用户名: 密码: 验证码:
中国α-六六六土壤残留分布特征及源汇解析的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机污染物(POPs)是一类在环境中持久性存在,可以通过环境迁移和食物链富集,对人类健康和生态环境产生有害影响的化合物。对POPs源汇关系的空间识别以及形成原因的认识是从区域尺度,乃至全球尺度把握POPs污染转移趋向,并制定控制与削减措施的理论基础,但是目前我国缺乏在国家尺度上的对POPs源汇关系的系统研究。土壤是POPs的主要环境归趋相之一,大气传输是POPs迁移的主要方式,因此,本研究选择我国(不包括台湾省)1952-1984年间使用量最大的有机氯农药六六六(HCHs,POPs的一种)的主要成分α-HCH为研究对象,利用以土壤为主要关心环境介质的长期模拟(1952-2007年),探讨了在HCHs使用期间,α-HCH的土壤残留特征以及主要的影响因素;识别出在HCHs停止使用后,α-HCH的主要污染汇区,并利用清单分离模拟方法进行了定量分析。进而利用以大气为主要关心环境介质的短期模拟(2005年)和多年气象资料分析相结合的方式,讨论了HCHs停止使用后,α-HCH在我国(不包括台湾省)的源汇空间分布的成因。
     为模拟α-HCH在我国环境中的长期迁移转化规律,开发了一个基于1/4°经度×1/6°纬度的网格化多介质环境模型。模型中考虑土壤、大气、水和底泥4类环境介质,包括迁移和传输2个模块。
     模拟结果表明,在HCHs使用期间,土壤中α-HCH残留浓度主要受α-HCH使用强度和拌种、毒土方式使用比例的影响;在HCHs停止使用后,则主要受温度以及土壤有机碳含量、土壤孔隙率的影响。在HCHs使用期间,较深层土壤(20-50 cm)的α-HCH残留浓度约为浅层土壤(0-20cm)的10%;此后,浅层土壤中α-HCH残留浓度下降速度相对较快。到2000年,浅层土壤中的残留浓度略高于较深层土壤。
     东北、华北、东南以及中北地区的α-HCH土壤残留均以本地源贡献为主。1952-2007年期间,华北和东南地区的本地源贡献率均在95%以上,2个地区余下贡献比例基本是互为影响;东北和中北地区的本地源贡献比例分别在76%-94%和82%-99%之间,均呈逐年下降趋势。南部地区的α-HCH通过大气传输对东北和中北地区影响最大,贡献比例呈逐年上升的趋势,到2007年分别为19%和18%。利用1985-2007年的贡献比例变化趋势曲线拟合得出,到2030年和2041年南部源分别对东北和中北地区的α-HCH土壤残留贡献比例将大于50%。虽然东北地区比华北地区离南部地区更远,但南部地区单位α-HCH使用量对东北地区土壤残留贡献约为华北地区的10倍。
     利用CanMETOP大气传输模型得出,2005年7月份在东北地区大气中出现了高于历史使用量最大的东南地区的α-HCH浓度。通过对风向、气压和降水等气象资料分析得出东亚夏季风可以将东南地区的α-HCH传输到东北地区,且大气浓度在东北地区的低压区内因风速的降低而升高。通过湿沉降通量、土-气逸度比以及土壤残留负荷比分析,表明东亚夏季风不仅对我国东部地区夏季大气中的α-HCH浓度的时空分布具有显著影响,对东北地区土壤污染作用也十分显著。
     结合40多年的气象资料分析得出每年夏季是我国东南地区的α-HCH通过大气传输到达东北地区的重要时段,且以7月份最为显著。7月份传输至东北地区的α-HCH会因该地区经常出现的低压而在大气中堆集升高,从而通过与这一现象紧密联系的降水以湿沉积的形式进入东北地区的地表环境。
Persistent Organic Pollutants (POPs) are a group of chemicals that persist in environment, bioaccumulate through the food web, and pose a risk of causing adverse effects to human health and the environment. POPs can reach regions where they have never been used or produced through long-range transport and threat the environment in the regions. Spatial identification of the relationship between sources and acceptors of POPs and understanding the causes of this relationship are the theoretical foundation to master the pollution trends of these chemicals on a regional or even a global scale, and make policies to control and reduce the pollution. This kind research on a national scale is lacking in China. While soil is one of the sink for POPs, and atmospheric transport is the most important pathway of many chemicals to undergo the long-range transport process.
     Technical HCH, one of POPs, was the mostly used insecticide in China from 1952 to 1984, andα-HCH, the major component of technical HCH, was selected as the targeted chemical in this study. The objective of this thesis is to study the pattern of the soil residues ofα-HCH in Chinese soil, the process to cause this residue patterns, and thereafter the relationship between source-receptor of the chemical.
     A multi-medium model has been developed based on a grid system with a 1/6°×1/4°latitude/longitude resolution to assessment long-period fate ofα-HCH in China environment. The model considers 4 matrixes, soil, air, water and sediment, and includes transfer and transport modules. The model was employed to simulate the transport and transfer ofα-HCH in 56 years from 1952 to 2007, to analyze the characteristics of its residues in soil during the use of technical HCH, to identify the major contaminated areas, and to quantify the contributions to these areas from different source regions by using inventory separation method. Both the temporal and spatial trends ofα-HCH residues in Chinese multi-media, soil in particular, were calculated by the model. The results of the modeled soil concentrations matched well with the measured data. The model result suggested thatα-HCH concentration pattern in soil in each grid cell was mainly affected by usage intensity and application modes of this chemical in the cell during the application period from 1952 and 1983, and was dominated by temperature, organic carbon content and porosity of soil after 1983.
     To identify quantitatively the contribution of different sources in China to theα-HCH budget national wide, the numerical simulations were performed for different scenarios. The results showed southern source was the remarkable contribution toα-HCH soil residue in Northeastern and mid-North China. The importance of the southern source has been stronger and it was predicted that over 50% ofα-HCH in Northeastern and mid-Northern soil will come from the southern sources in 2030 and 2041.
     The temporal and spatial pattern ofα-HCH air concentration in China in 2005 was simulated by atmospheric transport model CanMETOP and indicated that the transport ofα-HCH from southeast soil to northeast China mainly caused by East Asian monsoon occurred in summer, mainly in July. It was found that East Asian monsoon can carryα-HCH from soil in Southern China, and bring them to the Northeast, forming a much strong“pulse”ofα-HCH in the region with a air concentration even higher than that in the source region.
     Analysis on the meteorologic data during 1965-2007 shows thatα-HCH in southeast region was carryed into northeast China by air transport in summer of every year and maily in July.α-HCH transported into Northeast was concentrated by cyclone or lower air pressure and deposited into the environment of land surface by precipitation in the region.
引文
1 D. Mackay, W. Y. Shiu, K. C. Ma, et al. Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC, 2006: 3774~3898
    2 F. Wania, D. Mackay. Tracking the distribution of persistent organic pollutants. Environmental Science & Technology. 1996, 30(9):390A~369A
    3 F. Wania, D. Mackay. A global distribution model for persistent organic chemicals. Science of the Total Environment. 1995,160/161:211~232
    4 C. N. Michael, A. U. Michael.生态毒理学原理.赵园,王太平译.化学工业出版社(原著第二版). 2007:204~205
    5华小梅,单正军.我国农药生产、使用状况及其影响因子分析.环境科学进展. 1996, 4(2):33~45
    6 Y. F. Li, D. J. Cai, A. Singh. Technical hexachlorocyclohexane use trends in China and their impact on environment. Archives of Environment Contamination and Toxicology. 1998, 35(4):688~697
    7 Y. F. Li, D. J. Cai, A. Singh. Historical DDT use trends in China and usage data gridding with 1/4o by 1/6o longitude/latitude resolution. Advances in Environmental Research. 1998, 2(4):497~506
    8 United Nations Environment Programme Chemicals. Regionally based assessment of persistent toxic substances- central and north east Asia regional report. United Nations Environment Programme. Geneva. 2002: 21~27
    9窦艳伟.中国林丹网格化使用清单及个别地区环境归趋和健康风险初步研究.北京大学硕士论文. 2006:34~47
    10 H. Jia, Y. Li, D. Wang, et al. Endosulfan in China 1-gridded usage inventories. Environmental Science and Pollution Research. 2009, 16(3):295~301
    11李军.珠江三角洲有机氯农药污染的区域地球化学研究.中国科学院广州地球化学研究所博士论文. 2005:9~10
    12 R. C. Pereira, M. Camps-Arbestain, B. R. Garridoa, et al. Behaviour ofα-,β-,γ-, andδ-hexachlorocyclohexane in the soil–plant system of a contaminated site Environmental Pollution. 2006, 144(1):210~217
    13 A. Beyer, D. Mackay, M. Matthies, et al. Assessing long-range transportpotential of persistent organic pollutants. Environmental Science & Technology. 2000, 34(4):699~703
    14 X. Qiu, T. Zhu, B. Yao, et al. Contribution of dicofol to the current DDT pollution in China. Environmental Science & Technology. 2005, 39(12): 4385~4390
    15 K. Willett, E. Ulrich, R. Hites. Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environmental Science & Technology. 1998, 32:2197~2207
    16 Y. F. Li, R. Macdonald. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Science of the Total Environment. 2005, 342:87~ 106
    17张宗炳,樊德芳,钱传范等.杀虫药剂的环境毒理学.农业出版社, 1989: 351~358
    18余刚,黄俊,涨彭义.持久性有机污染物:倍受关注的全球性环境问题.环境保护. 2001, 4: 37~39
    19陈怀满.土壤中化学物质的行为与环境质量.科学出版社. 2002:636~661
    20方旋,耿长君,徐友海,吕继萍.污染物的源解析技术研究进展.化工科技. 2007,15(3):60~64
    21张丹,张卫东,蒋吕潭.环境中大气颗粒物的源解析方法.重庆工商大学学报(自然科学版). 2006, 23(2):124~127
    22柯昌华,金文刚,钟秦.环境空气中大气颗粒物源解析的研究进展.重庆环境科学. 2002, 24(3):55~59
    23 T. Bidleman, R. Macdonald, J. Stow. Canadian arctic contaminants assessment reportII.Sources, occurrence, trends and pathways in the physical environment. Ottawa. 2003: 1~332
    24 E. Voldner, Y. F. Li. Global usage of selected persistent organochlorines. Science of the Total Environment. 1995, 160/161:201~210
    25 Y. F. Li, A. McMillan, M. T. Scholtz. Global HCH usage with 1°x1°longitude/latitude resolution. Environmental Science & Technology. 1996, 30(12):3525~3533
    26 Y. F. Li. Global technical hexachlorocyclohexane usage and its contamination consequences in environment: from 1947 to 1997. Science of the Total Environment. 1999, 232:123~160
    27 Y. F. Li, D. J. Cai, Z. J. Shan, et al. Gridded usage inventories of technicalhexachlorocyclohexane and lindane for China with 1/6°latitude by 1/4°longitude resolution. Archives of Environment Contamination and Toxicology. 2001, 41:261~266
    28 Y. F. Li, A. Zhulidov, R. Robarts, et al. Hexachlorocyclohexane use in the former Soviet Union. Archives of Environmental Contamination and Toxicology. 2004, 48:10~15
    29 Y. F. Li, T. Bidleman, L. A. Barrie, et al. Global hexachlorocyclohexane use trends and their impact on the arctic atmospheric environment. Geophysical Research Letters. 1998, 25(1):39~41
    30 Y. F. Li. Global gridded emission inventories ofα-hexachlorocyclohexane. Journal of Geophysical Research. 2000, 105(D5):6621~6632
    31 Y. F. Li, T. F. Bidleman. Correlation between global emissions ofα-hexachlorocyclohexane and its concentrations in the arctic air. Journal of Environmental Informatics. 2003, 1(1):52~57
    32成海容.瓦里关及青岛大气中多环芳烃(PAHs)和有机氯农药(OCPs)的初步研究.中国科学院广州地球化学研究所硕士论文.2007:44~63
    33 L. Shen, F. Wania, Y. D. Lei, et al. Hexachlorocyclohexanes in the North American atmosphere. Environmental Science & Technology. 2004, 38(4): 965~975
    34 T. F. Bidleman, R. L. Falconer. Using enantiomers to trace pesticide emissions. Environmental Science & Technology. 1999, 33(9):206 A~209 A
    35 S. A. Genualdi, S. L. Simonich, T. K. Primbs, et al. Enantiomeric signatures of organochlorine pesticides in Asian, trans-pacific, and western U.S. air masses. Environmental Science & Technology. 2009, 43(8): 2806~2811
    36 P. B. Kurt-Karakus, T. F. Bidleman, K. C. Jones. Chiral organochlorine pesticide signatures in global background soils. Environmental Science & Technology. 2005, 39(22):8671~8677
    37 F. Tian, J. Chen, X. Qiao, et al. Source identification of PCDD/Fs and PCBs in pine (Cedrus deodara) needles: A case study in Dalian, China. Atmospheric Environment. 2008,42(19):4769~4777
    38 F. Tian, J. Chen, X. Qiao, et al. Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: Factor analysis with non-negative constraints combined with local source fingerprints. Atmospheric Environment. 2009,43(17):2747~2753
    39 W. Wilcke, M. Krauss, W. Amelung. Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperature environment? Environmental Science & Technology. 2002, 36(16): 3530~3535
    40 R. Dickhut, T. Padma, A. Cincinelli. Fractionation of stable isotopelabeled organic pollutants as a potential tracer of atmospheric transport processes. Environmental Science & Technology. 2004, 38(14): 3871~3876
    41 S. L. Gong, P. Huang, T. L. Zhao, et al. GEM/POPs: a global 3-D dynamic model for semi-volatile persistent organic pollutants-Part 1: Model description and evaluations of air concentrations. Atmospheric Chemistry and Physics. 2007, 7: 4001~4013
    42 J. Ma, S. Daggupaty, T. Harner, et al. Impacts of lindane usage in the Canadian prairies on the Great Lakes ecosystem. 1. Coupled atmospheric transport model and modeled concentrations in air and soil. Environmental Science & Technology. 2003, 37(17):3774~3781
    43 A. Koziol, J. Pudykiewicz. Global-scale environmental transport of persistent organic pollutants. Chemosphere. 2001, 45:1181~1200
    44 V. S. Semeena, J. Feichter, G. Lammel. Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants - examples of DDT andγ-HCH. Atmospheric Chemistry and Physics. 2006, 6:1231~1248
    45 L. Zhang, J. Ma, S. Venkatesh, et al. Modeling evidence of episodic intercontinental long-range transport of lindane. Environmental Science & Technology. 2008, 42(23):8791~8797
    46 K. M. Hansen, J. H. Christensen, J. Brandt, et al. Modelling atmospheric transport ofα-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP. Atmospheric Chemistry and Physics. 2004, 4:1125~1137
    47 D. Simpson, H. Fagerli, J. E. Jonson, et al. Transboundary acidification and eutrophication and ground level ozone in Europe: Unified EMEP Model Description, EMEP Status Report 1/2003 Part I, EMEP/MSC-W Report. The Norwegian Meteorological Institute. Oslo. 2003: 1~63
    48 A. Hollander, M. Scheringer, V. Shatalov, et al. Estimating overall persistence and long-range transport potential of persistent organic pollutants: acomparison of seven multimedia mass balance models and atmospheric transport models. Journal of Environmental Monitoring. 2008, 10:1139~1147
    49 A. Sturm. Guiding system modelers in multi view environments: A domain engineering approach. Proceedings of EMMSAD. 2008:130~139
    50 R. R. Draxler, G. D. Hess. An overview of the Hysplit_4 modeling system for trajectories, dispersion and deposition. Aust Meteorol Mag. 1998, 47:295~308
    51 A. Stohl, C. Forster, A. Frank, et al. Technical Note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics. 2005, 5:2461~2474
    52 D. Mackay. Finding fugacity feasible. Environmental Science & Technology. 1979, 13(10):1218~1223
    53 D. Mackay.环境多介质模型逸度方法.化学工业出版社.黄国兰,陈春江,孔庆宁等译(原著第二版). 2007:47~78
    54 D. Mackay, S. Paterson, W. H. Schroeder. Model describing the rates of transfer processes of organic chemicals between atmosphere and water Environmental Science & Technology. 1986, 20(8):810~816
    55 M. Diamond, D. Mackay, R. J. Cornett, et al. A model of the exchange of inorganic chemicals between water and sediments Environmental Science & Technology. 1990, 24: 713~722
    56 D. Mackay, S. Paterson. Evaluating the multimedia fate of organic chemicals: a Level III fugacity model. Environmental Science & Technology. 1991, 25(3): 427~436
    57 D. Mackay, F. Wania. Transport of contaminants to the Arctic: Partitioning, processes and models. Science of the Total Environment. 1995, 160/161 (15):25~38
    58 R. Bru, J. Carrasco, L. Paraiba. Unsteady state fugacity model by a dynamic control system. Applied Mathematical Modelling. 1998, 22(7):485~494
    59 L. Paraiba, J. Carrasco, R. Bru. Level IV fugacity model by a continuous time control system. Chemosphere, 1999, 38(8):1763~1775
    60 L. Paraiba, R. Bru, J. Carrasco. Level IV fugacity model depending on temperature by a periodic control system. Ecological Modeling. 2002, 147(3): 221~232
    61 I. T. Cousins, D. Mackay, K. C. Jones. Measuring and modelling the vertical distribution of semi-volatile organic compounds in soils. II: Modeldevelopment. Chemosphere. 1999, 39(14): 2519~2534
    62 T. Harner, T. F. Bidleman, L. M. M. Jantunen, et al. Soil-air exchange model of persistent pesticides in the United States cotton belt. Environmental Toxicology and Chemistry. 2001, 20(7):1612~1621
    63叶常明,顔文红.多介质环境循环模型的研究进展.环境科学进展. 1994, 2(1):9~25
    64叶常明,雷志芳,王宏等.有机污染物多介质环境的稳态非平衡模型.环境科学学报. 1995, 15(2):192~198
    65叶常明,雷志芳.单甲脒等有机污染物多介质环境的稳定平衡模型构建.生态学报. 1995, 15(2):192~200
    66叶常明,雷志芳.单甲脒等有机污染物多介质环境的动态模型.环境科学学报. 1997, 17(2):405~421
    67赵南霞,王鹏,郑彤.松花江有机毒物环境归宿模型及程序设计.哈尔滨工业大学学报. 2001, 33(4):479~480
    68曹红英,曹军,徐福留等.天津地区六六六的归宿和跨界面迁移.环境化学. 2003, 22(6):548~554
    69 H. Cao, S. Tao, F. Xu, et al. Multimedia fate model for HCH in Tianjin, China. Environmental Science & Technology. 2004, 38(7): 2126~2132
    70曹红英,龚钟明,曹军等.估算天津环境中γ-HCH归宿的逸度模型.环境科学进展. 2003, 24(2):77~81
    71刘信安,吴方国.多介质环境模型研究太湖藻类生物量对POPs的影响.安全与环境学报, 2004, 4(1):3~7
    72 T. Harner, D. Mackay, K. C. Jones. Model of the long-term exchange of PCBs between soil and the atmosphere in the southern UK. Environmental Science & Technology. 1995, 29(5):1200~1209
    73 S. Tao, Y. Yang, H. Cao, et al. Modelling the dynamic changes in concentrations of gamma-hexachlorocyclohexane (gamma-HCH) in Tianjin region from 1953 to 2020. Environmental Pollution. 2006, 139(1):183~193
    74曹红英,梁涛,陶.澍等.北京地区50多年来有机氯农药迁移与残留的动态模拟与预测.中国科学D辑(地球科学). 2005, 35(10):980~988
    75 H. Cao, T. Liang, S. Tao, et al. Simulating the temporal of OCP pollution in Hangzhou, China. Chemosphere. 2007, 67:1335~1345
    76 J. Ao, J. Chen, F. Tian, et al. Application of a level IV fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lowerreach of Yellow River basin, China. Chemosphere. 2009, 74:370~376
    77 F. Wania. Global chemical fate ofα-hexachlonocyclohexance 1. Evaluation of a global distribution model. Environmental Toxicology and Chemistry. 1999, 18:1390~1399
    78 M. Scheringer, F. Wegmann, K. Fenner, et al. Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model. Environmental Science & Technology. 2000,34(9):1842~1850
    79 L. Toose, D. Woodfine, M. MacLeod, et al. BETR-World: a geographically explicit model of chemical fate: application to transport ofα-HCH to the Arctic. Environmental Pollution. 2004, 128(1-2):223~240
    80 S. Tao, H. Cao, W. Liu, et al. Fate modeling of phenanthrene with regional variation in Tianjin, China. Environmental Science & Technology. 2003, 37(11):2453~2459
    81曹红英,陶澍,王喜龙等.天津地区菲的空间分异多介质归趋模型.环境科学. 2003, 24(5):54~59
    82 Z. Liu, X. Quan, F. Yang. Long-term fate of three hexachlorocyclohexanes in the lower reach of Liao River basin: Dynamic mass budgets and pathways Chemosphere. 2007, 69(7):1159~1165
    83刘振宇,杨凤林,全燮等.河流环境持久性有机污染物归宿的动态逸度模型.环境科学. 2006, 27(1):121~125
    84 M. MacLeod, D. G. Woodfine, D. Mackay, et al. BETR North America: a regionally segmented multimedia contaminant fate model for North America. Environmental Science and Pollution Research. 2001,8(3):156~163
    85 K. Prevedouros, M. MacLeod, K. C. Jones, et al. Modelling the fate of persistent organic pollutants in Europe parameterisation of a gridded distribution model. Environmental Pollution. 2004, 128:251~261
    86 J. Ma, S. Venkatesh, Y. F. Li, et al. Tracking toxaphene in the North American Great Lakes basin. 1. Impact of toxaphene residues in United States soils. Environmental Science & Technology. 2005, 39(21):8123~8131
    87 E. Kalnay, M. Kanamitsu, R. Kistler, et al. The NCEP/NCAR reanalysis project. Bulletin of American Meteorological Society. 1996, 77:437~471
    88 X. Liu, G. Zhang, J. Li, et al. Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities. Environmental Science & Technology. 2009, 43(5):1316~1321
    89 N. Ren, M. Que, Y. Li, et al. Polychlorinated biphenyls in Chinese surface soils. Environmental Science & Technology. 2007, 41(11):3871~3876
    90 N. Q. Ren, E. Sverko, Y. F. Li, et al. Levels and isomer profiles of dechlorane plus in Chinese air. Environmental Science & Technology. 2008, 42(17): 6476~6480
    91张智超,戴树桂,朱昌寿等.海河河口水和新港港湾水中α-六六六对映体选择性降解及α、β、γ、δ-六六六浓度.中国环境科学. 1998, 18(3):197~201
    92刘国卿,张干,李军等.利用SPMD技术监测珠江三角洲大气有机氯农药.环境科学研究. 2004, 17(6):1~5
    93葛成军,安琼,董元华等.南京某地农业土壤中有机污染分布状况研究.长江流域资源与环境. 2006, 15(3):361~365
    94耿存珍,李明伦,杨永亮等.青岛地区土壤中OCPs和PCBs污染现状研究.青岛大学学报(工程技术版). 2006, 21(2):42~48
    95 Y. Zhang, S. Tao, J. Cao, et al. Emission of PAHs in China by County. Environmental Science & Technology. 2007, 41(3): 683~687
    96 Y. Xing, Y. L. Lu, R. W. Dawson, et al. A spatial temporal assessment of pollution from PCBs in China. Chemosphere. 2005, 60:731~739
    97 D. Mackay. Multimedia environmental models: the fugacity approach. second ed. Lewis, Boca Raton. 2001,203~247
    98刘巽浩.中国土壤耕作制度.中国农业出版社. 1993:195~222
    99李宗恺,潘云仙,孙润桥.空气污染气象学原理及应用.气象出版社. 1985:18
    100 H. Xiao, N. Li, F. Wania. Compilation, evaluation, and selection of physical- chemical property data forα-,β-, andγ-hexachlorocyclohexane. Journal of Chemical & Engineering Data. 2004, 49(2):173~185
    101 L. Shen, F. Wania. Compilation, evaluation, and selection of physical- chemical property data for organochlorine pesticides. Journal of Chemical & Engineering Data. 2005, 50(3):742~768
    102 P. S. Liss, P. G. Slater. Flux of gases across the air-sea interface. Nature. 1974, 247:181~184
    103 T. Bidleman, L. McConnell. A review of field experiments to determine air- water gas exchange of persistent organic pollution. Science of the Total Environment. 1995, 195:101~117
    104 D. Mackay, S. Paterson. Evaluating the multimedia fate of organic chemicals:A level III fugacity model. Environmental Science & Technology. 1991, 25(3):427~436
    105 X. Qiu, T. Zhu, F. Wang, et al. Air-water gas exchange of organochlorine pesticides in Taihu Lake, China. Environmental Science & Technology. 2008, 42(6):1928~1932
    106 R. P. Schwarzenbach, P. M. Gschwend, D. M. Imboden. Environmental organic chemistry. John Wiley&Sons Inc, New York. 1993, 76~84
    107 W. Hayduk, H. Laudie. Prediction of diffusion coefficients for non-electrolysis in dilute aqueous solution. AIChE Journal. 1974, 20(3):611~615
    108 M. Severinsen, T. Jager. Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics. Chemosphere. 1998, 37(1):41~62
    109 W. Jury, W. Spencer, W. Farmer. Behaviour assessment model for trace organics in soil. I. Model description. Journal of Environment Quality. 1983, 12(4):558~564
    110 D. Liu, S. Zhang. Kinetic model for degradative process of pesticides in soil. Ecological Modelling. 1987, 37:131~138
    111 H. P. William, P. F. Brian, A. T. Saul, et al. Numerical recipes (The art of scientific computing, Fortran version). New York, Cambridge University Press. 1990:550~560
    112 R. Draxler. Trajectory optimization for balloon flight planning. Weather and Forecasting. 1996, 11:111~114
    113桑建国,温市耕.大气扩散的数值计算.气象出版社. 1992:161~164
    114蔡道基,杨佩芝,汪竞立等.有机氯农药在环境-生态系中的归趋与危害.生态学杂志. 1983, (1):12~17
    115赵德山,王明星.煤烟型城市污染大气气溶胶.中国环境科学出版社. 1991: 12~16
    116刘信安,吴方国.多介质环境模型研究太湖藻类生物量对POPs的影响.安全与环境学报. 2004, 4(1):3~7
    117范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析.湖泊科学. 2000, 12(4):359~366
    118胡春华,胡维平,张发兵等.太湖沉积物再悬浮观测.科学通报. 2005, 50(22):2541~2545
    119范成新,刘元波,陈荷生.太湖底泥蓄积量估算及分布特征探讨.上海环境科学. 2000, 19(2):72~75
    120 D. Mackay, W. Shiu, K. Ma. Physical-chemical properties and environmental fate handbook(CD ROM). Chapman & Hall/CRCnetBase. 2000:18.120~122
    121刘振宇.辽河流域残留多氯有机物的多介质环境模拟.大连理工大学博士论文. 2005:28~29
    122蔡道基,杨佩芝,汪竞立等.太湖流域生态环境的污染与防治对策.江苏太湖地区农业现代化综合科学基地论文报告集之十二.南京:江苏省农业科学院. 1985:1~35
    123岳永德,花日茂,朱历珍等.安徽农田有机氯农药污染现状.安徽农业大学学报. 1990, 17(3):194~197
    124 W. Z. Wu, K. W. Schramm, B. Henkelmann, et al. PCDD/Fs, PCBs, HCHs and HCB in sediments and soils of Ya-Er Lake area in China: results on residual levels and correlation to the organic carbon and the particle size. Chemosphere. 1997, 34(1):191~202
    125江孝绰,李瑞琴.土壤及作物中农药残留量所揭示的问题.环境科学研究. 1993, 6(5):6~10
    126方玲.有机氯农药在茶叶及其环境中的残留状况与评价.福建农业大学学报. 1998, 27(2):211~215
    127蔡继红,丁长春,朱伊君.淮安市农产品中重金属及有机氯、有机磷农药残留量调查.环境监测管理与技术. 2002, 14(1):20~23
    128 Z. Zhang, H. Hong, J. L. Zhou, et al. Transport and fate of organochlorine pesticides in the River Wuchuan, Southeast China. Journal of Environmental Monitoring. 2002, 4:435~441
    129刘守亮,秦启发,李启泉.孝感地区农产品基地土壤和水有机氯农药残留状况.环境与健康杂志. 2006, 23(2):158~160
    130 H. Nakata, Y. Hirakawa, M. Kawazoe, et al. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China. Environment Pollution. 2005, 133(3):415~429
    131龚钟明,曹军,李本纲等.天津地区土壤中六六六(HCH)的残留及分布特征.中国环境科学. 2003, 23(3):311~314
    132张红,王铁宇,吕永龙等.官厅水库周边土壤中有机氯农药残留的统计分布特征.环境科学学报. 2004, 24(3):550~554
    133张天彬,饶勇,万洪富等.东莞市土壤中有机氯农药的含量及其组成.中国环境科学. 2005, 25(S1):89~93
    134 J. Li, G. Zhang, S. Qi, et al. Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China. Science of the Total Environment. 2006, 372:215~224
    135安琼,董元华,王辉等.苏南农田土壤有机氯农药残留规律.土壤学报. 2004, 41(3):414~419
    136安琼,董元华,王辉等.南京地区土壤中有机氯农药残留及其分布特征.环境科学学报. 2005, 25(4):470~474
    137杨国义,万开,张天彬等.广东省典型区域农业土壤中六六六(HCHs)和滴滴涕(DDTs)的残留及其分布特征.环境科学研究. 2008, 21(1):113~117
    138张红艳,高如泰,江树人等.北京市农田土壤中有机氯农药残留的空间分析.中国农业科学. 2006, 39(7):1403~1410
    139 X. H. Li, Y. F. Zhu, X. F. Liu, et al. Distribution of HCHs and DDTs in soils from Beijing City, China. Archives of Environment Contamination and Toxicology. 2006, 51:329~336
    140赵炳梓,张佳宝,周凌云等.黄淮海地区典型农业土壤中六六六(HCH)和滴滴涕(DDT)的残留量研究—I.表层残留量及其异构体组成.土壤学报. 2005, 42(5):761~768
    141石媛.太湖地区HCH污染特征研究.大连海事大学硕士论文, 2008:33~35
    142 Y. Zhu, H. Liu, Z. Xi, et al. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. Chemosphere. 2005, 60:770~778
    143关卉,万洪富,王冼民等.雷州半岛典型区域土壤有机氯农药污染探查研究.生态环境. 2006, 15(2):323~326
    144魏中青,刘丛强,梁小兵等.贵州红枫湖地区水稻土多氯联苯和有机氯农药的残留.环境科学. 2007, 28(2):255~260
    145张利锋.巴郎山地区土壤中持久性有机污染物的检测和分析研究.青岛大学硕士论文. 2006:35~50
    146吕爱华,杨瑞强,江桂斌等.乌鲁木齐市水磨河底泥及污灌区土壤中有机氯农药的分布.环境化学. 2006, 25(4):508~510
    147邱黎敏,张建英,骆永明.浙北农田土壤中HCH和DDT的残留及其风险.农业环境科学学报. 2005, 24(6):1161~1165
    148 F. Wang, X. Jiang, Y. Bian, et al. Organochlorine pesticides in soils under different land usage in the Taihu Lake region, China. Journal of Environmental Sciences. 2007, 19:584~590
    149成海容.瓦里关及青岛大气中多环芳烃(PAHs)和有机氯农药(OCPs)的初步研究.中国科学院广州地球化学研究所硕士论文. 2007:44~63
    150耿存珍.青岛地区土壤和大气颗粒物中含氯有机物污染物的研究.青岛大学硕士论文. 2006:47~69
    151王宝卿.明清以来山东种植结构变迁及其影响研究.南京农业大学博士论文. 2006:12~28
    152 K. Pozo, T. Harner, S. C. Lee, et al. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environmental Science & Technology. 2009, 43(3):796~803
    153 F. Wania, J. N. Westgate. On the mechanism of mountain cold-trapping of organic chemicals. Environmental Science & Technology. 2008, 42(24): 9092~9098
    154 H. Liu, D. J. Jacob, I. Bey, et al. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations. Journal of Geophysical Research. 2003, 108(D20):8786, doi:8710.1029/2002JD003102
    155朱乾根.东亚季风区的季风类型.山东气象. 2000, 20(4):3~6
    156 C. Lang, S. Tao, G. Zhang, et al. Outflow of PAH from Guangdong, Southern China. Environmental Science & Technology. 2007, 41(24):8370~8375
    157王启,丁一汇,江滢.亚洲季风活动及其与中国大陆降水关系.应用气象学报. 1998, 9(sup):84~89
    158 F. Wania, J. Haugen, Y. Lei, et al. Temperature dependence of atmospheric concentrations of semivolatile organic compounds. Environmental Science & Technology. 1998, 32(8):1013~1021
    159 J. Ma, S. Venkatesh, Y. F. Li, et al. Tracking toxaphene in the North American Great Lakes basin. 2. A strong episodic long-range transport event. Environmental Science & Technology. 2005, 39(21):8132~8141
    160梁琳琳. 2005年梅雨锋暴雨的数值模拟及诊断分析.南京信息工程大学硕士论文. 2007:4~14
    161钱维宏.天气学.北京大学出版社. 2004:166~194
    162孙力,郑秀雅,王琪.东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系.应用气象学报. 1994, 5(3):297~303
    163 S. J. Chen, Y. H. Kuo, P. Z. Zhang, et al. Synoptic climatology of cyclogenesis over East Asia,1958-1987. Monthly Weather Review. 1991, 119(6):1407~1418
    164李峰.东亚季风和中国梅雨暴雨研究的评述.成都气象学院学报. 2000, 15(1):72~77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700