卿.淤泥的起动公式[J] 水动力学研究与进展 A辑,1996,11(1):58-64.
    [164].杨美卿,王桂玲.粘性细泥沙的临界起动公式[J].应用基础与工程科学学报,1995,3(1):99-109.
    [165].应强,曹民雄等.丁坝坝头冲刷坑深度的研究[J]南昌水专学报1999,18(1):16-20
    [166].俞衍升主编.中国水利百科全书水利管理分册[M].北京:中国水利水电出版社,2004.
    [167].袁美英等.利用人工神经网络方法预报松花江汛期水位[J].气象预报,2002,30(1):43-46.
    [168].岳培九.河床演变与模拟文集[M].天津:天津科学技术出版社,2001.
    [169].俞亚南,叶培伦.桥台最大清水冲刷深度的探讨[J].浙江大学学报(工学版),2001,35(3):244-248.
    [170].曾剑.钱塘江河口建桥对涌潮的影响分析[D].杭州:浙江大学硕士学位论文,2004.
    [171].张瑞瑾主编.河流泥沙动力学[M].北京:水利电力出版社,1989.
    [172].张文华.实用暴雨洪水预报理论与方法[D].北京:水利电力出版社,1990.
    [173].张小峰,崔承章.泥沙判别条件和推移质输沙率[M].泥沙研究,1996(2)35~38.
    [174].张小峰等.一维非恒定水动力学模型的实时水位预报[J].水动力学研究与进展A辑,2005年5月,20(3):400-404.
    [175].张义青,杜小婷.丁坝的平衡冲刷及冲刷计算[J].西安公路交通大学学报,1997,17(4):56—59.
    [176].张志忠.长江口细颗粒泥沙基本特性研究[J]《全国泥沙基本理论学术讨论会论文集》,1992,369-375.
    [177].詹义正,潘军峰等.非淹没丁坝坝头冲刷深度的计算[J].武汉大学学报(工学版),25(4):27-30.
    [178].赵今声,赵子丹等.海岸河口动力学[M].北京:海洋出版社.1993.
    [179].浙江省水利志[M].北京:北京中华书局,1998.
    [180].中国海湾志编纂委员会,中国海湾志 第十四分册 重要河口[M].北京:海洋出版社,1998.
    [181].中国江河河口研究及治理、开发问题研讨会文集[M].北京:中国水利水电出版社,2003.
    [182].周杰,河口粘性泥沙输运数值模拟[D].南京:河海大学博士学位论文,2005.
    [183].周宜林.淹没丁坝附近三维水流运动大涡数值模拟[J].长江科学院院报,2001,18(5):28~36
    [184].周宜林,道上正规,桧谷治.非淹没丁坝附近三维水流运动特性的研究[J].水利学报,2004,(8):46—53.
    [185].朱文谨.海岸粘性泥沙输运过程计算分析[D].南京:河海大学硕士学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700