用户名: 密码: 验证码:
山西汾河河流生态地球化学特征与重金属污染机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汾河流域是山西省工业集中、农业发达的地区,在山西省的经济发展中具有举足轻重的作用。近年来降雨偏少,且季节性明显,河流的生态功能已大为衰退。随着直接或间接排入汾河的污染物越来越多,由此带来的环境污染与事故日渐突出,严重威胁着人类健康。其中重金属因其自身的非降解性和通过食物链富集、毒性放大的特性,其污染问题备受关注。
     本文主要研究内容如下:对汾河进行了系统的水体多介质(水、悬浮物、底泥)地球化学测量及河漫滩剖面测量;着重对八种重金属元素Hg、Cd、Pb、As、Cr、Cu、Ni、Zn进行了生态地球化学评价。尝试测定了汾河河漫滩沉积物的210Pb丰度。估算了汾河沉积物的沉积速率和重金属沉积通量;大致推导了重金属的主要污染时期。对重金属含量高的样品进行重金属形态分析,探讨了其生态危险性,并对重金属元素的来源及其迁移转化进行了探讨。
     论文主要成果与认识如下:
     (1)、汾河重金属在悬浮物中含量最低,在水中含量较高,在底泥中最高。从太原到河津,汾河重金属含量总体上趋于增加。
     黄河过滤水中重金属元素含量均低于河津过滤水中含量,黄河临猗重金属高于黄河禹门口。汾河枯水期悬浮物中重金属元素浓度均低于丰水期。反映在丰水季节泥沙夹带了大量的污染组分进入河流。汾河底泥的污染程度高于黄河。总之,汾河水体对黄河有明显的重金属输入污染。
     (2)、汾河污染物主要在太原盆地和临汾盆地沉积物中,太原盆地沉积物重金属峰值集中在12~66厘米,临汾盆地重金属富集峰值的深度大致在88~100厘米左右。推测重金属累积通量高值段出现在20世纪80年代初以后时期,为重金属人为负荷量输入高峰期。重金属浓度与其沉积通量分布呈正相关性,与南方河流不同。太原盆地和临汾盆地是汾河的纳污库,将来有可能是黄河新的污染源。
     (3)、采用目前国内外主要的评价方法,全面、客观评价了汾河水体及沉积物中重金属元素的污染程度。综合各种评价方法,认为汾河水体已受到重金属污染:Hg、Cr、Cd在河津为国家标准(GB3838-2002)V类水,六个监测断面上Hg的含量均属国家标准V类水。汾河水体中Pb、As、Zn、Cu和Ni含量较低,污染较轻。汾河河漫滩沉积物主要污染也是汞镉污染,其他重金属污染相对较轻。六个沉积柱重金属污染程度递降的顺序为,MHH1420副>MHH1419> MHH1418> MHH1421> MHH1414> MHH1417,除MHH1418(介休)无重警样,其他沉积柱都出现了重金属污染严重现象,即生态系统服务功能严重退化,生态环境受到较大破坏,生态问题较大,生态灾害较多。
     (4)、对汾河河漫滩不同站位沉积物中Hg、Cd、Pb和Zn元素进行了形态分析,形态分析中各元素的“非稳态”含量可以反映不同站位人为因素的影响。Hg、Cd、Pb和Zn四种重金属中,Hg的迁移环境风险最低,Cd的环境风险最高,Pb和Zn存在潜在危害。当环境条件改变,沉积物中Cd最易活化释放到水体中,形成新的污染源,应引起足够重视。
     (5)、重金属来源研究采用与流域岩石重金属含量对比,结合相关分析和因子分析法,并与汾河流域工业发展状况进行对照。自然的汞主要来自P1x、C2、C3、O2f等沉积岩地层,岩浆岩和变质岩对汞污染的贡献很少。含镉偏高的地层主要是T1和C3。人为的汞镉污染主要与山西工业燃煤及采煤业有关。其他轻微或中等污染的重金属在沉积物中都显示不同程度的富集,除来自于流域岩石的自然风化和侵蚀外,也与流域内的人口激增和工商业蓬勃发展有关。此外,推测重金属富集的原因可能与汾河地堑的独特的地质构造有关,该结论有待进一步研究探讨。
The Fenhe River watershed is a region where the industry and agriculture are developed. The Fenhe River watersheds plays a key role in economic development in Shanxi Province. In recent years, the annual precipitation decreased and varied seasonally, the ecological functions of Fenhe River have degraded greatly.As more and more direct and indirect pollutants from commercial, industrial, and recreational uses of the watershed discharge into Fenhe river, Environmental pollution and damage accidents which brought about has gradually become a prominent problem, and are danger to human health. Heavy metals pollution is increasingly concerned because of their no-degradation and characteristics that they can be rich and the concentrations may be increased as toxins are passed up the food chain.
     This paper studies the following aspects:The water geochemical survey including water, suspended matter and bottom mud and the geochemical fluvial sediments survey are carried out. The eco-geochemical evaluation about heavy metals Hg, Cd, Pb, As, Cr, Cu, Ni and Zn are executed. The abundance of isotopes 210Pb of floodplain sediments was tentatively measured. The deposition rate of sediments and sediment flux of heavy metals in Fenhe River are estimated. The main period of pollution are deduced. The chemical speciation of high-heavy metals samples is analyzed, and the ecological danger, the sources and migration of heavy metals are discussed.
     The following results and knowledge were obtained:
     (1) Heavy metal content is the lowest in suspended matter, the second high in water and the highest in bottom mud in Fenhe River. As a whole, heavy metal content tends to increase from Taiyuan to Hejing.
     The content of heavy metals Hg, Cd, Pb, As, Cr, Cu, Ni and Zn in filtered water is lower in Huanghe River than in Fenhe. And higher in Linyi than in Yumenkou. Heavy metal concentrations of the suspended matter in Fenhe River during flood periods are higher than during drought periods. It shows that in monsoon surface running water washed pollution source clearly. Compared with Huanghe, the heavy metals pollution in botton mud is more serious in Fenhe river. All in all, the water of Fenhe river give obvious pollution to Huanghe River.
     (2)The pollutants in Fenhe River stay mainly in the sediments of Taiyuan basin and Linfen basin. The maximum concentrations of heavy metals in sediments focus approximately on the depth of 12~66 centimeters in Taiyuan basin, and on the depth of 88~100 centimeters in Linfen basin. The maximum concentrations of sediment flux of heavy metals occur after 1980 which is the peak-period of anthropogenic input of heavy metals. Concentrations of heavy metals have a positive correlation with sediment flux, which is different from the rivers in the south. Taiyuan basin and Linfen basin are the reservoirs where the pollutants are assembled and also new pollution source of Huanghe River.
     (3) The pollution degree of heavy metals in water and sediments was appraised fully and impersonality. According to comprehensive evaluation, the water in Fenhe river has been poluted. Hg, Cr and Cd pollution in Hejin section belong to V category according to GB3838-2002. The content of metal Hg in six sections belong to V category. The main pollutants in the river are Hg and Cd. Concentrations of Pb, As, Zn, Cu and Ni in water are lower, and the pollutions are slighter. The main pollutants in the fluvial sediments are also Hg and Cd. The pollutions of other heavy metals in the fluvial sediments are also slighter. The pollution levels of heavy metals in the sediments of six sedimentary columns were in the following orders:MHH1420FU>MHH1419> MHH1418> MHH1421> MHH1414> MHH1417. All sedimentary columns were seriously polluted by heavy metals except MHH1418, that is to say, the service functions of ecological system were seriously degraded, the ecological environment was destroyed, and more ecological problem and disaster appeared.
     (4)The speciation analysis of the elements Hg, Cd, Pb and Zn was carried out among the sediment in different stations. The content of heavy metals unsteady states reflected different influence of anthropogenic factors among different stations. Among Hg, Cd, Pb and Zn, the environment risk of mercury is the lowest, while the environment risk of Cd is the highest. Pb and Zn are potentially hazardous. When the conditions and environment are changed, Cd in the sediments easily become active and is released into water, which will become a new pollution source. Therefore more attentions should be paid.
     (5)The sources of heavy metals are identified by being compared with concentrations of heavy metals in the rocks of the Fenhe River watersheds, by carrying out correlation analysis and factor analysis, and by being compared with the development status of industry in the Fenhe River watershed. The natural origin of mercury is from sedimentary rocks such as stratum P1x, C2, C3 and O2f. Concentrations of mercury are very low in metamorphic rocks and magmatic rocks. Concentrations of cadmium are high mainly in stratum T1 and C3. The anthropogenic pollutions of mercury and cadmium are chiefly affected by industrial coal combustion and coal mining. The other heavy metals, having slighter or medium pollution and being rich in sediments in different degrees, come from the natural weathering of the rocks of the Fenhe River watersheds, and are influenced by the rapid growth of its population, industry and commerce. In addition, we presume that the accumulation of these heavy metals is perhaps related with geological structure of Fenhe Graben, and the conclusion needs further research.
引文
[1]C.C.M. Ip, X.D. Li, G. Zhang, et al. Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China, Environmental Pollution 138(2005)494~504
    [2]Fletcher C.A., Bubb J.M., Lester J.N.. Magnitude and distribution of contaminants in salt marsh sediments of the Essex coast, UK.I. Topographical, physical and chemical characteristics. Science of The Total Environment,1994,Volume 155,Issue 1, Pages 31~45
    [3]奚小环.生态地球化学与生态地球化学评价,物探与化探,2004,28(1):10-15
    [4]王平,奚小环.全国农业地质工作的蓝图——“农业地质调查规划要点”评述,中国地质,2004,31(增刊):16-29
    [5]丁振华,王文华,刘彩娥,等.黄浦江江水和沉积物中汞的分布和形态特征,环境科学,2005,26(5):62-66
    [6]Woitke P., Wellmitz J., Helm D., et al. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube, Chemosphere 2003, 51:633~642
    [7]Swennen R., Van der Sluys J. Anthropogenic impact on sediment composition and geochemistry in vertical overbank profiles of river alluvium from Belgium and Luxembourg, Journal of Geochemical Exploration 2002,75:93~105
    [8]Amaia Landajo, Gorka Arana, Alberto de Diego,et al.Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES, Chemosphere 56(2004): 1033~1041
    [9]Haynes D, Kwan D. Trace metals in sediments from Torres Strait and the Gulf of Papua:concentrations, distribution and water circulation patterns. Mar Pollut Bull 2002;44:296~313
    [10]Francisco Martinez, Sanchez J. Assessment of heavy metal levels in Almendares River sediments—Aavana City,Cuba, Water Research,2005,39:3945~ 3953
    [11]Subramanian V, Mohanachandran G. Heavy metals distribution and enrichment in the sediments of southern east coast of India. Mar Pollut Bull 1990;21(7):324~30
    [12]陈静生等.环境化学,1996,1:8-13
    [13]Sarangi RK, Kathiresan K, Subramanian AN. Metal concentrations in five mangrove species of the Bhitarkanika, Orissa. Indian J Mar Sci 2002;31(3);251~253
    [14]Tessier A, Campbell P G C. Blsson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals.Analytical Chemistry,1979,51(7):844~ 851
    [15]陈亚雄、李柳琼.江水体中铅镉锌的化学形态及其迁移转化,有色金属1998,50(1):90-96
    [16]Filgueiras A.V. Lavilla I., Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia,Spain) using chemometric analysis:a case study, Science of the Total Environment 330 (2004) 115-129
    [17]Stephane Audry, Jorg Schafer, Gerard Blanc, et al. Fifty-year sedimentary record of heavy metal pollution (Cd,Zn,Cu,Pb) in the Lot River reservoirs (France), Environmental Pollution 2004,132:413~426
    [18]Gordeev V.V. Rachold V. Vlasova I.E.. Geochemical behaviour of major and trace elements in suspended particulate material of the Irtysh river, the main tributary of the Ob river, Siberia; Applied Geochemistry 19 (2004) 593~610
    [19]Winkels H.J. Kroonenberg S.B. Lychagin M.Y.et al.Geochronology of priority pollutants in sedimentation zones of the Volga and Danube delta in comparison with the Rhine delta; Applied Geochemistry,1998,13(5):581~591
    [20]Huang K M, Lin Saulwood. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere,2003,53(9):1113~1121
    [21]Lores E M, Snyder R A, Pennock J R. The effect of humic acid on uptake/adsorption of copper by a marine bacterium and two marine ciliates. Chemosphere,1999,38(2):293-310
    [22]Yu K C, Tsai L J, Chen S H, et al. Chemical binding of heavy metals in anoxic river sediments. Water Research,2001,35(17):4086-4094
    [23]张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究,环境化学,1997,16(5)429-434
    [24]谭红兵,于升松,刘兴起.格尔木河中下游微量元素地球化学变化特征,长春科技大学学报,2001,31(3):273-278
    [25]闵育顺,祁士华,张干.珠江广州河段重金属元素的高分辨沉积记录,科学 通报,2000,45(增刊):2802-2805
    [26]郝向英,赵慧,刘卫.黄河中游主要重金属污染物的迁移转化,内蒙古环境保护,2000,12(3):27-28
    [27]李任伟,李禾,李原等.黄河三角洲沉积物重金属、氮和磷污染研究,沉积学报,2001,19(4):622-629
    [28]朱圣清,臧小平.长江主要城市江段重金属污染状况及特征,人民长江2001,32(7):23-25
    [29]傅瑞标,何青,孙振斌.长江口南槽重金属分布特征,中国环境科学,2000,20(4):357-360
    [30]Makesh Karuppiah, Gian Gupta.Chronological changes in toxicity of and heavy metals in sediments of two Chesapeake Bay tributaries, Journal of Hazardous Materials 1998,59,159~166
    [31]张朝生,王立军,章申.长江中下游河流沉积物和悬浮物中金属元素的形态特征,中国环境科学,1995,15(5):342-347
    [32]陈静生,周家义.中国水环境重金属研究,北京:中国环境科学出版社,1992,168-368
    [33]Elsokkary I.H., Muller G. Assessment and speciation of chromium, nickel, lead and cadmium in the sediments of the River Nile, Egypt. Science of The Total Environment,1990,97-98:455~463
    [34]Rafael Pardo, Enrique Barrado, Lourdes Perez, et al. Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Research, 1990,24(3):373-379
    [35]L.J. Tsai,K.C.Yu, J.S.Chang et al. Fractionation of heavy metals in sediment cores from the Ell-Ren river,Taiwan,Wat.Sci.Tech.1998,37,(6-7):217~224
    [36]杨宏伟,焦小宝,王晓.黄河(清水河段)沉积物中重金属的存在形式,环境科学与技术,2002,25(3):24-26
    [37]Nagano T., Yanase N., Tsuduki K.,et al.Particulate and dissolved elemental loads in the Kuji River related to discharge rate. Environment International,2003,28: 649-658
    [38]杨宏伟,张毅.黄河(喇嘛湾段)沉积物中铜、铅、锌、镉的化学形态研究,中国环境监测,2002,18(5):13-15
    [39]Ure A. M, Quevauvillier Ph, Muntau H et al. EU Report,nr.14763,
    [40]周福俊等,天然水中元素迁移形式与饮用水水质评价标准初步探讨,水文地质工程地质,1994,1:53-57
    [41]Buffle J, Leppand GG. Characterization of aquatic colloid and macromolecule: Key role of physical structures on anylytical results, Environ Sci Technol 1995b;29:2176~2184
    [42]Holmstrorn H, Ljungberg J, hlander B. The character of the suspended and dissolved phases in the water cover of the flooded mine tailings at Stekenjokk, northern Sweden. Sci Total Environ 2000;247:15-31
    [43]Balkis N. Cagatay MN., Factors controlling metal distributions in the surface sediments of the Erdek Bay,Sea of Marmara, Turkey,Environ Int 2001,27:1~13
    [44]Sato H, Yanai S, Nagasaka Y, et al. Influence of land use on suspended sediment discharge from watersheds emptying into Funka Bay, southwestern Hokkaido, northern Japan.Jpn Soc Hydrol Water Resour 2002,15:117~27 [in Japanese with English abstract]
    [45]何宏平,等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究.矿物学报,1999,19(2):231-235
    [46]Seth Rose.The heavy-metal adsorption characteristics of Hawthorne Formation (Florida,U.S.A.) sediments. Chemical Geology,1989,74(3-4):365~370
    [47]Jain C.K., Daya Ram. Adsorption of lead and zinc on bed sediments of the river Kali. Water Research,1997,31 (1):154~162
    [48]黄岁梁,泥沙解吸重金属污染物动力学模式研究.地理学报,1995,50(6):497-505
    [49]杨守业,李从先.长江与黄河沉积物REE地球化学及示踪作用,地球化学,1999;28(4):374-380
    [50]Ciffroy P, Moulin C, Gailhard J. A model simulating the transport of dissolved and particulate copper in the Seine river. Ecol Model 2000;127:99~117
    [51]Stanimirova I., Tsakovski S., Simeonov V. Multivariate statistical analysis of coastal sediment data. Chem.1999.365,489~493
    [52]Danielsson A., Cato I., Carman R.et al. Spatial clustering of metals in the sediments of the Skagerrak Kattegat. Appl. Geochem.1999,14,689~706
    [53]DelValls T A., Forja J M., Gonza.et al. Determining contamination sources in marine sediments using multivariate analysis. Trends in analytical chemistry,1998,17:81~192
    [54]Krzysztof Loska, Danuta Wiechula. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere,2003,51:723~733
    [55]Wenchuan Qu,Kelderman P.,Heavy metal contents in the Delft canal sediments and suspended solids of the River Rhine:multivariate analysis for sourse tracing.Chemosphere,2001,45:919~925
    [56]Forstner U,Wittmann G T W,Metal Pollution in the Aquatic Environment. Berlin:Springer-Verlag,1979.110~196
    [56]Pierre Regnier, Roland Wollast. Distribution of trace metals in suspended matter of the Scheldt estuary. Marine Chemistry,Volume 43, Issues 1-4, July 1993, Pages 3~19
    [57]Birch G F, Evenden D. Teutsch M E. Dominance of point source in heavy metal distribution in sediments of a major Sydney estuary (Australian). Environmental Geology,1996,28:69~174
    [58]孟可,孙廷智.胶州湾东岸沉积物重金属含量分布与污染源判别,曲阜师范大学学报,1996,22(1):77-81
    [59]Niels C, Munksgaard, Grant J.et al. Lead isotope ratios determined by ICP-MS:Investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria, Australia.Marine Pollution Bulletin, Volume 36, Issue 7, July 1998, Pages 527~534
    [60]Monna F., Clauer N.,Toulkeridis T.,et al. Influence of anthropogenic activity on the lead isotope signature of Thau Lake sediments (southern France):origin and temporal evolution. Applied Geochemistry,2000,15(9):1291~1305
    [61]Monna F., Hamer K., Leveque J.,et al. Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). Journal of Geochemical Exploration,2000,68 (3):201~210
    [62]Ravizza G. E., Bothner Osmium M. H. Isotopes and silver as tracers of anthropogenic metals in sediments from Massachusetts and Cape Cod bays. Geochimica et Cosmochimica Acta,1996,60 (15):2753~2763
    [63]Nolting R.F., Helder,W. Lead and zinc as indicators for atmospheric and riverine particle transport to sediments in the Gulf of Lions. Oceanologica Acta 1991.14 (4):357~367
    [64]Marta wardas,Leokadia Budek and Edeltrauda Helios Rybicka,Variability of heavy metals content in bottom sediments of the Wilga River,a tributary of Vistula River(Krakow area,Poland).Applied Geochemistry,1996,11:197~202
    [65]林以安,Martin J.M,Thomas A.J江口可溶态(210)Pb的来源、分布和逗留时间,海洋与湖沼,1996,27(2):145-150
    [66]滕彦国,倪师军等.攀枝花地区河流沉积物的重金属污染研究,长江流域资源与环境,2003,12(6):569-573
    [67]刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价,生态学报,1999,19(2):206-211
    [68]霍文毅,陈静生.我国部分河流重金属水-固分配系数及在河流质量基准研究中的应用。环境科学,1997,18(4):10-14
    [69]赵智杰,贾振邦,张宝权等.应用脸谱图与地积累指数法综合评价沉积物中重金属污染的研究,环境科学,1993,14(4):48-53
    [70]Kuo-Ming Huang, Saulwood Lin. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan.Chemosphere,2003,53 (9):1113~1121
    [71]Hacanson L.An ecological risk index for aquatic pollution control—A sedimentological approach.Water Research,1980,14:975-1001
    [72]贾振邦,于澎涛.应用过量回归分析法评价太子河沉积物中重金属污染的研究,北京大学学报,1995,31(4):451-460
    [73]Allen H E, Fu G, Deng B. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environment Toxicology Chemistry,1993,12:1441~1453
    [74]Ankley G T. Predication of the acute toxicity of copper in freshwater sediments:Evaluation of the ro le of acid volatile sulfide. Environment Toxicology Chemistry,1993,12:312~318
    [75]Edward, R. Predicting the toxicity of sediment-associated trace metals with SEM/AVS and dry weight-normalized concentrations:A critical comparison.Environmental Toxicology Chemistry,1998,17(5):972~974
    [76]何江,王新伟,李朝生等.黄河包头段水-沉积物系统中重金属的污染特征,环境科学学报,2003,23(1):53-58
    [77]Benson W H, Giulio R T D. Biomarkers in hazard assessments of contaminated sediments. Burton G A J r. Sediment Toxicity Assessment. Chelsea Michigan:Lewis Publishers,1992.241-266
    [78]徐争启,倪师军,张成江等.应用污染负荷指数法评价攀枝花地区金沙江水系沉积物中的重金属.四川环境,2004,23(3):64-67
    [79]万国江.现代沉积的210pb记年,第四纪研究,1997,3:230-239。
    [80]万国江,Appleby P G环境生态系统散落核素示踪研究新进展.地球科学进展,2000,15(2):172-177
    [81]成国栋,业渝光,刁少波.黄河三角洲210pb剖面与再沉积作用.海洋地质与第四纪地质,1995,15(2):1-10
    [82]Mai Bixian,Sheng Guoying,Lin Zheng,et al. High-resolution sedimentary record of hydrocarbon contaminants in a core from the major reaches of the Pearl River,China. Chines Science Bulletin,2000,45Supp.97~104
    [83]Carroll J.Williamson M., Lerche I.,et al. Geochronology of Lake Baikal from 210 Pb and 137Cs radioisotopes, Applied Radiation and Isotopes 50 (1999) 1105~1119
    [84]Jha S.K., Krishnamoorthy T.M. Pandit G.G.et al. History of accumulation of mercury and nickel in Thane Creek, Mumbai, using 210Pb dating technique。The Science of the Total Environment,1999,236:91-99
    [85]沙连茂.环境中的210pb,辐射防护通讯,2004,24(2):14-17。
    [86]Chamard P, Velasco R H, BelliM, et al. Caesium-137 and strontium-90 distribution in a soil profile. Science of the Total Environment,1993,136:251-258
    [87]Walling D E, He Q. Use of fallout 137Cs in investigations of over-bank sediment deposition on river floodp lains. Catena,1997,29:263-282
    [88]徐经意,万国江,王长生等.云南省泸沽湖、洱海现代沉积物中210 Pb,137Cs的垂直分布及其计年.湖泊科学,1999,11(2):110-116
    [89]万国江,林文祝,黄荣贵等.红枫湖沉积物137Cs垂直剖面的计年特征及侵蚀示踪。科学通报,1990,35(19):1487-1490
    [90]张燕,潘少明,彭补拙.用137Cs计年法确定湖泊沉积物沉积速率研究进展.地球科学进展,2005,20(6):671-678
    [91]张心昱,Desmond E. Walling,王秋兵等.英国Culm河河漫滩沉积物中磷素时空变化研究.土壤学报,2005,42(3):390-396
    [92]朱广伟,秦伯强,高光等.太湖近代沉积物中重金属元素的累积,湖泊科学,2005,17(2):143-150
    [93]白增森,吴家华,董云中等.汾河流域土壤重金属垂直分布规律及地域差异,农业环境与发展,1997,4:11-16
    [94]刘永懋.松花江汞与甲基汞污染综合防治及其研究成果.水资源保护,1995,(3):7-12
    [95]于常荣,王炜,梁冬梅等.松花江水体总汞与甲基汞污染特征的研究,长春地质学院学报,1994,24:102-109
    [96]郑习健.珠江广州河段底泥中汞铜铅的污染及其与有机质、硫化物积累的关系,热带亚热带土壤科学,1994,3:132-137
    [97]丁振华,王文华等.黄浦江江水和沉积物中汞的分布和形态特征,环境科 学,2005,26(5):62-66
    [98]牛红义,吴群河,陈新庚.珠江(广州河段)表层沉积物中重金属的分布特征及相关性研究,生态环境,2006,15(5):954-959
    [99]杨守业,李从先C.B.Lee等.黄海周边河流的稀土元素地球化学及沉积物物源示踪.科学通报,2003,48(11):1233-1236
    [100]王立军,梁涛,丁立强等.天津沿海排污河中稀土元素的地球化学特征.中国稀土学报,2003,21(6):699-705
    [101]王立军,章申,张朝生等.长江中下游稀土元素的水环境地球化学特征.环境科学学报,1995,15(1):57
    [102]王立军,张朝生,章申等.珠江广州江段水体中稀土元素的地球化学特征.地理学报,1998,53(5):453
    [103]Chaosheng Zhang, Lijun Wang and Shen Zhang. Geochemistry of rare earth elements in the mainstream of the Yangtze River, China, Applied Geochemistry, 1998,13(4):451~462
    [104]W.Zhu, Kennedy M. et al. Distribution and modeling of rare earth elements in Chinese river sediments, The Science of the Total Environment 1997,204:233~243
    [105]龚玲兰,奚小双,戴塔根等.湘江悬浮物的稀土元素地球化学研究,沉积学报,2009,27(3):529-536
    [106]Chester R. Marine geochemistry. Oxford;Blackwell,2000.353
    [107]Taylor S R and Srctitle. The Continental Crust:Its Composition and Evolution. Oxford:Blackwells,1985,29~45
    [108]Peter Gromet, Larry A. Haskin, Randy L. et al.The "north American Shale Composite":Its compilation, major and trace element characteristics. Geochim Cosmochim Acta,1984,48:2469
    [109]杨守业,李从先.元素地球化学特征的多元统计方法研究-长江与黄河沉积物元素地球化学研究,矿物岩石,1999,19(1):63-67
    [110]Steven J. Goldstein, Stein B. Jacobsen. Rare earth elements in river waters, Earth and Planetary Science Letters,1988,89(1):35~47
    [111]Condie K C. Another look at REEs in shales, Geochem Cosmochin Acta, 1991,55:2527-2531
    [112]Audry S, Jorg Schafer, Gerard Blanc, et al. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution,2004,132:413~426
    [113]Bothner M.H. Aruscavage P.J. Ferrebee W.M. et al. Trace metal concentrations in sediment cores from the continental shelf off the South-Eastern United States. Estuarine and Coastal Marine Science,1980,10(5):523-541
    [114]Monna F. Mathieu D. Marques A. N., et al.A comparison of PERALS(?) to alpha spectrometry and beta counting:a measure of the sedimentation rate in a coastal basin. Analytica Chimica Acta,1996,330(1),Pages 107-115
    [115]Feijtel R C, Delaune R D, Patrick Jr W H. Biogeochemical control on metal distribution and accumulation in Louisiana sediments. Journal of Environmental Quality,1988,17:88-94
    [116]黄韶华,祁文军,程原生等.汾河中下游“96.8”洪水灾害成因分析及防洪对策,山西水利科技,1998,120(1):30-40
    [117]李淑媛,苗丰民,刘国贤等.渤海重金属污染历史研究,海洋环境科学,1996,15(4):28-31
    [118]Mecray E L, King J W, Appleby P G, et al. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed,Burlington,Vermont.Water,Air and Soil Pollution,2001,125:201-230
    [119]王国平,刘景双,汤洁.沼泽湿地重金属元素输入的历史变化,吉林大学学报(地球科学版),2004,34(3):450-455
    [120]鲁艳红.太原市土壤重金属污染状况研究:[硕士学位论文].长沙:中南大学,2005
    [121]Kot A, Namiesik J. The Role of Speciation in Analytical Chemistry.Trends in Analysis Chemistry,2000,19:69~79
    [122]Maier E A, Griep Ink B,The BCR (Measurement and Testing) Programme—Quality of Measurements:a European Goal Fresenius'Journal of Analytical Chemistry,1994,348(1):6~8
    [123]William Shotyk, Andrij K. Cheburkin, Peter G. Appleby, et al. Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland, Earth and Planetary Science Letters,1996,145,(1-4),Pages E1-E7
    [124]Matthiessen P, Reed J, Johnson M. Sources and potential effects of copper and zinc concentrations in the estuarine waters of Essex and Suffolk, United Kingdom. Marine Pollution Bulletin,1999,38:908-920
    [125]刘恩峰,沈吉,朱育新等.太湖表层沉积物重金属元素的来源分析,湖泊科学,2004,16(2):113-119
    [126]Din Z. Use of aluminum to normalize heavy metals data from the estuarine and coastal sediments of the strait of Melaka. Marine Pollution Bulletin,1992,24:484-491
    [127]刘素美,张经.沉积物中重金属的归一化问题---以A1为例.东海海洋,1998,16(3):48-55
    [128]孟伟,翟圣佳,秦延文等.渤海湾潮间带大沽柱状沉积物中的重金属来源判别.海洋通报,2006,25(1):62-69。
    [129]蔡清海,杜琦,钱小明等.福建三沙湾海洋沉积物中重金属和过渡元素来源分析,地质学报,2007,81(10):1444-1448
    [130]DelValls T.A., Forja J.M., Gomez-Parra A. The use of multivariate analysis to link sediment contamination and toxicity data to establish sediment quality guidelines:an example in the Gulf of Cadiz (Espana). Cienc. Mar.1998.24 (2),127-154
    [131]李玉,俞志明,宋秀贤.运用主成分分析(PCA)评价海洋沉积物中重金属污染来源,环境科学,2006,27(1):137-141
    [132]Antonio Cobelo-Garcia, Ricardo Prego. Heavy metal sedimentary record in a Galician Ria (NW spain) background values and recent contamination. Marine Pollution Bulletin 46 (2003) 1253~1262
    [133]李玉,俞志明,曹西华等.重金属在胶州湾表层沉积物中的分布与富集,海洋与湖沼,2005,36(6):580-589
    [134]刘士俊,温俨,姚清晨.汾河水库污染源分析及治理对策研究,科技情报开发与经济,2003,13(1):159-160
    [135]Gambrell R P. Trace and toxic metals in wetlands—a review. Environ Qual, 1994,23:883-891
    [136]毕春娟,陈振楼,许世远.上海白龙港排污口附近潮,滩沉积物中重金属总量及其化学形态分析.海洋环境科学,2002,21(4):1-5
    [13 ]张少娜,孙耀,宋云利等.紫贻贝(Mytilus edulis)对4种重金属的生物富集动力学特性研究.海洋与湖沼,2004,35(5):438-445
    [138]何宏平.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究.矿物学报,1999,19(2):231-235
    [139]刘俊华,王文华,彭安.土壤性质对土壤中汞赋存形态的影响,环境化学,2000,19(5):475-477
    [140]刘霞,刘树庆,王胜爱,河北主要土壤中Cd和Pb的形态分布及其影响因素,土壤学报,2003,40(3):393-400
    [141]张岚,倪晋仁,孙卫玲等.高含沙水体中黄土吸持和释放铜的机理,环境 科学,2003,24(3):79-841
    [142]Mastalerz M. Souch C. Filippelli G.M.et al. Anthropogenic organic matter in the Great Marsh of the Indiana Dunes National Lakeshore and its implications.International Journal of Coal Geology,2001,46(2-4):157-177
    [143]Mecray E L, King J W, Appleby P G et al, Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed, Burlington, Vermont. Water, Air and Soil Pollution,2001.125:201~230
    [144]王军,陈振楼,王初等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估。环境科学,2007,8(3):647-653
    [145]RAPANT S, KORDIK J. An environmental risk assessment map of the Slovak Republic:Application of data from geochemical atlases.Environmental Geology,2003,44(4):400~407.
    [146]Straglini W M. Doelman P. Salomons W. et al. Chemical time toms:Prediciting the unpredictable. Environment,1991,33:4~30
    [147]Abollino O.,Aceto M.,Malandrino M. et al,2002. Distribution and mobility ofmetals in contaminated sites. Chemometric investigation of pollutant profiles. Environmental Pollution,119:177~193
    [148]YN Yujun. Adsorption of mercury (Ⅱ) by soil:Effects of pH, chloride,and organic matter.EnvironQual,1996,25 (13):837~844
    [149]陈建斌.有机物料对土壤的外源铜和镉形态变化的不同影响,农业环境保护,2002,21(5):450-452
    [150]丁疆华,温琰茂,舒强.土壤汞吸附和甲基化探讨,农业环境与发展,2001,27(1):34-36
    [151]Amrhein C, Strong J E, Mosher P A. Effect of deicing salts on and organic matter obilization in roadside soils.Environ. Sci. Technol.,1992,26:703-709
    [152]GILMOUR J T. Mercury methylation in freshwater sediments. Envir Lett, 1971,12(2):143~146
    [153]Emile M. Lores, Richard A. Snyder, Jonathan R. Pennock. The effect of humic acid on uptake/adsorption of copper by a marine bacterium and two marine ciliates.Chemosphere,1999,38 (2):293~310
    [154]余贵芬,蒋新,和文祥等.腐殖酸对红壤中铅镉赋存形态及活性的影响,环境科学学报,2002,22(4):508-513
    [155]白瑛.胶体吸附与土壤重金属容量。农业环境保护,1986,24:23-27.
    [156]Wang D Y, Qing C L, Guo T Y, et al. Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water, Air and Soil Pollution,1997, 95:35~43
    [157]袁兰.二甲基汞在土-水-气体系中迁移及转化规律的研究,农业环境保护,1992,11(4):152-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700