用户名: 密码: 验证码:
南海南部第四纪浮游有孔虫群与古气候变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大洋钻探(ODP)1143站(9°21.72′N,113°17.11′E,水深2,772米)997个样品中浮游有孔虫群的研究,揭示了210万年来南海南部高分辨率(约2千年)的古海洋学变化历史,展示了碳酸盐溶解与保存、海水表层温度、温跃层深度、古生产力以及浮游有孔虫主要属种在冰期-间冰期和长时间尺度上的变化,以及对东亚季风和热带气候演化的响应。此外,本文还对比了第四纪ODP 1143和1146站浮游有孔虫主要属种、温跃层以及古生产力,据此讨论冰期/间冰期东亚冬、夏季风交替强化和海平面升降作用下的南海南北上部海水环境分异的情况。
     浮游有孔虫碎壳率、绝对丰度、抗溶种百分含量、碳酸盐含量以及粗组分(>63μm)含量被用于指示碳酸盐的溶解和保存状况。结果显示碳酸盐溶解高峰出现在间冰期至冰期的过渡期;而在冰期至间冰期的过渡期碳酸盐的保存最好。因此推断ODP 1143站的碳酸盐旋回受深海溶解作用和陆源物质稀释作用的共同影响。交叉频谱和相位分析显示所有溶解和保存指标均与底栖有孔虫氧同位素在地球轨道偏心率和斜率周期上强烈相关,并且碳酸盐保存的最大值领先于全球冰量最小值(δ~(18)O最轻值),而溶解的最大值滞后于全球冰量最小值。
     运用FP-12E、SIMMAX-28(专适于南海的现代类比法)以及ANN(神经网络)等技术和方法估算了古温度,并对结果进行了评价。估算结果显示冰期时的海水表层温度总体比间冰期的高。经分析,这可能是由于优势种的变化而致,也说明基于浮游有孔虫统计数据的定量估算温度的方法至少在ODP 1143站不可用。在其他的独立于浮游有孔虫统计数据的定量估算方法建立之前,表层温水种Globigerinoides sacculifer和Globigerinoides ruber的比值被用来定性地指示温度的变化。G.sacculifer/G.ruber比值与底栖有孔虫δ~(18)O的交叉频谱和相位分析显示,在偏心率、斜率以及23-千年和19-千年的岁差周期上,海水表层温度的最大值均超前于全球冰量最小值。此外,G.sacculifer/G.ruber比值的频谱还显示了很强(超过90%的可信度)的半岁差周期。因此,热带过程可能在南海南部海水表层温度变化中起到了重要的作用,而非全球冰量的控制。
     温跃层深浅和古生产力高低与东亚季风的强弱变化密切相关。温跃层深度用浮游有孔虫混合层属种组合、温跃层属种组合以及转换函数计算结果来指示。此次工作中对Timor海MD01-2378孔非共生种(asyrnbiotic species)和共生种(symbiotic spedes)的分析,证实其比值是一个很好的生产力指标。ODP1143站的结果显示,冰期时南海南部温跃层较深,生产力也相应较低,间冰期时则反之。指示冰期时冬季风加强而间冰期时夏季风强盛。长时间尺度上,温跃层深度和生产力变化在165万年和85万年时出现明显转折,很可能是对东亚季风阶段性演化的直接响应。周期性变化上,除了斜率(41千年)的主导地位外,温跃层和古生产力还显示了非常突出的半岁差周期,揭示热带气候因素和东亚季风对南海南部上部水体结构变化的共同作用。
     G.tuber、G.saccutifer、Neogloboquadrina dutertrei、Pulleniatina obliquiloculata和Globorotalia menardii等五个种为1143站的优势种,平均占据了浮游有孔虫群的75.3%。G.ruber、G.sacculifer和N.dutertrei的冰期旋回受碳酸盐溶解、温跃层深度、温度和生产力的共同影响。G.tuber在长时间尺度上与N.dutertrei呈镜像变化,分别在160万年和85万年时出现明显转折,可能反映了温跃层和生产力的重大改变。过去210万年来的G.sacculifer的丰度总体变化不大,主要是由于该种对温跃层变化的随机适应所致。G.menardii和P.obliquiloculata均为热带抗溶种,且都生活在温跃层中,但二者在南海南部记录中的表现却迥异。G.menardii呈现明显的冰期旋回,间冰期的含量比冰期的高。除了温度和溶解作用等影响因素外,南海南部温跃层的冰期-间冰期变化应当是主要的控制因素。P.obliquiloculata虽然也具明显的冰期-间冰期变化,但在中更新世革命以来,与氧同位素记录相反,即含量在冰期时比间冰期时高。对比了西太平洋边缘海地区P.obliquiloculata的柱状样资料,发现该种与氧同位素记录相反的变化只在南海南部出现。而中更新世革命之前,P.obliquiloculata的含量总体在间冰期时高.P.obliquiloculata在中更新世之后冰期时的高含量可能是由于区域性的海水盐度增加、南海南部与热带西太平洋表层海水交换切断所致,也不排除冰期时在南海南部存在着与现代热带西太平洋相似的表层海水环境的可能。另外,有趣的是,表层暖水种粉红色G.ruber在南海南部的冰期旋回也表现出了与其他海域截然相反的变化,其在冰期和间冰期较冷的阶段含量颇丰。如果南海南部的夏季海水表层在整个研究时间范围内能一直能提供适宜的温度条件的话,冰期时较深的温跃层以及1143站与陆地距离的缩短可能是粉红色G.ruber大量出现的主要原因。
     ODP 1143站和1146站的天文调谐氧同位素剖面为对比南海南、北之间古海洋环境的差异提供了精确的年代标尺.浮游有孔虫主要属种、温跃层和古生产力的对比结果显示,南海南、北的表层海水环境由210万年至120万年左右趋同,而在120万年之后分异逐渐增大。这个转折与气候变化由斜率周期转为偏心率周期的开始时间相吻合,因此可能反映东亚冬、夏季风长时间尺度上的相互作用对晚第四纪偏心率周期开始增强的响应。冰期-间冰期时间尺度上,南海的温跃层深度和古生产力在南、北形成了“跷跷板”式的变化,即冰期时南部的温跃层比北部深,生产力也相对较低,而间冰期时则反之。这可能是由于冰期和间冰期时东亚冬、夏季风对南海南、北影响的差异以及冰期时低的海平面导致南部水道变窄或关闭所造成的。
Planktonic foraminifera (PF) in a total of 997 samples from ODP Site 1143 (9°21.72'N, 113°17.11'E, water depth 2,772 m) were studied to reveal the past -2,100 kyr paleoceanographical changes in the southern South China Sea (SCS), with a resolution averaging -2 kyr. Glacial-interglacial fluctuations and long-term changes in carbonate dissolution and preservation, sea surface temperature (SST), depth of thermocline (DOT), paleoproductivity and predominant PF species as responding to the East Asian paleomonsoon and tropical climatic evolution were investigated. In addition, predominant PF species, DOT and paleoproductivity between Site 1143 and 1146 were compared to imply the differentiation of upper ocean water environments between the southern and northern SCS due to glacial-interglacial reversal of the East Asian winter and summer monsoons and sea level change.
     PF fragmentation and absolute abundance, percentage of resistant species (RSP%), carbonate content and coarse fraction (>63μm) were used to indicate carbonate dissolution and preservation. Peaks of carbonate dissolution occurred during interglacial to glacial transitions, while preservation spikes were mainly observed during glacial to interglacial transitions. Carbonate cycle at ODP Site 1143 was influenced by both dissolution and terrigenous dilution. All carbonate dissolution and preservation indices are strongly coherent with -δ~(18)O over the eccentricity and obliquity bands. In general, maximal carbonate preservation leads and intensified dissolution lags minimal ice volume on these two orbital bands.
     FP-12E, SIMMAX-28 and ANN (Artificial Neural Network) techniques were employed to estimate paleo-SSTs based on PF assemblages and the results were evaluated. These estimates generally show higher SST values in glacials than interglacials, likely a bias by predominant species. Before other quantitative methods independent of faunal assemblages are developed for ODP Site 1143, the ratio of Globigerinoides sacculifer to Globigerinoides ruber was used in this study to provide the solution to qualitatively estimating SST variations. Cross-spectral and phase analyses of G. sacculifer/G, ruber and benthic foraminiferalδ~(18)O indicated that maximal SSTs led ice volume minima (lowestδ~(18)O) on the eccentricity, obliquity and 23-and 19-ka precession bands. Moreover, G. sacculifer/G. ruber ratio displayed significant half-precessional powers. This implies that tropical processes, rather than ice volume, have been playing an important role in temperature variations in the southern SCS.
     DOT and productivity were related to changes in the wind stress of the East Asian monsoon. DOT was indicated by mix-layer and thermocline dwelling species and calculated by transfer function based on faunal assemblages. The ratio of asyrnbiotic to symbiotic species was proved to be a good indicator of paleoproductivity. The southern SCS was characterized by deeper thermocline and lower productivity in glacials than interglacials. This indicates that intensified East Asian winter monsoon occurred during glacials and summer monsoon enhanced during interglacials. On a longer timescale, the thermocline depth and paleoproductivity underwent profound shifts at 1,650 ka and 850 ka, likely as a direct response to the stepwise evolution of the East Asian monsoon. Besides the dominance of the 41-ka obliquity cyclicity, half-precession periodicities were remarkably significant in variabilities of the thermodine depth and paleoproductivity, indicating that tropical climate factors including the East Asian monsoon played a key role in fluctuations of upper ocean structure in the southern SCS.
     G. ruber, G. sacculifer, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata and Globorotalia menardii dominated the faunal assemblage at ODP Site 1143. The relative abundance of G. ruber, G. sacculifer and N. dutertrei exhibited vague glacial-interglacial fluctuations, probably in response to a combination of carbonate dissolution, DOT, SST and productivity. On a long time scale, G. ruber mirrored N. dutertrei in displaying profound changes at 1,600 ka and 850 ka, but G. sacculifer changed little. The opposite change in G. ruber and N. dutertrei likely reflects a long-term change in thermocline and paleoproductivity. The long-term behavior of G. sacculifer may be due to its adapting flexibility to thermocline change.
     Two tropical carbonate-dissolution species, G. menardii and P. obliquiloculata, both favor shallow thermocline but displayed different responses to glacial-interglacial cycles in the southern SCS. More abundant G. menardii in interglacials than glacials was due to the shallow interglacial thermocline in the southern SCS. However, P. obliquilculata is reversely correlated withδ~(18)O) profile with high abundance in glacials since the Mid-Pleistocene Revolution (MPR). Investigation of its downcore variations at sites in western Pacific marginal seas indicated that the reverse correlation is unique to the southern SCS. Before the MPR, P. obliquiloculata was abundant in interglacials. High abundance of P. obliquiloculata during glacials after the MPR can be ascribed to increased regional seawater salinity, a connection of southern SCS waters to the western tropical Pacific or water conditions similar to the modern western tropical Pacific formed in the southern SCS.
     The pink morphotype of G. ruber has distinctive abundance in glacials and cool interglacial sub-stages, in contrast to records elsewhere. A deeper thermocline or the proximity of ODP Site 1143 to land during glacials is suggested to be responsible for the occurrence of large numbers of pink G. ruber, if the summer SST in the southern SCS provided an optimum temperature condition throughout the time interval.
     Orbitally tuned oxygen isotope strafigraphies from both Site 1143 and 1146 provided an accurate chronologic framework to compare paleoceanographic differences between the southern and northern SCS. The differences in dominant species, DOT and paleoproductivity indicated a profound differentiation of surface water environments between the two regions at~1,200 ka. This transition was considered to be a response in the long-term interaction between winter and summer monsoons to the progressive dominance of the eccentricity astronomical cycle in the late Quaternary. On the glacial-interglacial timescale, a see-saw like pattern was revealed in changes in DOT and associated paleoproductivity between the southern and northern SCS. During glacials, thermocline was deeper and productivity was lower in the south than in the north, and vice versa in interglacials. This is interpreted to be mainly due to differential glacial-interglacial impacts of winter and summer monsoons in the northern and southern SCS, as well as influence of glacial sea level lower-stands.
引文
An, Z., Porter, S. C., Zhou, W. et al., 1993. Episode of strengthened summer monsoon climate of Younger Dryas age on the Loess Plateau of Central China. Quaternary Research, 39, 45-54.
    Anand, P., Elderfield, H., Conte, M. H., 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2), 1050, doi: 10.1029/2002PA000846.
    Anderson, C., 1997. Transfer function vs. modern analog technique for estimating Pliocene sea-surface temperature based on planktonic foramiruferal data, west equatorial Pacific Ocean. Journal of Foraminiferal Research, 27(2), 123-132.
    Andreasen, D. J., Ravelo, A. C., 1997. Tropical Pacific Ocean thermodine depth reconstructions for the last glacial maximum. Paleoceanography, 12(3), 395-413.
    Bassinot, F. C., Beaufort, L., Vincent, E. et al., 1994. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500-kyr record of carbonate dissolution. Paleoceanography, 9(4), 579-600.
    Bé, A. W. H., Tolderlund, D. S., 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. In: Funnell, B. M., Riedel, W. R. (eds), The Micropalaeontology of Oceans, Cambridge University Press, 105-149.
    Bé, A. W. H., Morse, J. W., Harrison, S. M., 1976. Progressive dissolution and ultrastructural breakdown of planktonic foraminifera. In: Dissolution of Deep-Sea Carbonates, Special Publication No. 13, Cushman Foundation for Foraminiferal Research, 27-55.
    Bé, A. W. H., 1977. An ecological, zoogeographical and taxonomic review of recent planktonic foraminifera. In: Ramsay, A. T. S. (editor), Oceanic Micropaleontology. Academic Press, London, 1, 1-100.
    Bé, A. W. H., Bishop, J. K. B., Sverdlove, M. S., Gardner, W. D., 1985. Standing stock, vertical distribution and flux of planktonic foraminifera in the Panama Basin. Marine Micropaleontology, 9, 307-333.
    Beaufort, L., Lancelot, Y., Camberlin, P. et al., 1997. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 278, 1451-1454.
    Bemis, B. E., Spero, H. J., Thunell, R. C., 2002. Using species-specific paleotemperature equations with foraminifera: a case study in the Southern California Bight. Marine Micropaleontology, 46, 405-430.
    Berger, W. H., 1977. Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera. Nature, 269, 301-304.
    Berger, W. H., Bickert, T., Schmidt, H., Wefer, G., 1993. Quaternary oxygen isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau. In: Berger, W. H., Kroenke, L. W., Mayer, L. A. et al. (eds), Proceedings of Ocean Drilling program, Scientific Results, 130, 381-393.
    Berger, A., Loutre, M. F., 1997. Intertropical latitudes and precessional and half-precessional cycles. Science, 278, 1476-1478.
    Blunier, T., Brook, E. J., 2001. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109-112.
    Broecker, W. S., 1998. The end of the present interglacial: How and when? Quaternary Science Reviews, 17, 689-694.
    Cane, M. A., 1998. Arole for the tropical Pacific. Science, 282, 59-61.
    Cane, M. A., Clement, A., 1999. Mechanisms of global climate change at millennial time scales. In: Clark, P., Webb, R., Keigwin, L. (eds), AGU Geophysical Monograph 112, American Geophysical Union, Washington D C, 373-383.
    Carter, R. M., Gammon, P., 2004. New Zealand maritime glaciation: millennial-scale southern climate change since 3.9 Ma. Science, 304, 1659-1662.
    Cayre, O., Beaufort, L., Vincent, E., 1999. Paleoproductivity in the Equatorial Indian Ocean for the last 260,000 yr: A transfer function based on planktonic foraminifera. Quaternary Science Reviews, 18, 839-857.
    Chen, J., Zheng, L., Wiesner, M. et al., 1998. Estimations of primary production and export production in the South China Sea on sediment trap experiments. Chinese Science Bulletin, 43(7),583[陈建芳,郑连福,M.G.Wiesner,陈荣华,郑玉龙,H.K.Wong,1998.基于沉积物捕获器的南海表层初级生产力及输出生产力估算.科学通报,43(6),639-642.]
    Chen" M.-T., Farrell, J. W., 1991. Planktonic foraminifera faunal variations in the northeastern Indian Ocean: A high-resolution record of the past 800,000 years from Site 758. In: Weissel, J., Peirce, J., Taylor, E., Alt, J., et al. (eds), Proceedings of the Ocean drilling program, Scientific Results, 121, 125-140.
    Chen, R., Jian, Z., Zheng, Y., Chen, J., 2000. Seasonal variations of the planktonic foraminiferal flux in the central South China Sea. Journal of Tongji University, 28(1),73-77.[陈荣华,翦知湣,郑玉龙,陈建芳,2000.南海中部浮游有孔虫通量的季节变化.同济大学学报,28(1),73-77.]
    Clark, P. U., Alley, R. B., Pollard, D., 1999. Northern Hemisphere ice-sheet influences on global climate change. Science, 286, 1104-1111.
    Clemens, S. C., Prell, W. L., 1991. One million year record of summer monsoon winds and continental aridity from the Owen Ridge (Site 722), northwest Arabian Basian. In: Prell, W., Niitsuma, N. et al. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 117, 365-388.
    Clemens, S. C., Prell, W., Murray, D., Schimmield, G., Weedon, G., 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature, 353, 720-725.
    Clemens, S. C., Murray, D. W., Prell, W. L., 1996. Nonstationary phase of the Plio-Pleistocene Asian Monsoon. Science, 274, 943-948.
    Clemens, S. C. and Prell W. L., 2003. Data Report: Oxygen and Carbon Isotopes from Site 1146, northern South China Sea. In Prell, W.L., Wang, P., Blum, P., Rea, D. K., and Clemens, S.C. (Eds.), Proc. ODP Sci. Res., 184, 1-8 [Online].
    CLIMAP Project Members, 1976. The surface of the Ice-Age Earth. Science, 191, 1131-1137.
    Conan, S. M.-H., Ivanova, E. M., Brummer, G.-J. A., 2002. Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Marine Geology, 182, 325-349.
    Crowley, T. J., 1981. Temperature and circulation changes in the eastern North Atlantic during the last 150,000 years: evidence from the planktonic foramiruf'eral record. Marine Micropaleontology, 6, 97-129.
    Cullen, J. L., 1981. Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20 000 years. Palaeogeography, Palaeodimatology, Palaeoecology, 35, 315-356.
    Cullen, J. L., Prell, W. L., 1984. Planktonic foraminifera of the northern Indian Ocean: distribution and preservation in surface sediments. Marine Micropaleontology, 9, 1-52.
    Cullen, J. L., Droxler, A. W., 1990. Late Quaternary variations in planktonic foraminifer faunas and pteropod preservation in the equatorial Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 115, 579-588.
    Curry, W. B., Crowley, T. C., 1987. The δ~(13)C of equatorial Atlantic surface waters: Implications for ice age pCO_2 levels. Paleoceanography, 2, 489-517.
    Darling, K. F., Wade, C. M., Kroon, D. et al., 1999. The diversity and distribution of modern planktonic foraminiferal small subunit ribosomal RNA genotypes and their potential as tracers of present and past ocean circulations. Paleoceanography, 14(1), 3-12.
    deMenocal, P., Bloemendal, J., King, J., 1991. A rock-magnetic record of monsoonal dust deposition to the Arabian Sea: evidence for a shift in the mode of deposition at 2.4 Ma. In: Prell, W. L., Niitsuma, N. et al. (eds), Proceeding of the Ocean Drilling Program, Scientific Results, 117, 389-407.
    Eguchi, N. O., Ujiié, H., Kawahata, H., Taira, A., 2003. Seasonal variations in planktonic foraminifera at three sediment traps in the Subarctic, Transition and Subtropical zones of the central North Pacific Ocean. Marine Micropaleontology, 48, 149-163.
    Elderfield, H., Ganssen, G., 2000. Past temperature and δ~(18)O of surface ocean waters inferred from foramintferal Mg/Ca ratios. Nature, 405, 442-445.
    Elderfield, H., 2002. Carbonate mysteries. Science, 296, 1618-1621.
    Fang, D., 1997. Sedimentological and paleoceanographic changes in the southern South China Sea since the Last Glacial Stage - taking core 17962 as an example. M.S. thesis of Tongji University 41 PP.[房殿勇,1997.南海南部末次冰期以来沉积与古海洋变迁——以17962柱状样为例.同济大学硕士研究生学位论文,41pp.]
    Farrell, J. W., Prell, W. L., 1989. Climatic change and CaCO_3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 4(4), 447-466.
    Farrell, J. W., Janecek, T. R., 1991. Late Neogene paleoceanography and paleoclimatology of the northeast Indian Ocean (Site 758). In: Weissel, J., Peirce, J., Taylor, E., Alt, J., et al. (eds), Proceedings of the Ocean drilling program, Scientific Results, 121, 297-315.
    Farrell, J. W., Prell, W. L., 1991. Pacific CaCO_3 preservation and δ~(18)O since 4 Ma: Paleoceanic and paleoclimatic implications. Paleoceanography, 6(4), 485-498.
    Farrell, J. W., Murray, D. W., McKenna, V. S., Ravelo, A. C., 1995. Upper ocean temperature and nutrient contrasts inferred from Pleistocene planktonic foraminifer δ~(18)O and δ~(13)C in the eastern equatorial Pacific. In: Pisias, N. G. et al. (editors), Proceedings of the Ocean Drilling Program. Scientific Results, 138, 289-311.
    Faul, K. L., Ravelo, A. C., Delaney, M. L., 2000. Reconstructions of upwelling, productivity, and photic zone depth in the eastern Equatorial Pacific Ocean using planktonic foraminiferal stable isotopes and abundances. Journal of Foraminiferal Research, 30(2), 110-125.
    Flower, B., P., Kennett, J. P., 1990. The Younger Dryas cool episode in the Gulf of Mexico. Paleoceanography, 5 (6), 949-961.
    George Philander, S., Fedorov, A. V., 2003. Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 18(2), 1045, doi:10.1029/2002PA000837.
    Godfrey, J. S., 1996. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: a review. Journal of Geophysical Research, 101 (C5), 12217-12237.
    Guilderson, T., Fairbanks, R. G., Rubenstone, J. L., 1994. Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science, 263, 663-665.
    Guo, Z. T., Liu, T., Fedoroff, N. et al., 1998. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Global and Planetary Change, 18, 113-118.
    Guo, Z. T., Ruddiman, W. F., Hao, Q. Z. et al., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159-163.
    Guptha, M. V. S., Curry, W. B., Ittekkot, V., Muralinath, A. S., 1997. Seasonal variation in the flux of planktonic foraminifera: sediment trap results from the bay of Bengal, northern Indian Ocean. Journal of Foraminiferal Research, 27(1), 5-19.
    Gupta, A. K., Anderson, D. M., Overpeck, J. T., 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421, 354-324.
    Hagelberg, T. K., Bond, G., deMenocal, P., 1994. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene. Paleoceanography, 9(4), 545-558.
    Hartmann, D. L., 2002. Tropical surprises. Science, 295, 811-812.
    Hasselmann, K., 1976. Stochastic climatic models: Part Ⅰ. Theory. Tellus, 28(6), 473-485.
    Hastings, D. W., Russell, A. D., Emerson, S. R., 1998. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy. Paleoceanography, 13(2), 161-169.
    Hemleben, Ch., Spindler, M., Anderson, O. R., 1989. Modern planktonic foraminifera. Springer-Verlag New York Inc., 363pp.
    Herbert, T. D., 1997. A long marine history of carbon cycle modulation by orbital-climatic changes. Proc. Natl. Acad. Sci. USA, 94, 8362-8369.
    Herguera, J. C., 2000. Last glacial paleoproductivity patterns in the eastern equatorial Pacific: benthic foraminifera records. Marine Micropaleontology, 40, 259-275.
    Hoerling, M. P., Hurrell, J. W., Xu, T., 2001. Tropical origins for recent North Atlantic climate change. Science, 292, 90-92.
    Holbourn, A., Kuhnt, W., Kawamura, H. et al., 2004. Orbitally-paced paleoproductivity variations in the Timor Sea and indonesian Throughflow variability during the last 460-ky. Manuscript submitted to Paleoceanography.
    Howell, P. 2001. ARAND time series and spectral analysis package for the Macintosh, Brown University. IGBP PAGES/World Data Center for Paleodimatology Data Contribution Series #2001-044. NOA_A/NGDC Paleoclimatology Program, Boulder, Colorado, USA.
    Howard, W. R., Prell, W. L., 1994. Late Quaternary CaCO_3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography, 9, 453-482.
    Huang, Q., Wang W., Li, Y., Li, C., 1994. Current characteristics of the South China Sea. Zhou Di et al. (eds.), Oceanology of China Seas. Kluwer Academic Publishers. Volume 1, 39-47.
    Huang, B., Jian, Z., 1999. Late Quaternary coastal upwelling and variations of the East Asian summer monsoon off the Vietnam coast.Quaternary Sciences,6,518-525.[黄宝琦,翦知湣,1999.越南岸外晚第四纪上升流与东亚夏季风变迁.第四纪研究,6,518-525.]
    Huang, B., Jian, Z., Lin, H., 2000. Late Quaternary changes of paleoproductivity in the northeastern South China Sea.Marine Geology & Quaternary Geology, 20(2),65-68.[黄宝琦,翦知湣,林慧玲,2000.南海东北部晚第四纪古生产力变化.海洋地质与第四纪地质,20(2),65-68.]
    Huang, B., Jian, Z., Cheng, X., Wang, P., 2001. Late Quaternary upper-water column structure in upwelling areas of the South China Sea. Chinese Science Bulletin, 46 (20), 1741-1745. [黄宝琦, 翦知湣,成鑫荣,汪品先,2001.南海晚第四纪上升流区海水上层水体结构的变化.科学通报,46(11),948-952.]
    Huang, B., 2002. Late plio-Pleistocene evolution of the East Asian monsoon recorded by foraminiferal fauna in the northern South China Sea. Ph.D. Thesis of Tongji University, 48pp.[黄宝琦,2002.南海北部晚上新世以来的有孔虫群与东亚季风演化.同济大学博士学位论文,48pp.]
    Huang, B., Jian, Z., Cheng, X., Wang, P., 2002. Foraminiferal responses to upwelling variations in the South China Sea over the last 220 000 years. Marine Micropaleontology, 47, 1-15.
    Huang, Q., Wang W., Li, Y., Li, C., 1994. Current characteristics of the South China Sea. In: Zhou Diet al. (eds.), Oceanology of China Seas. Kluwer Academic Publishers, Volume 1, 39-47.
    Hutson, W. H., 1977. Transfer functions under no-analog conditions: Experiments with Indian Ocean Planktonic foraminifera. Quaternary Research, 8, 355-367.
    Hutson, W. H., 1980. The Agulhas Current during the late Pleistocene: Analysis of modern faunal analogs. Science, 207, 64-66.
    Ibaraki, M., 2000. Pliocene-Pleistocene paleoceanography in the East Pacific off Costa Rica determined by planktonic foraminifers. In: Silver, E. A., Kimura, G., Shipley, T. H. (eds), Proceedings of ODP Sdentific Results, 170, 1-28 [Online].
    Imbrie, J., Kipp, N. G., 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In: Turekian, K. K. (ed), The late Cenozoic gladal ages. Yale University Press, New Haven, Conn., 71-181.
    Jian, Z., Wang, L., Kienast, M., Samthein, M., Kuhnt, W., Lin, H., Wang, P., 1999. Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years. Marine Geology, 156, 159-186.
    Jian, Z., Wang, P., Chen, M.-P., Li, B., 2000a. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea. Paleoceanography, 15(2), 229-243.
    Jian, Z., Wang, R, Saito, Y., Wang, J., Pflaumann, U., Oba, T., Cheng, X., 2000b. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letter, 184, 305-319.
    Jian, Z., Li, B., Huang, B., Wang, J., 2000c. GIoborotalia truncatulinoides as indicator of upper-ocean thermal structure during the Quaternary: evidence from the South China Sea and Okinawa Trough. Palaeogeography, Palaeoclimatology, Palaeoecology, 162, 287-298.
    Jian, Z., Wang, P., Zhao, Q. et al., 2001a. Late Pliocene enhanced East Asian winter monsoon: evidence of isotope and foraminifers from the northern South China Sea. Quaternary Sciences, 21(5),461-469.[翦知湣,汪品先,赵泉鸿等,2001.南海北部上新世晚期东亚冬季风增强的同位素和有孔虫证据.第四纪研究,21(5),461-469.]
    Jian, Z., Huang, B., Kuhnt, W., Lin, H., 2001b. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quaternary Research, 55, 363-370.
    Jin, H., Jian, Z., Liu, D., 2003. Late Quaternary variations of planktonic foraminiferal assemblage and paleo-temperature of Ontong-Java Plateau, west Pacific. Marine Geology & Quaternary Geology, 23(4),65-71.[金海燕,翦知湣,刘东升,西太平洋翁通---爪哇海台晚第四纪浮游有孔虫群与古温度变化.海洋地质与第四纪地质,23(4),65-71.]
    Jin, H., 2004. Quaternary planktonic foraminiferal fauna and variations of the warm pool in the western equatorial Pacific. Thesis of Master of Sdence, Ocean University of China, 46pp. [金海燕,2004.赤道西太平洋第四纪浮游有孔虫群与暖池的变动.中国海洋大学硕士研究生学位论文,46pp.]
    Jones, J. I., 1967. Significance of distribution of planktonic foraminifera in the Equatorial Atlantic Undercurrent. Micropaleontology, 13(4), 489-501.
    Jorissen, F. J., De Stigter, H. C., Widmark, J. G. V., 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26, 3-15.
    Kawahata, H., Nishimura, A., Gagan, M. K., 2002. Seasonal change in foraminiferal production in the western equatorial Pacific warm pool: evidence from sediment trap experiments. Deep-Sea Research Ⅱ, 49, 2783-2800.
    Kienast, M., Steinke, S., Stattegger, K., Calvert, S. E., 2001. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science, 291, 2132-2134.
    Kipp, N. G., 1976. New transfer function for estimating past sea surface conditions from sea bed distribution of planktonic foraminiferal assemblages in the North Atlantic. In: Cline, R. M., Hays, J. D. (eds.), Investigating of Southern Ocean Paleoceanography and Paleoclimatology, Mere. Geol. Soc. Am., 145, 3-41.
    Klovan, J. E, Imbrie, J., 1971. An algorithm and FORTRAN-Ⅳ program for large-scale Q-mode factor analysis and calculation of factor scores. Mathematical Geology, 3, 61-77.
    Koutavas, A., Lynch-Stieglitz, J., Marchitto Jr., T. M., Sachs, J. P., 2002. El Nino-like pattern in ice age tropical Pacific sea surface temperature. Science, 297, 226-230.
    Kump, L. R., 2001. Chill taken out of the tropics. Nature, 413, 470-471.
    Le, J., Shackleton, N. J., 1992. Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary. Paleoceanography, 7, 21-42.
    Le, J., Mix, A. C., Shackleton, N. J., 1995. Late Quaternary paleoceanography in the eastern Equatorial Pacific Ocean from planktonic foraminifers: A high-resolution record from Site 846. In: Pisias, N. G., Mayer, L. A., Janecek, T. R. et al. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 138, 675-693.
    Le, J., Thunell, R. C., 1996. Modelling planktic foraminiferal assemblage changes and application to sea surface temperature estimation in the western equatorial Pacific Ocean. Marine Micropaleontology, 28, 211-229.
    Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate impact of late Quaternary Equatorial Pacific sea surface temperature variations. Science, 289, 1719-1724.
    Lea, D. W., Pak, D. K., Peterson, L. C., Hughen, K. A., 2003. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science, 301, 1364.
    Levitus, S., Boyer, T. B., 1994a. World Ocean Arias 1994, Volume: 4. Temperature. NOAA, U.S. Dept. of Commer., Washington, D.C., 117pp.
    Levitus, S., Burgett, R., Boyer, T., 1994b. World Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3, U.S. Department of Commerce, Washington, D.C., 99pp.
    Li, B., Jian, Z., Wang, P., 1997. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years. Marine Micropaleontology, 32, 59-69.
    Li, B., Zhao, Q., Chen, M.-P., Jian, Z., Wang, P., 2001a. Carbonate dissolution and deep-water paleoceanography of the South China Sea since the middle Pleistocene. Chinese Science Bulletin,40(22),1908-1911.[李保华,赵泉鸿,陈民本,翦知湣,汪品先,2001a.南海中更新世以来的碳酸盐溶解作用变化与深水古海洋学特征.科学通报,46(13),1128-1132.]
    Li, B., Zhao, Q., Chen, M.-P., Jian, Z., Wang, P., 2001b. Late Quaternary evolution of planktonic foraminifera in the southern South China Sea and their paleoceanographic significance. Acta Micropalaeontologica Sinica, 18(1),1-9.[李保华,赵泉鸿,陈民本,翦知湣,汪品先,2001b.南沙海区晚第四纪浮游有孔虫演化及其古海洋学意义.微体古生物学报,18(1),1-9.]
    Li, B., Wang, J., Huang, B. et al., 2004. South China Sea surface water evolution over the last 12 Myr: A south-north comparison from Ocean Drlling Program Sites 1143 and 1146. Paleoceanography, 19, PA1009, doi:10.1029/2003PA000906.
    Li, C., 1993. Micropaleontological records, carbonate contents and oxygen-isotopic curves in late Pleistocene deep sea cores from the South China Sea. Tropical Oceanology, 12(1), 16-23. [李粹中,1993.南海晚更新世深海岩心的微体古生物、碳酸盐和氧同位素记录.热带海洋,12(1),16-23.]
    Li, J., Wang, R., 2004. Paleoproductivity variability of the northern South China Sea during the past Ⅰ Ma: the opal record from ODP Site 1144. Acta Geologica Sinica, 78(2), 228-233. [李建,王汝建,2004.南海北部一百万年以来的表层古生产力变化:来自ODP 1144站的蛋白石记录.地质学报,78(2),228-233.]
    Linsley, B. K., Thunell, R. C., 1990. The record of deglaciation in the Sulu Sea: evidence for the Younger Dryas event in the tropical western Pacific. Paleoceanography, 5(6), 1025-1039.
    Liu, T., Ding, Z., 1990. Progresses of loess research in China (Part 2): Paleoclimatology and global change.Quatemary Sciences,1,1-9.[刘东生,丁仲礼,1990.中国黄土研究新进展(二)古气候与全球变化.第四纪研究,1,1-9.]
    Liu, T., Ding, Z., 1992. Stepwise coupling of monsoon circulations to global ice volume variations
    for the past 2,500 kyr.Quaternary Sciences,1,12-23.[刘东生,丁仲礼,1992.二百五十万年来季风环流与大陆冰量变化的阶段性耦合过程.第四纪研究,1,12-23.]
    Liu, T., Ding, Z., 1993. Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozoic. Global and Planetary Change, 7, 119-130.
    Liu, Q., Yang, H., Wang, Q., 2000. Dynamic characteristics of seasonal thermocline in the deep sea region of the South China Sea. Chinese Journal of Oceanology and Limnology, 18 (2), 104-109.
    Liu, Z.-H., Herbert, T. D., 2004. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature, 427, 720-723.
    Liu, Z., Xu, J., Tian, J., Wang, P., 2003. Calcium carbonate pump during Quaternary glacial cycles in the South China Sea.Chinese Science Bullentin,48(17),1862-1869.[刘志飞,徐建,田军,汪品先,2003.南海第四纪冰期旋回中的碳酸钙泵.科学通报,48(9),962-968.]
    Liu, Z., Trentesaux, A., Clemens, S. C. et al., 2003. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201, 133-146.
    Lohmann, G. P., 1995. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography, 10 (3), 445-457.
    Malmgren, B. A., Kucera, M., Nyberg, J., Waelbroeck, C., 2001. Composition of statistical and artificial neural network techniques for estimating past sea surface temperatures from planktonic foraminifer census data. Paleoceanography, 16(0), 1-11.
    Martinez, J. I., Taylor, L., Deckker, P. D., Barrows, T., 1998. Planktonic foraminifera from the eastern Indian Ocean: distribution and ecology in relation to the Western Pacific Warm Pool (WPWP). Marine Micropaleontology, 34, 121-151.
    Marfinez, J. I., Deckker, P. D., Barrows, T. T., 2002. Palaeoceanography of the Western Pacific Warm Pool during the last glacial maximum: Long-term climatic monitoring of the Maritime continent. In: Kershaw, P., David, B., Tapper, N. et al. (eds), Bridging Wallace's Line: The environmental and cultural history and dynamics of the SE-Asian-Australian region. Advances in Geoecology 34, 147-172.
    Miao, Q., Thunell, R. C., Anderson, D. M., 1994. Glacial-Holocene carbonate dissolution and sea surface temperatures in the South China and Sulu seas. Paleoceanography. 9(2), 269-290.
    Milliman, J. D., Meade, R. H., 1983. World-wide delivery of river sediment to the ocean. Journal of Geology, 91(1), 1-21.
    Milliman, J. D., Troy, P. J., Balch, W. M. et al., 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Research Ⅰ, 46, 1653-1699.
    Mulitza, S., Wolff, T., Patzold, J. et al., 1998. Temperature sensitivity of planktonic foraminifera and its influence on the oxygen isotope record. Marine Micropaleontology, 33, 223-240.
    Naidu, P. D., Malrngren, B. A., 1999. Quaternary carbonate record frorn the equatorial Indian Ocean and its relationship with productivity Changes. Marine Geology, 161, 49-62.
    Ninnemann, U. S., Charles, C. D., 1997. Regional differences in Quaternary Subantarctic nutrient cycling: Link to intermediate and deep water ventilation. Paleoceanography, 12, 560-567.
    Ortiz, J. D., Mix, A. C., CoRier, R. W., 1995. Environmental control of living symbiotic and asymbiotic foraminifera of the California Current. Paleoceanography, 10(6), 987-1009.
    Ortiz, J. D., Mix, A. C., 1997. Comparison of Imbrie-Kipp transfer traction and modern analog temperature estimates using sediment trap and core top foraminiferal faunas. Paleoceanography, 12(2), 175-190.
    Oxburgh, R., Broecker, W. S., 1993. Pacific carbonate dissolution revisited. Palaeogeography, Palaeoclimatology, Palaeoecology, 103, 31-39.
    Paillard, D., Laberyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos Transactions, AGU, 77, 39.
    Pak, D. K., Kennett, J. P., 2002. A foraminiferal isotopic proxy for upper water mass stratification. Journal of Foraminiferal Research, 32(3), 319-327.
    Pérez-Folgado, M., Sierro, F. J., Flores, J. A., 2003. Western Mediterranean planktonic foraminifera events and millennial climatic variability during the last 70 kyr. Marine Micropaleontology, 48, 49-70.
    Peterson, J., Hope, G., Prentice, M., Hantoro, W., 2002. Mountain environments in New Guinea and the last glacial maximum 'warm seas/cold mountains" enigma in the west Pacific warm pool region. In: Kershaw, P., David, B., Tapper, N. et al. (eds), Bridging Wallace's Line: The environmental and cultural history and dynamics of the SE-Asian-Australian region. Advances in Geoecology 34, 173-187.
    Pierrehumbert, R. T., 2000. Climate change and the tropical Pacific: The sleeping dragon wakes. Proc. Nat. Acad. Sci. USA, 97(4), 1355-1358.
    Pfaumann, U., Jian, Z., 1999. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: a new transfer technique to estimate regional sea-surface temperatures. Marine Geology, 156, 41-83.
    Pflaumann, U., Duprat, J., Pujol, C., Labeyrie, L. D., 1996. SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography, 11(1), 15-35.
    Pisias, N. G., Moore, T. C. Jr., 1981. The evolution of Pleistocene climate: A time series approach. Earth and Planetary Science Letter, 52, 450-458.
    Prell, W. L., Damuth, J. E., 1978. The climate-related diachronous disappearance of Pulleniatina obliquiloculata in late Quaternary sediments of the Atlantic and Caribbean. Marine Micropaleontology, 3, 267-277.
    Prell, W. L., 1982. Oxygen and carbon isotope stratigraphy for the Quaternary of hole 502B: Evidence for two modes of isotopic variability. Initial Report of Deep Sea Drilling Programme, 68, 455-464.
    Prell, W. L., 1985. The stability of low-latitude sea-surface temperatures: An evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies, Rep. TR025, 60 P., U.S. Dep. of Energy, Washington D. C.
    Prell, W. L., Van Campo, E., 1986. Coherent response of Arabian Sea upwelling and pollen transport to late Quaternary monsoonal winds. Nature, 323, 526-528.
    Prell, W. L., Murray, D. W., Clemens, S. C., Anderson, D. M., 1992. Evolution and variability of the Indian Ocean summer monsoon: evidence from the western Arabian Sea Drilling Program. Synthesis of Results from Scientific Drilling in the Indian Ocean, Geophysical Monograph 70, American Geophysical Union, 447-469.
    Prell, W. L., Kutzbach, J. E., 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 674-652.
    Rasmussen, T. L., Thomsen, E., Troelstra, S. R. et al., 2002. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60 000 years. Marine Micropaleontology, 47, 143-176.
    Ravelo, A. C., Fairbanks, R. G., Philander, S. G. H., 1990. Reconstructing tropical Atlantic hydrography using planktonic foraminifera and an ocean model. Paleoceanography, 5 (3), 409-431.
    Ravelo, A. C., Fairbanks, R. G., 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern phofic zone temperature gradient. Paleoceanography, 7(6), 815-831.
    Ravelo, A. C., Shackleton, N. J., 1995. Evidence for surface-water circulation changes at Site 851 in the eastern tropical Pacific Ocean. In: Pisias, N. G., Mayer, L. A., Janecek, T. R. et al. (eds), Proceeding of the Ocean Drilling Program, Scientific Results, 138, 503-514.
    Rial, J. A., 1999. Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity. Science, 285, 564-568.
    Rosenthal, Y., Lohmann, G. P., Lohmann, K. C., Sherrell, R. M., 2000. Incorporation and preservation of Mg in Globigerinoides sacculifer: Implications for reconstructing the temperature and 180/160 of seawater. Paleoceanography, 15(1), 135-145.
    Rottman, M. L., 1979. Dissolution of planktonic foraminifera and pteropods in South China Sea sediments. Journal of Foraminiferal Research, 9(1), 41-49.
    Ruddiman, W. F., Raymo, M. E., Martinson, D. G. et al., 1989. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 4, 353-412.
    Saito, T., Thompson, P. R., Breger D., 1981. Systematic index of recent and Pleistocene planktonic foraminifera. University of Tokyo Press, 190pp.
    Sarnthein, M., Pflaumann, U., Wang, P., Wond, H. K. (editors), 1994. Preliminary report on Sonne-95 Cruise "Monitor Monsoon" to the South China Sea. Berichte-Reports, Geol.-Palaontol. Inst. Univ. Kiel., Nr. 68.
    Schiebel, R., Waniek, J., Bork, M., Hemleben, Ch., 2001. Planktonic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients. Deep-Sea Research Ⅰ, 48, 721-740.
    Schiebel, R., 2002. Planktonic foraminiferal sedimentation and the marine calcite budget. Global Biochemical Cycles, 16(4), 1065, doi: 10.1029/2001GB001459.
    Schiebel, R., Zeltner, A., Treppke, U. F. et al., 2004. Distribution of diatoms, coccolithophores and planktic foraminifers along atrophic gradient during SW monsoon in the Arabian Sea. Marine Micropaleontology, 51, 345-371.
    Schmidt, D. N., Renaud, S., Bollmann, J., 2003. Response of planktic foraminiferal size to late Quaternary climate change. Paleoceanography, 18 (2), 1039, doi:10.1029/2002PA000831.
    Schmidt, D. N., Thierstein, H. R., Bollmann, J., Schiebel, R., 2004. Abiotic forcing of plankton evolution in the Cenozoic. Science, 303, 207-210.
    Schmidt, G. A., Mulitza, S., 2002. Global calibration of ecological models for planktonic foraminifera from coretop carbonate oxygen-18. Marine Micropaleontology, 44, 125-140.
    Schmuker, B., Schiebel, R., 2002. Planktonic foraminifers and hydrography of the eastern and northern Caribbean Sea. Marine Micropaleontology, 46, 387-403.
    Schulz, M., Mudelsee, M., 2002. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computer & Geoscience, 28, 421-426.
    Severinghaus, J. P., Brook, E. J., 1999. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286, 930-934.
    Shackleton, N. J., 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289, 1897-1902.
    Shaw, P., Chao, S., 1994. Surface circulation in the South China Sea. Deep-Sea Research Ⅰ, 41 (11/12), 1663-1683.
    Shaw, P., 1996. Winter upwelling off Luzon in the Northeastern South China Sea. Journal of Geophysical Research, 101 (C7), 16435-16448.
    Shi, P., Du, Y., Wang, D., Gan, Z., 2001. Annual cycle of mixed layer in South China Sea. Journal of
    Tropical Oceanography, 20(1),10-17.[施平,杜岩,王东哓,甘子筠,2001.南海混合层年循环特征.热带海洋学报,20(1),10-17.]
    Spero, H. J., Lea, D., W., 2002. The cause of carbon isotope minimum events on glacial terminations. Science, 296, 522-525.
    Spero, H. J., Mielke, K. M., Kalve, E. M. et al., 2003. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography, 18(1), 1022, doi:10.1029/2002PA000814.
    Steinke, S., Kienast, M., Pflaumann, U., 2001. A high-resolution sea-surface temperature record from the tropical South China Sea (16,500-3000 yr B.P.). Quaternary Research, 55, 352-362.
    Stott, L., Poulsen, C., Lund, S., Thunell, R., 2002. Super ENSO and global climate oscillations at millennial time scales. Science, 297, 222-226.
    Stott, L., Cannariato, K., Thunell, R. et al., 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 431, 56-59.
    Tamburini, F., Adatte, T., Follmi, K. et al., 2003. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140 000 years): mineralogy and geochemistry of ODP Site 1143 and 1144, South China Sea. Marine Geology, 201, 147-168.
    Tapper, N., 2002. Climate, climatic variability and atmospheric circulation patterns in the maritime continent region. In: Kershaw, P., David, B., Tapper, N., et al. (eds), Bridging Wallace's Line: The environmental and cultural history and dynamics of the SE-Asian-Australian region. Advances in Geoecology 34, 5-38.
    Thompson, P. R., Bé, A. W. H., Duplessy, J-C., Shackleton, N. J., 1979. Disappearance of pink-pigmented Globigerinoides tuber at 120,000 yr BP in the Indian and Pacific Oceans. Nature, 280, 554-558.
    Thompson, P. R., 1981. Planktonic foraminifera in the western North Pacific during the past 150 000 years: comparison of modern and fossil assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 241-279.
    Thunell, R. C., Honjo, S., 1981. Calcite dissolution and the modification of planktonic foraminiferal assemblages. Marine Micropaleontology, 6, 169-182.
    Thunell, R. C, Curry, W. B., Honjo, S., 1983. Seasonal variation in the flux of planktonic foraminifera: time series trap results from the Panama Basin. Earth and Planetary Science Letter, 64, 44-55.
    Thunell, R. C., Miao, Q., Calvert, S. E., Pedersen, T. F., 1992. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO_2. Paleoceanography, 7(2), 143-162.
    Thunell, R. C., Anderson, D., Gellar, D., Miao, Q., 1994. Sea-surface temperature estimates for the tropical western Pacific during the last glaciation and their implications for the Pacific Warm Pool. Quaternary Research, 41, 255-264.
    Tian, J., 2002. Plio-Pleistocene climate variations in foraminiferal stable isotope records at ODP Site 1143,South China Sea.Pit.D Thesis.Tongji University.99pp.[田军,2002.南海ODP 1143站有孔虫稳定同位素揭示的上新世至更新世气候变化.同济大学博士学位论文.99pp.]
    Tian, J., Wang, P., Cheng, X., Li, Q., 2002. Astronomically tuned Plio-Pleistocene benthic δ~(18)O record from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters, 203, 1015-1029.
    Tian, J., Wang, P., Cheng, X., 2004. The precessional forcing on the Pleistocene variability of upper ocean structure in the southern South China Sea. Progresses in Natural Science, 14 (6),683-688.[田军,汪品先,成鑫荣,2004.更新世南海南部上层海水结构变化的岁差驱动.自然科学进展,14(6),683-688.]
    Tolderlund, D. S., Bé, A. W. H., 1971. Seasonal distribution of planktonic foraminifera in the western North Atlantic. Micropaleontology, 17(3), 297-329.
    Ufkes, E., Fred Jansen, J. H., Brummer, G.-J. A., 1998. Living planktonic foraminifera in the eastern South Atlantic during spring: indicators of water masses, upwelling and the Congo (Zaire) River plume. Marine Micropaleontology, 33, 27-53.
    Ujiié, H., Ujiié, Y., 1999. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37, 23-40.
    Ujiié, Y., Ujiié, H., 2000. Distribution and oceanographic relationships of modern planktonic foraminifera in the Ryukyu Arc region, northwest Pacific Ocean. Journal of Foraminiferal Research, 30 (4), 336-360.
    Vandenberghe, J., An, Z. S., Nugteren, G. et al., 1997. New absolute time scale for the Quaternary climate in the Chinese loess region by grain size analysis. Geology, 25, 35-38.
    Visser, K., Thunell, R., Stott, L., 2003. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 421, 152-155.
    Volat, J.-L., Pastouret, L., Vergnaud-Grazzini, C., 1980. Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: A review. Marine Geology, 34, 1-28.
    Waelbroeck, C., Labeyrie, L., Duplessy, J.-C. et al., 1998. Improving past sea surface temperature estimates based on planktonic fossil faunas. Paleoceanography, 13 (3), 272-283.
    Wang, B., Clemens, S. C., Liu, P., 2003. Constrasting the Indian and East Asian monsoons: implications on geologic timescales. Marine Geology, 201, 5-21.
    Wang, L., Wang, P., 1989. An attempt at paleotemperature estimation in South China Sea using transfer function. Chinese Science Bulletin, 34(1), 53-56.
    Wang, L., Wang, P., 1990. Late Quaternary paleoceanography of the South China Sea: Glacial-interglacial contrasts in an endosed basin. Paleoceanography, 5(1), 77-90.
    Wang, L., Sarnthein, M., Duplessy, J.-C. et al., 1995. Paleo sea surface salinities in the low-latitude Atlantic: The δ~(18)O record of Globigerinoides ruber (white). Paleoceanography, 10(4), 749-761.
    Wang, L., Sarnthein, M., Erlenkeuser, H. et al., 1999. East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 156, 245-284.
    Wang, P., Zhang, J., Min, Q., 1985. Distribution of foraminifera in surface sediments of the East China Sea. In: Wang et al., Marine Micropaleontology of China. China Ocean Press and Springer Verlag, Beijing, pp. 34-69.
    Wang, P., Min, Q., Bian, Y., Feng, W., 1986. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130,000 years and their paleo-oceanographic implications. Acta Geologica Sinica, 60(3), 1-11.
    Wang, P., 1990. The ice-age China Sea----research results and problems. Proceedings of the First International Conference on Asian Marine Geology, Shanghai, September 7-10, 1988, China Ocean Press, Beijing, 181-197.
    Wang, P., Sun, X., 1994. Last glacial maximum in China: comparison between land and sea. Catena, 23, 341-353.
    Wang, P., Wang, L., Bian, Y., Jian, Z., 1995. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology, 127, 145-165.
    Wang, P., Jian, Z., Liu, Z., 1996. The last glacial maximum climate problem in the sea area of the Nansha islands,south China Sea.Quaternary Sciences,3,193-201.[汪品先,翦知湣,刘志伟,1996.南沙海区盛冰期的气候问题.第四纪研究,3,193-201.]
    Wang, P., 1998. Deformation of Asian and global cooling: Searching links between climate and tectonics.Quaternary Sciences,3,213-221.[汪品先,1998.亚洲形变与全球变冷----探索气候与构造的关系.第四纪研究,3,213-221.]
    Wang, P., 1999. Response of Western Pacific marginal seas to gladal oycles: paleoceanographic and sedimentological features. Marine Geology, 156, 5-39.
    Wang, P., Prell, W. L., Blum, P. et al., 2000. Proceedings of the ODP, Initial Reports 184. Ocean Drilling Program, Texas A&M University, College Station, 1-103[CD-ROM].
    Wang, P., Tian, J., Cheng, X., 2001. Transition of Quaternary gladal cyclicity in deep-sea records at Nansha,the South China Sea. Science in China(Series D), 44(10), 926-933.[汪品先,田军,成鑫荣,2001.第四纪冰期旋回转型在南沙深海的记录.中国科学(D辑),31(10),793-799.]
    Wang, P., Jian, Z., Zhao, Q. et al., 2003a. Evolution of the South China Sea and monsoon history revealed in deep-sea records.Chinese Science Bulletin,48(23),2549-2561.[汪品先,翦知湣,赵泉鸿等,2003.南海演变与季风历史的深海证据.科学通报,48(21),2228-2239]
    Wang, P., Tian, J., Cheng, X. et al., 2003. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31(3), 239-242.
    Wang, P., Tian, J., Cheng, X. et al., 2004. Major Pleistocene stages in a carbon perspective: the South China Sea record and its global comparison. Paleoceanography, 19, PA4005, doi:10.1029/2003PA000991.
    Wang, R., Lin, J., Zheng, L., Chen, R., Chen, J., 2000. Siliceous microplankton fluxes and seasonal variations in the central South China Sea during 1993~1995: monsoon climate and El Nino responses. Chinese Science Bulletin,45(23), 2168-2172.[王汝建,林隽,郑连福,陈荣华,陈建芳,2000.1993~1995年南海中部的硅质生物通量及其季节性变化:季风气候和El Nino的响应.科学通报,45(9),974-978.]
    Wang, R., Li, J., 2003. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea. Chinese Science Bulletin, 48 (4),363-367.[王汝建,李建,2003.南海ODP 1143站第四纪高分辨率的蛋白石记录及其古生产力意义.科学通报,48(1),74-77.]
    Wang, Y. J., Cheng, H., Edwards, R. L. et al., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 2345-2348.
    Watkins, J. M., Mix, A. C., Wilson, J., 1996. Living planktonic foraminifera: tracers of circulation and productivity regimes in the central equatorical Pacific. Deep-Sea Research Ⅱ, 43 (4-6), 1257-1282.
    Wefer, G., Berger, W. H., Bijima, J., Fischer, G., 1999. Clues to ocean history: a brief overview of proxies. In: Ficher, G. and Wefer, G. (eds), Use of proxies in paleoceanography: examples from the South Atlantic. Springer-Verlag Berlin Heidelberg, 1-68.
    Wei, K.-Y., Lee, M.-Y., Duan, W. et al., 1998. Palaeoceanographic change in the northeastern South China Sea during the last 15000 years. Journal of Quaternary Science, 13(1), 55-64.
    Wei, G., Liu, Y., Li, X., Chen, M., Wei, W., 2003. High-resolution elemental records from the South China Sea and their paleoproductivity implications. Paleoceanography, 18(2), 1054, doi: 10.1029/2002PA000826.
    Wiesner, M. G., Zheng, L., Wong, H. K. et al., 1996. Huxes of particulate matter in the South China Sea. In: Ittekkot, V., Schofer, P., Honjo, S., Depetris, P. J. (eds), Particle Flux in the Ocean. Wiley, London, 293-312.
    Willis, K. J., Kleczkowski, A., Griggs, K. M., Gilligan, C. A., 1999. The role of sub-Milankovitch climate forcing in the initiation of the North Hemisphere Glaciation. Science, 285, 568-571.
    Xu, J., Huang, B., Chen, R., Zhang, F., 2001. Distribution of foraminifera in surface sediments of northeastern South China Sea and its environmental implications. Journal of Tropical Oceanography,20(4),6-13.[徐建,黄宝琦,陈荣华,张富元,2001.南海东北部表层沉积中有孔虫的分布及其环境意义.热带海洋学报,20(4),6-13.]
    Yan, X.-H., Ho, C.-R, Zheng" Q., Klemas, V., 1992. Temperature and size variabilities of the western Pacific warm pool. Science, 258, 1643-1645.
    Zachos, J., Pagani, M., Sloan, L. et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686-693.
    Zhao, Q., Wang, P., 1999. Progress in Quaternary paleoceanography of the South China Sea: A review.Quaternary Sciences,6,481-501.[赵泉鸿,汪品先,1999.南海第四纪古海洋学研究进展.第四纪研究,6,481-501.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700