用户名: 密码: 验证码:
陕北富县探区长6段储集砂体发育演化及评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据钻井、岩心、测井以及露头剖面等资料的综合精细分析,在陕西省富县地区上三叠统延长组第6段中识别出三角洲、湖泊和湖底扇三种沉积相。其中的砂体成因类型主要包括水下分流河道、河口坝、远砂坝、水下决口扇、水下天然堤、前缘席状砂、湖底重力流水道、远源浊积、浅湖漫流席状砂、砂质滩坝等砂体。它们发育于富县三角洲的高速生长时期,是控制本区长6段储集砂体发育与分布的先天性地质因素。通过高分辨率层序地层学的详细研究,将本区长6段划分为3个中期基准面旋回,每个中期基准面旋回由4~6个短期基准面旋回叠加组成。根据储集砂体的发育和时空分布主要受不同级次基准面升降旋回控制这一事实,提出以不同级次湖泛面沉积的泥质隔层为边界的储集砂体划分方案,据此将本区长6段储集砂体划分为3个砂组。以砂组为作图单位,分别展示了本区3个砂组的地层厚度、砂岩厚度以及沉积相的平面展布特征。通过岩心描述、薄片鉴定和化验测试资料的分析,本区长6段储集砂体主要由中砂岩、细砂岩和粉砂岩组成,属于长石砂岩和岩屑质长石砂岩类型,经历了压实、胶结、交代等破坏性成岩作用以及导致孔隙度增加的溶蚀作用,现今处于晚成岩阶段A期—B期。砂体的储集空间类型以次生孔隙为主,孔隙度分布于1.7%~16.3%,主要分布在7%~12%之间,渗透率变化于0.01~19.6×10~(-3)μm~2,属于低孔低渗储层类型。从宏观和微观的角度阐明了储层的非均质性特征,指出储层的平面非均质性主要受沉积环境和沉积相的控制,四种不同类型的层内非均质性则与微相类型、沉积序列、成岩改造等有关。将孔隙演化与成岩演化有机结合起来,恢复了砂体的原始孔隙度为37%左右,经过压实、胶结、溶蚀等成岩变化,到白垩纪中、晚期油气充注时孔隙度降低为14%左右,后因原油降解生成沥青充填部分孔隙,导致孔隙度减小到现今的9%左右,并探讨了砂体的“四史”配置关系。采用三阶段的建模策略,运用地质原型模型和随机模拟方法,分别建立了长6段砂体的地层构造格架模型、三维沉积相模型和三维储层参数模型。运用模糊评判方法,对储集砂体进行分类评价,指出本区长6段不发育Ⅰ类好砂体,Ⅱ类较好砂体仅在局部零星发育,广泛发育的是Ⅲ类一般砂体。
According to the comprehensive detailed analysis of data such as core, drilling, logging and outcrop section, three kinds of sedimentary facies, namely, delta, lake and sublacustrine fan, are recognized in the Chang 6 Member, Upper Triassic, Fuxian area. The genetic types of their sandbodies mainly include subaqueous distributary channel, river mouth bar, distal bar, subaqueous crevasse splay and levee, deltaic front sand sheet, sublacustrine gravity-flow channel, distal turbidite, and sand sheet and sandy shoal and bar in shallow lake. Developing in the rapid growing period of delta in Fuxian area, those facies are the inborn geological factors controlled the development and distribution of the reservoir sandbodies in the Chang 6 Member of this area. Through detailed study of high-resolution sequence stratigraphy, the Chang 6 Member of this area can be divided into three medium-term base-level cycle, while each medium-term base-level cycle is made up of four to six short-term base-level cycle. From the fact that development and space-time distribution of the reservoir sandbodies are mainly controlled by fluctuation of base-level cycle of different grades, the reservoir sandbodies division solution having muddy barriers deposited by flooding surface of different grades as the boundary is brought forward. On the basis of this solution, the Chang 6 Member of this area can be divided into three sand-suites. Using the sand-suites as the unit for mapping, it shows areal distribution of the stratum thickness, sandstone thickness and sedimentary facies of the three sand suites. According to the information of core description, slice identification, chemical examination and testing, reservoir bodies of the Chang 6 Member are comprised of medium-and fine-grained sandstone and siltstone, which belongs to arkose and lithic arkose, and are in the term A-B of late diagenetic stage after experiencing those destructive diagenesis such as compaction, cementation and replacement, and corrosion which causes increasing of porosity. The reservoir space of the sandbodies is dominated by secondary pore. Its. porosity ranges in 1.70%~16.30%, mainly in
    7%~12%, and permeability differs within 0.01—19.6 X10'3 u m2, and belongs to the kind of reservoir bed with lower porosity and lower permeability. The inhomogeneous characteristic of reservoir is illustrated macroscopieally and microscopically. It is indicated that plane inhomogeniety of reservoir beds is mainly controlled by the depositional environment and sedimentary fades, and four types of intrabed inhomogeniety are related to microfacies, depositional sequence and diagenetic reworking. Combining pore evolution with diagenetic evolution organically, the primary porosity of the sandbodies is recovered to 37%, and decreased to around 14% when oil and gas infilled in middle and late Cretaceous after experiencing diagenetic change such as compaction, cementation and corrosion. Later, due to degradation of oil into bitumen causing partial porosity filled up, the porosity currently redused to about 9%. With application of the model-building strategy of three stages and the metfaed of geologic model and random simulation, 3D model of stratigraphy-structure framwork, sedimentary fades, and reservoir parameter are established respectively for sandbodies of the Chang 6 Member. With the application of fuzzy judge methodology, a classification evaluation to the reservoir sandbodies is made, pointing out that Type I sandbody does not develop in this area, Type II sandbody is in scattered distribution, and Type HI sandbody is of abroad distribution.
引文
1.冯增昭.沉积岩石学.北京:石油工业出版社,1993
    2.刘宝瑶、张锦全.沉积成岩作用.北京:科学出版社,1992
    3.彭军.高分辨率层序地层学在油气勘探开发中的应用研究.四川南充:西南石油学院博士后科研工作报告,2002
    4.长庆油田石油地质志编写组.中国石油地质志卷十二.——《长庆油田》.北京:石油工业出版社,1992
    5.刘宝珺等,岩相古地理基础和工作方法.北京:地质出版社,1985
    6.徐怀大等译.层序地层学原理.北京:石油工业出版社,1993
    7.曾少华.陕北三叠系延长组湖盆三角洲沉积模式的建立.石油与天然气地质,1993,13(2):230—235
    8.余素玉,邬金华.层序地层学方法及其在陆相湖盆研究中的应用.地质科技情报,1993,12 (2):37—42
    9.邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学.石油与天然气地质,1995,16 (2):89—97
    10.邓宏文,王洪亮,李熙喆.层序地层基准面的识别、对比技术及应用.石油天然气地质,1996,17 (3):177—184
    11.徐怀大.陆相层序地层学研究中的某些问题.石油与天然气地质,1997,18(2):83—89
    12.杜春彦,郑荣才.陕北长6油层组短期基准面旋回与储层非均质性的关系.成都理工学院学报,1999,26 (1):17—22
    13.邓宏文等.沉积物体积分配原理——高分辨率层序地层学的理论基础.地学前缘,2000,7 (4):305-313
    14.樊太亮等.沉积基准面变化分析技术及其应用.石油与天然气地质,1997,18(2):108-113
    15.王鸿祯等.沉积层序及海平面旋回的分类级别——旋回周期的成因讨论.现代地质,1998,12 (1):1-16
    16.薛良清.层序地层学在湖相盆地中的应用探讨.石油勘探与开发,1990,17(6):29-34
    17.刘宝珺,李文汉主编.层序地层学研究与应用.成都:四川科学技术出版社,1994
    18.郑荣才等.浅谈陆相盆地高分辨率层序地层研究.成都理工学院学报,2000, 27 (3):241-244
    19.李树生.陕北富县延长组特低孔渗砂岩储层控制因素分析.成都理工学院学报,2002(3)
    20.杨俊杰、裴锡古.中国石油天然气地质学(卷4)鄂尔多斯盆地.北京:石油工业出版社,1996(3)
    21.方少仙、候方浩等.石油天然气储层地质学.东营:石油大学出版社,1998
    22.裘亦楠、薛叔浩等.油气储层评价技术.北京:石油工业出版社,1994
    23.谢渊等.陕北富县探区沉积相与储层研究.研究报告,2001
    24.柳益群、李文厚等.鄂尔多斯盆地东部上三叠统含油砂岩的古地温及成岩阶段.地质学报,1997(1)
    25.李兴国.陆相储层沉积微相与微型构造.北京:石油工业出版社,2000
    26.王允诚、郑荣才.鄂尔多斯盆地靖安地区长6油层组沉积微相和储层特征研究.研究报告,1998
    27.刘育骥、耿新宇等.石油工程模糊数学.成都:成都科技大学出版社,1994
    28.张绍臣、刘为付.大港枣西地区模糊理论储层综合评价.河南石油,2000(2)
    29.吴元燕.油矿地质学.北京:石油工业出版社,1998
    30.郑荣才、彭军、吴朝容.陆相盆地基准面旋回的级次划分和研究意义.沉积学报,2002,20
    31.陆永潮,向才富.层序地层学在碎屑岩成岩作用研究中的应用.石油实验地质,1999(2)
    32.张万选、张厚福.石油地质学.北京:石油工业出版社,1981
    33.罗蜇潭等.油气储集层的孔隙结构.北京:科学出版社,1986
    34.郑浚茂、庞明.碎屑储集层的成岩作用研究.北京:中国地质大学出版社,1989
    35.帕克、B.V.塞尔伍得.沉积物的成岩作用.北京:中国地质大学出版社,1981
    36.应凤祥.碎屑岩成岩阶段划分规范.北京:石油工业出版社,1993
    37.刘波.基准面旋回与沉积旋回的对比方法探讨.沉积学报,2002 (1)
    38.石广仁.考虑断层发育并适用于欠压实的地史模型.石油学报,2002 (1)
    39.许广明、徐怀大.高分辨率层序地层学在油藏数值模拟中地应用.石油与天然气地质.1999(2)
    40.彭军、陈景山等.百色盆地高岗组高分辨率层序分析及研究意义.地球学报,2002(2)
    41.牟泽辉.鄂尔多斯盆地庆阳以南三叠系延长组长5、长6、长7储层成岩作用.天 然气工业,2001 (2)
    42.彭军、郑荣才、陈景山等.百色盆地高岗组短期基准面旋回层序分析.沉积学报,2002(2)
    43.宋凯、吕剑文等.鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系.古地理学报Vol4 No3,Aug2002
    44.蔺宏斌,姚泾利.鄂尔多斯盆地南部延长组沉积特性与物源探讨.西安石油学院学报(自然科学版),Vol.15 No.5,Sep.2000
    45.张静兰、张成立等.盆地埋藏史及其对砂岩储层物性演化的影响——以陕北延长油区砂岩储层为例.石油与天然气地质,Vol.22 No.2,Sep.2000
    46.陈恭洋·碎屑岩油气储层随机建模[A]·北京:地质出版社,2000:11-15
    47.张团峰,王家华·油气储层随机模拟的地质应用[J]·中国数学地质,.北京:地质出版社,1994
    48.沈平平,宋新民,曹宏·现代油藏描述新方法·北京:石油工业出版社,2003
    49.王家华,张团峰·油气储层随机建模[A]·北京:石油工业出版社,2000
    50.冯国庆·测井资料精细解释及储层随机模拟方法研究[D]·西南石油学院,2001
    51.张永贵等,储层地质统计随机模拟,石油大学学报,1998,22 (3):113-116
    52.陈亮,黄述旺,赖泽武:应用截断高斯随机模拟法研究沉积微相.[J]石油勘探与开发,1998,25 (6),74-75
    53.王留奇等,岩相骨架的地质统计模拟,石油勘探与开发,1999,26 (3):93-98
    54.李少华等,应用改进的布尔方法建立砂体骨架模型,石油勘探与开发,2000,27(3):91-92
    55.张文修等,遗传算法的数学基础,西安交通大学出版社
    56.王煦法,遗传算法及其应用
    57.李云省,分形地质统计学在储层非均质定量描述中的应用研究,博士论文
    58.周礼清.随机建模技术在冲积扇一河流三角洲储层定量表征中的应用.石油大学(北京)博士论文
    59. AAPG Memoir 69, reservoir Quality Prediction in Sandstone and Carbonates, 1998
    60. I. E. Hutcheon. Aspects of the diagenesis of Coarse-Graind Siliciclastic Rocks, Geoscience Canada, 1990
    61. Tetsuji Muto、Ron J. steel. The accommodationg concept in sequence stratigraphy:some dimensional problems and possible redefinition. Sedimentary Geology, 2000, 130(1-2)
    62. Timothy A. Cross. Stratigraphic Controls on reservoir attributes in continental strata. 地学前缘,2000,7 (4)
    63. Allen G. P., and H. W. Posamentier. Sequence stratigraphy and facies model of an incised valley-fill the Gironde estuary. France:Journal of Sedimentary Petrology, 1993, 63:378-391
    64. Atiken J F, Flint S G. The application of High-resolution sequence stratigraphy to fluvial system:A case study from the Upper Carboniferous Breathitt Group, Eastern Kentucky. USA. Sedimentology, 1995, 42:3-30
    65. Posamentier H W, Allen G P. Variability of the sequence stratigraphic model:Effects of local basin factors. Sedimentary Geology, 1993, 86:91-109
    66. J. C. Van Wagoner et al. An overview of the fundamentals of sequence stratigraphy and key clef'tuitions. SEPM Special Publication 42, 1988, 39-45
    67. Shanley K W, Mccabe P J. Perspectives on the sequence stratigraphyof continental strata. AAPG Bulletin, 1994, 78(4):544-568
    68. Damsleth E., et al. A two -stage stochastic model applied to North Sea reservoir[J], Journal of Petroleum Techology, 1992 (44), 4402~408
    69. Jeffrey M. Yarus, et al, Stochastic modeling and geostatistics, AAPG, 1994
    70. M. Srivastava, 1992, Reservior characterization with probability simulation, SPE 24753
    71. Suro-perez, L. Ramos Martinez, An Angorithm for the Stochastic Simulation of Sand Bodies, SPE 27024
    72. L. Y. Hu, et al, 1994, Random genetic simulation of the internal geometry of deltaic sand bodies, SPE Formation, Dec. 1994
    73. A. G. Journel, et al, New method for reservior mapping. JPT, Feb. 1990
    74. D. L. Jordon, et al, 1995, Application of categorical indicator geoststistical for facies modeling in sand-rich turbidite systems, SPE 30603
    75. H. H.Haldorsen, et al. Stochastic modeling of underground reservior facies. 1987, SPE 16751 M. K. Sen, et al, 1992, Stochastic reservior modelling using simulated annealing and genetic algorithm, SPE 29754
    76. G. B. Savioli, et al, Applications of simualted annealing of actual but a typical permeability data, 1996, SPE 35345
    77. Ahmed Ouenes, et al, Application of simulated annealing and other global optimization methods to reservior description:Myths and realities, 1994, SPE 28415
    78. T. A. Gray, et al. 1993, Critical comparison of kriging, fractal and Indicator Kriging tecniques. APEA Journal 1993
    79. Journal A. G. and Gonez- Hemanlez J. T.. Stochastic Imaging of the Wilmington Clastic Sequence, SPE19857, Presented at the 1989 SPE Annual Technical Conference & Exhibition, San Antonio, TX, Oct. 8-11, P. 591-606
    80. MacDonzld A. C., et al. Stochastic Flow Unit Modelling of a North Sea Coastal-Ⅰ)etaic Reservoir. First Break, V.10, NO.4, 1992, P.124-133
    81. Bourgault G.. Probability Field for the Post- Processing of Stochastic Simulation. Math Geology, C.28, NO.6, 1996, P.723-734
    82. Kelka M. and Shibli, S. Description of Reservoir Properties Using Fractals, in Yarus. J. M and Chambers, R. L, eds. AAPG Computer Application in Geology NO. 3, Stochastic Modelling and Gex-mtistics: Princi-ples, Methods and Case Studies: American Association of Petroleum Geolc~sts, Tulsa, OK, 1994, P. 261—272
    83. Begg S. H., et al. Characterization of a Complex Fluvial-Deltaic Reservoir for Simulation. Paper SPE28098, Presented at the 1994 SPE Annual Technical Conference-Exhibition, New Orleans, LA, Sept.25-28, P. 275-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700