用户名: 密码: 验证码:
长江口百年来底层水体季节性缺氧在沉积物中的记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界范围内的缺氧河口及近海海域(又称“死亡区域”)自1960s以来呈指数级增加,对海洋生态系统尤其对底栖生态系统造成极大的改变和危害。我国至今尚未对长江口外存在的缺氧现象作专项监测或调查研究。本论文选取长江口缺氧区内外的柱样沉积物为研究对象,在定年的基础上,综合地质和地球化学分析,研究了生源要素(C、N、Si)、碳氮稳定同位素、氧化还原敏感性元素和矿物相等的组成及其变化趋势,结合水体环境的历史和现场调查数据,筛选了表征缺氧的特征参数,推测了富营养化和缺氧发生的年代及发展趋势;讨论了百年来人类活动-尤其是化肥大量使用等与缺氧事件的关系。
     在~(210)Pb定年的基础上,对取自长江口外缺氧区内外的柱样沉积物开展了10种常量元素、13种微量元素和粒度的测定分析,研究了其物源及分布特征。结果表明缺氧区外柱样沉积物主要来源于老黄河口海岸泥沙,大部分元素具有“粒度控制”规律。缺氧区内沉积物主要来源于夏季长江陆源的输入和海洋自生生物死亡后的沉降,部分氧化还原敏感元素(RSE)和亲生物元素不受控于“粒控效应”,其中Mo、Cd、As等氧化还原敏感元素自20世纪60年代末到70年代以来明显富集,分别增加了83%、73%和50%,而Mn出现贫化,指示了缺氧区水体富营养化加剧和底层水体季节性缺氧引起的底层水-沉积物界面氧化还原环境的变化;亲生物元素Ca、Sr、P含量自20世纪60年代末起分别增加了129%、65%和38%,反映了受人类活动影响,近四十年来长江口外水体生产力的提高和生物量的增加。采用X射线衍射(XRD)物相分析表明:两柱样具有稳定但不同的物质来源,百年来方解石含量变化特征与Ca含量的分布特征一致,即均有不同程度递增,进一步佐证了长江口外钙质生物生产力的提高。
     分析测定了总有机碳(TOC)、总氮(TN)和生物硅(BSi)的含量和有机碳氮稳定同位素(δ~(13) C_(org)和δ~(15)N)。研究表明,近百年来缺氧区外柱样样沉积物中BSi%基本不变,TOC%、TN%在1940s~1950s之前、δ~(13)C_(org)在1970s之前不同程度递增,之后则基本不变,反映了近几十年来生物量和水体生产力相对稳定;而缺氧区沉积物中TOC、TN和BSi的含量及其通量自上世纪70年代起均有不同程度增加,其中TOC、TN沉积通量分别增加了约45%、36%;δ~(13)C_(org)值在20世纪前基本不变,平均值为-23.67‰,自1900s开始增大(变重),1950s之后δ~(13)C_(org)平均值为-22.78‰,尤其自1970s后显著增大;借助简单模式,利用δ~(13)C_(org)估算了陆源和上层水体浮游生物对沉积物输入的贡献,结果表明,1970s以来TOC和TN沉积通量的增加几乎都是因为海洋自生物质输入量增大引起的,且与我国化肥施用量和长江硝酸盐入海通量呈正相关。即陆源物质中的营养盐通过初级生产过程,转换成有机质后,下沉到海底,增加了沉积物中海洋自生物质输入量。说明上世纪尤其是我国改革开放三十多年以来,长江三角洲工农业快速发展,陆源物质排放量的增加,是导致长江口及其邻近海域缺氧发生和水体富营养化加剧的主要因素。
     上述研究表明,δ~(13)C_(org)、TOC沉积通量、亲生物元素(Ca、Sr、P)和部分氧化还原敏感元素(Mo、Cd、As)可用于反演百年来长江口高生产力区富营养化和缺氧的发生发展,且得出一致的结论:即长江口及其邻近海域20世纪50年代开始出现富营养化,70年代开始加剧引发了底层水体缺氧,并呈进一步加剧的趋势。
Seasonal hypoxia areas (dead zones) in the estuaries and coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning especialy changed significantly the benthic ecosystem. As far no special monitoring or observating programmes focused on the seasonal hypoxia in the Changjiang Estuary in China. The purpose of this study was to reconstruct the hypoxia history by the core sediments in the Changjiang Estuary. So two cores were selected for comparison study, one within the region of seasonal hypoxia and the other nearby but outside the hypoxia region. The geological and geochemistrical analyzing methods were used to (a) reveal the distribution characteristic of the biogenic elements, stable organic carbon and nitrogen isotopic ratios, redox sensitive elements (RSE) and the mineral phase; (b) select several hypoxia marked indicators combined with historic and in-situ data on watershed environment; (c) deduce the onset of eutrophic and hypoxia in the Changjiang Estuary as well as the developing trend; (d) discuss the relations between the hypoxia anthropogenic activities especially as like the fertilizer application.
     The grain size and elements, including ten kinds of major elements and thirteen kinds of trace elements were determined on the ~(210)Pb-dated sediment cores. The two core sediments had different resources and represented different element distribution characteristics. Major sources of the core sediment outside the hypoxia region were from the old Huanghe estuary, and the distributions of most elements were controlled by "grain size effects". The sources of the core sediment within the hypoxia region were mainly from the riverine input of the Changjiang River in summer and the burial fluxes of the dead marine biology. The distribution of some redox sensitive elements (RSE) and biogenic elements did not conform to "grain size effects". The Mo, Cd, As et al. have been enriched significantly, which concentrations increased about 83%, 73% and 50% respectively since the late 1960s to 1970s. Conversely the Mn has been depleted since 1970s. The results indicate the redox environment of the bottom water-sediment interface has been changed which might be caused by the eutrophication and hypoxia in the Changjiang Estuary. The concentrations of biogenic elements as well as Ca, Sr, P have also increased about 129%, 65% and 38% respectively since the late 1960s, which reflected the increasing of productivity and biomass influenced by the anthropogenic activities during the last forty years. With the X-ray diffraction (XRD) method the mineral phase characteristics were studied and implied the two cores sediments had the stable but different sources. The contents of calcite increased in some degree over the last 100 years in the two cores, which distribution consisted with the Ca's. The results demonstrated the increasing of calcinosis organism productivity in the Changjiang Estuary and its adjacent area.
     The total organic carbon (TOC), total nitrogen (TN), biogenic silica (BSi), stable carbon and nitrogen isotopic ratios (δ~(13) C_(org) andδ~(15) N) were determined on the ~(210)Pb-dated sediment core. The results showed the concentrations of BSi were almost the constant, the concentrations of TOC and TN increased before 1940s~1950s andδ~(13) C_(org) increased before 1970s in the core sediments outside the hypoxia region, which reflected the biomass and the productivity hardly changed in the past several decades. For the core sediments within the hypoxia region, the concentrations of TOC, TN, BSi as well as their sedimentation fluxes have increased in some degree since 1970s. TOC, TN fluxes increased about 45%, 36% respectively. The averageδ~(13)C_(org) value of the core was -23.67‰which remained nearly constant before the twentieth century. Theδ~(13) C_(org) values increased after 1900s, two marked increases were observed from 1950s and 1970s. A simpleδ~(13)C_(org) model was used to estimate the contribution of terrestrial and marine organic matter inputs for the sediment, which indicated the increase in accumulation since 1970s was almost exclusively marine. The increasing of marine organic matter accumulation (TOC, TN and BSi) was corresponding with the increasing of fertilizer consumption and the NO_3-N budgets from the Changjiang River. The riverine runoff of fertilizers and nutrients stimulated the algae blooming. Enhanced primary production resulted in an enrichment of organic matter in the sediment. These data support the hypothesis that anthropogenic nutrient loading has been a significant factor on the eutrdphication in Changjiang Estuary.
     The results showed that the contents of carbon and nitrogen stable isotope, fluxes of TOC, biogenic elements as well as Ca, Sr, P and some RSEs just like Mo,Cd, As in sediments could be used to trace or reconstruct history of the coastal eutrophication and hypoxia in the high productivity zone in the Changjiang Estuary over last 100 years. These parameters gave the same conclusions consistently: the estuary eutrophication in the Changjiang Estuary and its adjacent region began in 1950s and accelerated in 1970s, then the enhanced eutrophication has caused and developed hypoxia since 1970s which has been fueled and showed the increasing trend.
引文
蔡德陵,Tan F C,Edmond J M.长江口区有机碳同位素地球化学.地球化学.1992,3:305-312.
    陈吉余,陈祥禄,杨启伦.上海海岸带和海涂资源综合调查报告.上海:上海科技出版社,1988,114-16.
    陈建芳.古海洋研究中的地球化学新指标.地球科学进展.2002,17(3):402-409.
    陈丽蓉.中国海的碎屑矿物组合及其分布模式探讨.沉积学报.1986,4(3):87-96.
    陈启明,仇玉琴,陈邦林,等.长江口悬浮物和沉积物的物相分析.华东师范大学学报(自然科学版).2001,1:77-83.
    陈松,廖文卓,潘皆再.长江口重金属的固液界面过程Ⅰ沉积相中Pb、Cu和Cd的行为和沉积机理.海洋学报.1984,6(2):180-185.
    戴纪翠,宋金明,李学刚,等.人类活动影响下的胶州湾近百年来环境演变的沉积记录.地质学报.2006,80(11):1770-1778.
    范德江,杨作升,毛登,等.长江与黄河沉积物中粘土矿物及地化成分的组成.海洋地质与第四纪地质.2001,1(4):7-12.
    葛晨东,Slaymaker O,Pedersen T F.海南岛万泉河口沉积环境演变.科学通报.2003,48(19):2079-2083.
    顾宏堪.黄海溶解氧垂直分布中的最大值.海洋学报.1980,2:70-79.
    郭志刚,杨作升,范德江,等.长江口泥质区的季节性沉积效应.地理学报.2003,58(4):591-597.
    郭志刚,杨作升,曲艳慧.东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究.海洋与湖沼.1999,30(4):421-426.
    国家海洋局.中国海洋灾害公报(1990-2007).http://www.soa.gov.cn.
    国家统计局.中国统计年鉴(1980-2003).北京:中国统计出版社,1981-2004.
    韩舞鹰,林洪瑛,刘胜,等.南海海洋化学.北京:科学出版社,1998,121-131.
    胡敦欣,韩舞鹰,章申,等.长江、珠江口及邻近海域陆海相互作用,第2章:东海水循环与物质输运过程.北京:海洋出版社,2001,57-66.
    黄薇文,张经.长江入东海的化学物质输运特点.海洋学报.1994,16(2):53-62.
    贾国东,彭平安,傅家谟.珠江口近百年来富营养化加剧的沉积记录.第四纪研究.2002,22(2):158-165.
    金秉福,林振宏,杨群慧,等.沉积矿物学在陆源海环境分析中的应用.海洋地质与第四纪地质.2002,22(3):113-118.
    金翔龙.东海海洋地质.北京:海洋出版社,1992,1-136.
    李道季,张经,黄大吉,等.长江口外氧的亏损.中国科学(D辑).2002,2(8):686-694.
    李国刚,秦蕴珊.中国近海细粒级沉积物中方解石分布、成因及其地质意义.海洋学报.1991,13(3):381-386
    李绪录.夏季珠江口海区贫氧现象的初步分析.广东海岛调查研究文集.1992,10-16.
    李学刚,宋金明,吕晓霞,等.黄河口外沉积物氧化还原环境的表征.海洋通报.2004,23(4):25-31
    林葆,李家康.当前我国化肥的若干问题和对策.磷肥与复肥.1997,2:1-5.
    林振宏,吕亚男,高学敏.冲绳海槽中不表层沉积物的重矿物分布和来源.青岛海洋大学学报.1996,26(3):361-368.
    刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼.2002,33(3):332-340.
    卢海建,翟世奎,许淑梅.三峡工程一期蓄水后长江口及其邻近海域沉积地球化学研究.海洋地质与第四纪地质.2006,26(5):11-19.
    吕全荣.长江口细颗粒沉积物的矿物特征和沉积分异.上海地质.1992,43:18-25.
    潘建明,周怀阳,扈传昱,等.东海长江口特定海区沉积物生源硅的分布和积累及其环境意义.海洋学报.2000,22(增刊):152-159.
    秦蕴珊,赵一阳,陈丽蓉,等.东海地质.北京:科学出版社,1987,21-36.
    邵秘华,王正方.长江口海域悬浮颗粒物中钴、镍、铁、锰的化学形态及分布特征研究.环境科学学报.1991,11(4):432-438.
    邵秘华,王正方.长江口海域悬浮颗粒物中铜、铅、镉的化学形态及分布特征研究.海洋与湖沼.1992,23(22):144-149.
    沈焕庭,等.长江河口物质通量.北京:海洋出版社,2001,14-40.
    沈焕庭,潘定安.长江河口最大浑浊带.北京:海洋出版社,2001,117-138.
    宋金明,李学刚,邵君波,等.南黄海沉积物中氮、磷的生物地球化学行为.海洋与湖沼.2006,37(4):370-376.
    孙白云.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征.海洋地质与第四纪地质.1990,21(4):7-12.
    王金辉,黄秀清,刘阿成,等.长江口及邻近水域的生物多样性变化趋势分析.海洋通报.2004,23(1):32-39.
    翁焕新,沈忠悦.沿海表层沉积物中重金属的有效结合态.地质科学.2002,37(2):243-252.
    吴莹,张经,张再峰,等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布.海洋与湖沼.2002,33(5):546-552.
    许淑梅,翟世奎,张爱滨,等.长江口外缺氧区沉积物中元素分布的氧化还原环境效应.海洋地质与第四纪地质.2007,27(3):1-7.
    许淑梅.长江口外缺氧去及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义(博士学位论文).青岛:中国海洋大学,2005,67.
    杨海丽,郑玉龙.海南洋浦湾近百年来人与自然相互作用下的环境沉积记录.海洋学报,2008,30(4),95-103.
    杨守业,李从先.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质.1999,19(2):19-26.
    叶曦雯,刘素美,赵颖翡,等.东、黄海沉积物中生物硅的分布及其环境意义.中国环境科学.2004,24(3):265-269.
    余立华,李道季,方涛,等.三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化.生态学报.2006,26(9):2817-2826.
    袁耀初,管秉贤.中国近海及其附近海域若干涡旋研究综述Ⅱ.东海和琉球群岛以东海域.海洋学报.2007,129(12):1-17.
    张晓东,翟世奎,许淑梅,等.长江口外缺氧区沉积物中氧化还原敏感性元素的“粒控效应”.中国海洋大学学报.2005,35(5):868-874.
    张正斌,陈镇东,刘莲生,等.海洋化学原理和应用一中国近海的海洋化学.北京:海洋出版社,2004.
    赵保仁,任广法,曹德明,等.长江口上升流海区的生态环境特征.海洋与湖沼.2001,32(3):327-333.
    赵一阳,焉明才.中国浅海沉积物地球化学.北京:科学出版社,1994.
    赵一阳,鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较.科学通报.1992,13:1202-1204.
    赵颖翡,刘素美,叶曦文,等.黄、东海柱状沉积物中生物硅含量的分析.中国海洋大学学报.2005,35(3):423-428.
    周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报.2003,14(7):1031-1038.
    周晓静,高抒,贾建军.长江粘土矿物示踪标记稳定性的初步研究.海洋与湖沼.2003,34(6):683-692.
    邹建军,石学法,李双林.北黄海浅表层沉积物微量元素的分布及其早期成岩作用探讨.海洋地质与第四世纪.2007,27(3):43-50.
    Adelson J M, Helz G R, Miller C V. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochim. Cosmochim. Acta. 2001,65: 237-252.
    Audry S , Blanc G, Sch(?)fer J, Robert S. Effect of estuarine sediment resuspension on early diagenesis, sulfide oxidation and dissolved molybdenum and uranium distribution in the Gironde estuary, France. Chemical Geology. 2007, 238:149-167.
    Berner R A. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology. 1981,51:359-365.
    Bianchi T S, Engelhaupt E, Westman P, et al. Cyanobacterial bloom in the Baltic Sea:nature or human-induced? Limnology and Oceanography. 2000,45(3): 716-726.
    Bianchi T S, Findlay S, Dibb J E. Early diagenesis of plant pigment in Hudson river sediments. Estuarine, Coastal and Shelf Science. 1993,36: 517-527.
    Boesch D F, Rabalais N N. Effects of hypoxia on continental shelf benthos: comparisons between the New York Bight and the Northern Gulf of Mexico. In:Tyson, R.V. Pearson, T.H. (Eds.), Modern and Ancient Continental shelf anoxia. Geol.Soc. London, Spec.Publ. 1991, 58:27-34.
    Bonsdorff E, Blomqvist E M, Mattila J, et al. Long-term changes and coastal eutrophication. Examples from the Aland Islands and the Archipelago sea,northern Baltic Sea. Oceanologica Acta. 1997,20(1): 319-329.
    Bricker S B, Clement C G, Pirhalla D E, et al. National estuarine eutrophication assessment: effects of nutrient enrichment in the nation's estuaries. Silver Spring (MD): NOAA national ocean service special projects office and the national centers for coastal ocean science. 1999.
    Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Marine Chemistry. 2002, 80:41- 59.
    Chaillou G, Schafer J, Anschutz P, et al. The behaviour of arsenic in muddy sediments of The Bay of Biscay (France). Geochimica et Cosmochimica Acta.2003, 67(16): 2993-3003.
    Chen C C, Gong G C, Shiah F K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Marine Environmental Research. 2007,64: 399-408.
    Chen N H, Bianchi T S, McKee B A, et al. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Organic Geochemistry.2001,32:543-561.
    Cifuentes L A, Coffins R B, Solorzano L et al. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuarine, Coastal and Shelf Science.1996,43:781-800.
    Cooper S R, Brush G S. Long-term history of Chesapeake Bay anoxia. Science. 1991,254: 992-996.
    DeMaster D J, Mckee B A, Nittouer C A, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research. 1985,4(1): 143-158.
    Diaz R J, Rosenberg R. Marine benthic hypoxia: A review of its ecological effects and the behavioral responses of benthic macrofanuna. Oceanography and Marine Biology Annual Review. 1995, 33: 245-303.
    Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science. 2008,321: 926-929.
    Eadie B J, Mckee B A, Lansing M B, et al. Records of nutrient-enhanced coastal ocean productivity in sediments from the Louisiana continental shelf. Estuaries.1994, 17(4): 754-765.
    Feng X W, Jing X L, Yu X G, et al. Sedimentary records of eutrophication in the Changjiang Estuary upwelling area over last 100 years. Acta Oceanologica Sinica.2008,27(6):49-61.
    Fry B, Wainright. Diatom sources of ~(13)C-rich carbon in marine food webs. Marine Ecology Progress Series. 1991,76:149-157.
    Gaston G R. Effects of hypoxia on macrobenthos of the inner shelf off Cameron,Louisiana. Estuarine, Coastal and Shelf Science. 1985,20: 603-613.
    Goolsby D A, Battaglin W A, Lawrence G B, et al. Flux and sources of nutrients in the Mississippi-Atchafalaya river basin, topic 3 report for the Integrated
    
    Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series, No.17. NOAA coastal Ocean Program, Silver Springs,MD, 130. 1999.
    
    Graham M C, Eaves M A, Farmer J G, et al. A study of carbon and nitrogen sable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth Estuary, Scotland. Estuarine, Coastal and Shelf Science. 2001, 52: 375-380.
    
    Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis. Third,completely revised and extended edition. Wiley-VCH, Weinheim. 1999,193-198.
    Grimalt J O, Fernandez P, Bayona J P, Albaiges J. Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environ. Sci.Technol. 1990,24: 357-363.
    
    Gupta S B K, Turner R E, Rabalais N N. Seasonal Oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers.Geology. 1996,24:227-230.
    Hagy J D, Walter R B, Feefe C W, et al. Hypoxia in Chesapeake Bay, 1950-2001: Long-term Change in Relation to Nutrient Loading and River Flow. Estuaries.2004,27(4): 634-658.
    Hayes J M. Factors controlling ~(13)C contents of sedimentary organic compounds: principles and evidence. Marine Geology. 1993,113: 111-125.
    Helz G R, Adelson J M, Miller C V, et al. Osmium isotopes demonstrate distal transport of contaminated sediments in Chesapeake Bay. Environmental Science and Technology. 2000,34:2528-2534.
    Hobbie J E.孟伟,雷坤,郑丙辉 译.河口科学-研究与实践的综合方法.第十章墨西哥海湾生态系统对密西西比河营养物质变化的响应.北京:海洋出版社.2005,171-192.
    Hu Jianfang, Zhang Gan, Li Kechang, et al. Increased eutrophication offshore Hong Kong, China during the past 75 years: Evidence from high-resolution sedimentary records. Marine Chemistry. 2008,110: 7-17.
    Jennifer L, Morford, Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et CosmochimicaActa. 1999,63(11): 1735-1750.
    Jonge V N, Boynton W, D'Elia C F, et al. Responses to developments in eutrophication in four different North Atlantic estuarine systems. In: K.R.Dyer and R.J.Orth(eds.), Change in Fluxes in Estuaries: Implications from Science to Management. Olsen and Olsen, Fredensborg, Denmark. 1994,179-196.
    Justic D, Legovic T, Sandrini L R. Trends in the oxygen content 1911-1984 and occurrence of benthic mortality in the northern Adriatic Sea. Estuarine, Coastal and Shelf Science. 1987, 25: 435-445.
    Justic D, Nancy N R, Turner R E. Simulated responses of the Gulf of Mexico Hypoxia to variations in climate and anthropogenic nutrient loading. Journal of Marine Systems. 2003,42: 115-126.
    Kao S J, Lin F J, Liu K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep-Sea Research Ⅱ. 2003, 50: 1203-1217.
    Kauppilaa P, Meeuwig J J, Pitkanen H. Predicting oxygen in small estuaries of the Baltic Sea: a comparative approach. Estuarine. Coastal and Shelf Science. 2003,57: 1115-1126.
    Leeuw, J W, Rijpstra, I C, Schenck, P A, et al. Free, esterified and residual bound sterols in Black Sea Unit 1 sediments. Geochim.Cosmochim. Acta. 1983 , 47:455-465.
    Limeburner R, Beardsley R C, Zhao J. Water masses and circulation in the East China Sea. Proceedings of international symposium on sedimentation on the continental shelf, with special reference to the East China Sea, April 12-16,1983, Hangzhou,China. Beijing: China Ocean Press. 1983,1: 285-294.
    Lin S, Hsieh I J, Huang K M et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology. 2002,182: 377-394.
    Liu M, Hou L J, Xu S Y, et al. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Marine Pollution Bulletin.2006, 52: 1625-1633.
    Lohrenz S E, Redalje D C, Fahnenstiel G L, et al. Regulation and distribution of primary production in the northern Gulf of Mexico. In Nutrient enhanced coastal ocean productivity. Publication number TAMU-SG-92-109, Sea gran program,Texas A&M University, Galveston, Texas. 1992: 95-104.
    McArthur J M, Tyson R V, Thomson J, et al. Early diagenesis of marine organic matter: Alteration of the carbon isotopic composition. Marine Geology. 1992,105: 51-61.
    Meeuwig J J. Predicting coastal eurtrophication from land-use: an empirical approach to small non-stratified estuaries. Marine Ecology Progress Series. 1999, 176:231-241.
    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology. 1994,144: 289-302.
    Mitsch W J, Day J W Jr, Gilliam J W, et al. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River basin: Strategies to counter a persistent ecological problem. Bioscience. 2001, 15: 373-388.
    Morford J L and Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta. 1999,63(11/12): 1735-1750.
    Morrison J M, Codispoti L A, Smith S L, et al. The oxygen minimum zone in the Arabian Sea during 1995. Deep-Sea Research II. 1999,46: 1903-1931.
    Mortlock R A, Froelich P N. A simple and reliable method for the rapid determination of biogenic opal in pelagic sediments. Deep-Sea Res. 1989, 36: 1415-1426.
    Murrell M C, Fleeger J W. Meiofauna abundance on the Gulf of Mexico continental shelf affected by hypoxia. Continental Shelf Research. 1989, 9: 1049-1062.
    Muzuka, A N N, Hillaire-Marcel, C. Burial rates of organic matter along the eastern Canadian margin and stable isotope constraints on its origin and diagenetic evolution. Marine Geology. 1999,160,251- 270.
    Natori Y , Haneda A, Suzuki Y. Vertical and seasonal differences in biogenic silica dissolution in natural seawater in Suruga Bay, Japan: Effects of temperature and organic matter. Marine Chemistry. 2006,102: 230-241.
    Nelsen T A, Blackwelder P, McKee B, et al. Time-based correlation of biogenic,lithogenic, and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area. Estuaries. 1994,17: 873-885.
    Nelson D M, Treguer P, Brzezlnski M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimate, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemistry Cycle.1995,9:359-372.
    
    Odin G. Green marine clays. Elsevier, Amsterdam, Holland. 1988, 315.
    Officer C B, Biggs R B, Taft J L, et al. Chesapeake Bay anoxia: Origin, development,and significance. Science. 1984,223:22-27.
    
    Oleary M H. Carbon isotopes in photosynthesis. Bioscience. 1988, 38: 328-336.
    Owens N J P. Variations in the natural abundance of ~(15)N in estuarine suspended particulate matter: a specific indicator of biological processing. Estuarine,Coastal and Shelf Science. 1985,20: 820-825.
    
    Platon E, Sen Gupta B K, Rabalais N N, et al. Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: the 20th century record. Marine Micropaleontology. 2005,54:263- 283.
    Rabalais N N, Turner R E, Justic D, et al. Characterization of Hypoxia. Topic 1 Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No.15. National Oceanic and Atmospheric Administration, Silver Spring, Maryland. 1999.
    Rabalais N N, Turner R E, Justic D, et al. Nutrient Changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries. 1996, 19:386-407.
    Rabalais N N, Turner R E, Wiseman W J, et al. A brief summary of hypoxia on the northern Gulf of Mexico continental shelf. In: R. Tyson and T. Pearson(eds.),Modern and Ancient Continental Shelf Anoxia. The Geological Society of London Special Publication No. 58. London.1991,1985-1988.
    Rabalais N N, Turner R, Scavia D. Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River. BioScience. 2002, 52(2): 129-142.
    Renaud M. Hypoxia in Louisiana coastal waters during 1983: Implications for fisheries. Fishery Bulletin. 1986, 84:19-26.
    Roden E E, Tuttle J H. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments. Mar. Ecol. Prog. Ser. 1993, 93:101-118.
    Sangiorgi F, Fabbri D, Comandini M, et al. The distribution of sterols and organic-walled dinoflagellate cysts in surface sediments of the North-western Adriatic Sea (Italy). Estuar. Coast. Shelf Sci. 2005, 64: 395-406.
    Sarah S. 缩小死亡区域.科学. 2001,10: 6-8.
    Scavia D, Justic D, Bierman V, et al. Reducing hypoxia in the Gulf of Mexico: Advice from three models. Estuaries. 2004,27(3): 419-425.
    Seliger H H, Boggs J, Biggley W H. Catastrophic anoxia in the Chesapeake Bay in 1984. Science. 1985,228: 70-73.
    Spiker E C and Hatcher P G. Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Organic Geochemistry. 1984, 5: 283-290.
    Struck U, Emeis K C, Voss M, et al. Records of southern and central Baltic Sea eutrophication in δ~(13)C and δ~(15)N of sedimentary organic matter. Marine Geology. 2000,164: 157-171.
    Swain E. Measurement and interpretation of sedimentary pigments. Freshwater Biology. 1985,15: 53-75.
    Thomson J, Lan Jarvis, Darryi R H Green, et al. Mobility and immobility of redox-sensitive elements in deep-sea turbidities during shallow burial.Geochimica et Cosmochimica Acta. 1998,62(4): 643-656.
    Thornton S F, McManus. Application of organic carbon and nitrogen stable isotope and C/N ratios as sources indicators of organic matter provenance in estuaries system evidence from the Tay estuary, Scotland. Estuarine, Coastal and Shelf Science. 1994,38:219-233.
    Tian R C, Hu F X, Martin J M. Summer nutrient fronts in the Changjiang(Yangtze River) Estuary. Estuarine, Coastal and Shelf Science. 1993, 37:27-41.
    Turner R E, Rabalais N N, Swenson E M, et al. Summer hypoxia in the northern gulf of Mexico and its pridiction from 1978 to 1995. Marine Environmental Research.2005,59: 65-77.
    Turner R E, Rabalais N N. Coastal eutrophication near the Mississippi river delta.Nature. 1994,368:619-621.
    Welsh B L, Welsh R I, DiGiacomo-Cohen M L. Quantitying hypoxia and anoxia in Long Island Sound. In: K.R.Dyer and R.J.Orth(eds.), Change in Fluxes in Estuaries: Implications from Science to Management. Olsen and Olsen,Fredensborg, Denmark. 1994,131-137.
    Wiseman Wm J, Rabalais N N, Turner R E, et al. Seasonal and Interannual variability within the Louisiana coastal current: stratification and hypoxia. Journal of Marine Systems. 1997,12: 237-248.
    Wishner K, Levin L, Gowing M, et al. Involvement of the eastern tropical pacific oxygen minimum zone in benthic zonation on a deep seamount. Nature. 1990,346: 57-59.
    Zaitsev Y P. Recent changes in the trophic structure of the Black Sea. Fisheries Oceanography. 1992,1:180-189.
    Zhang J, Wu Y, Jennerjahn, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios:Implications for source discrimination and sedimentary dynamics. Marine Chemistry. 2007,106:111-126.
    
    Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: Anthropogenic influence on organic matter composition. Marine Chemistry. 2000,69:117-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700