用户名: 密码: 验证码:
南极普里兹湾海洋沉积记录及其对气候变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用中国南极科学考察(CHINARE)在南极普里兹湾海域开展的多个调查航次,针对海洋水体、颗粒物、沉积物和捕获器样品,进行了以有机碳为主的生源要素的分析与研究,探讨了上层海洋环境要素、生产力和浮游植物群落结构的变化,沉降颗粒物质来源、通量及全年变化趋势,沉积物中的有机碳埋藏通量以及利用生物标志物恢复了近百年来上层海洋生产力、浮游植物群落结构和海表温度的变化,揭示了海洋沉积记录对上层海洋环境和气候变化的响应。
     普里兹湾海域上层水体硝酸盐、活性磷酸盐和活性硅酸盐分布趋势一致,均表现为湾内50m以浅水体中含量较低,溶解氧则呈现相反的分布趋势。海水颗粒有机碳含量从湾内向湾外递减,且湾内含量远远大于湾外,颗粒有机碳含量年际变化较大,且与叶绿素a、生物硅和浮游植物细胞丰度等均具有良好的正相关关系,而与营养盐呈负相关关系。颗粒有机碳主要由夏季生长旺盛的浮游植物贡献,占绝对优势的硅藻群落是颗粒有机碳的主要贡献者,研究海域不存在营养盐对浮游植物生长的限制。
     多年来对普里兹湾海域的现场实测发现叶绿素a、初级生产力和新生产力均以湾内陆架区域最高,并远高于陆坡区和湾外深海区,湾内海域同时具有较高的新生产力和再生生产力。初级生产力虽然年际间差异较大,但多年来趋势较为稳定,实测平均值为0.91±0.52gC·m~(-2)·d~(-1),按每年90天计则为82±47gC·m~(-2)·a~(-1),而新生产力为35gC·m~(-2)·a~(-1),显示该海域有较高的生产力输出通量。浮游植物细胞丰度也以湾内陆架区域最高,且初级生产力以微型和小型浮游生物贡献为主。研究海域浮游植物以硅藻占绝对优势,优势度可达80%以上。
     普里兹湾湾内海域颗粒物沉降通量呈现出明显的季节性变化趋势,在南极夏季颗粒物沉降通量较高,而整个冬季通量都较低。沉积物捕获器获取的沉降颗粒物质全年通量为74.31g·m~(-2)·a~(-1),其中夏季约90天时间内的沉降通量占66%。有机碳全年沉降通量为4.3gC·m~(-2)·a~(-1),占上层海洋初级生产力的5.2%,具有较高的碳输出通量。捕获器中生源组分沉降通量夏季最高,冬季则几乎为零,而陆源组分沉降通量则是夏季较高,冬季略低。
     普里兹湾表层沉积物中有机碳含量与沉积物泥质含量分布相似,湾内东部区域多为泥质沉积,有机碳含量也较高,而湾内西部区域泥质含量和有机碳含量均较低。沉积物中有机碳的分布与生物硅具有良好的一致性,且与上层海洋浮游植物密切相关,占有优势地位的硅藻群落是有机质沉降和埋藏的主要贡献者。沉积物中有机碳与总氮呈密切线性相关,C/N比值为5.5~8.2,反映出有机质主要为海洋生源沉积。有机碳含量随沉积物深度增加逐渐降低,到达一定深度后趋于稳定,研究区域有机碳保存率较高,具有较高的碳汇潜力。
     利用210Pb测年法测得了普里兹湾5个站位的沉积物沉积速率,平均为1.06mm·a~(-1),与南北极多个陆架边缘海沉积速率相当。湾内中心区域的沉积速率相对较快,而靠近陆缘和冰架的沉积速率较慢。沉积物积聚通量为313~1254g·m~(-2)·a~(-1),受陆源砂输入和生源物质沉降的共同影响。有机碳沉积通量不仅与沉积物积聚通量有关,还受到沉积物有机碳含量的影响,湾内有机碳沉积通量平均为4g C m~(-2)a~(-1),占上层海洋初级生产力的4.9%,表明研究海域具有较高的生物泵效率。
     表层沉积物中的生物标志物含量与有机碳、生物硅等生源物质含量具有很好的一致性。应用沉积地层中长链烯酮不饱和指数估算的表层海水温度揭示近百年来南极普里兹湾表层海水温度变化范围为-1.85~1.44℃。海表温度在厄尔尼诺时期明显偏高,而在拉尼娜时期则较低,表现出受异常气候事件影响明显。利用浮游植物标志物重建了浮游植物群落结构的变化,浮游植物群落结构受到厄尔尼诺/拉尼娜事件的影响,在厄尔尼诺期间浮游植物群落结构发生明显改变,硅藻相对含量显著增高,甲藻降低;在拉尼娜期间硅藻比例有所降低,甲藻则呈增加趋势。底部被埋藏的浮游植物标志物总含量和硅藻植物群落有很高的一致性,反映出海洋底部对上层海洋生物地化过程的响应。
     沉降颗粒物质中的生物钡通量与生源物质通量具有良好的一致性,根据通量模型估算的输出生产力可以反映出研究海域上层水体的生产力状况。沉积物中的生物钡与生物硅、有机碳含量都呈现正相关关系,且与上层海洋生产力和浮游植物密切相关。利用通量模型估算了百年来的输出生产力状况,结果表明近几十年生产力呈上升趋势,并与海表温度趋势相同,且都与厄尔尼诺暖事件呈对应关系,反映出极区海洋沉积记录信息不仅能够反映上层海洋环境的变化,还与全球气候变化密切相关。
The biogenic material mainly with organic carbon in seawater, particulatematters, sediments and sediment trap samples were analyzed during severalCHINARE cruises in Prydz Bay, Antarctica. The variations of environmentalelements, primary productivity and phytoplankton community in the upper oceans aswell as the source, flux and annual changing tendency of sediment particles and theburial flux of organic carbon in sediments were discussed. Meanwhile, biologicalmarkers were utilized to reconstruct the changes of ocean primary productivity,phytoplankton community and sea surface temperatures, revealing the response ofmarine sediment records to the upper ocean environment and climate changes.
     The distribution tendency of nitrate, phosphate and silicate in the upper seawaterof Prydz Bay are consistent and their concentrations are low in shallow water with adepth less than50m, while dissolved oxygen is on the contrary. The contents ofparticulate organic carbon decreased from inner Prydz Bay to the outer with thecontent in inner bay is significant larger than that in outer bay. Particulate organiccarbon content also revealed significant interannual variation, which was positivelycorrelated to chlorophyll a, biogenic silicon, abundance of phytoplankton cells and soon, but negatively to nutrients. Particulate organic carbon is mainly fromphytoplankton bloomed in summer, whereas diatom community wherein is the maincontributor with its absolutely dominant position. Moreover there is no nutrient limiton phytoplankton growth in the study area.
     Over the years, the in situ measurement in Prydz Bay found that the inner shelfshowed the highest chlorophyll a, primary productivity and new productivity thatwere much higher than those in the slope and abyssal region outside the bay.Meanwhile the inner bay revealed relevantly high new productivity and regeneratedproductivity. Primary productivity had a relatively stable trend despite of significantinterannual differences and the actual-measured mean was0.91±0.52gC·m~(-2)·d~(-1),which should be82±47gC·m~(-2)·a~(-1)based on90days annually, and the mean of newproductivity was35gC·m~(-2)·a~(-1), showing a higher export productivity flux. Theabundance of phytoplankton cells was the highest in the inner-bay continental shelf where the primary productivity was mainly micro-plankton. Diatom assumed absolutedominance in phytoplankton community with degree of dominance more than80%.
     Particulate deposition flux showed obvious seasonal variation in inner Prydz Bay.The flux was higher in summer, but lower in all winter. The annual particulatedeposition flux acquired by sediment trap was74.31g·m~(-2)·a~(-1), deposition fluxwherein around90days in summer accounted for66%. The annual organic carbondisposition flux was4.3gC·m~(-2)·a~(-1), accounting for5.2%of primary productivity inthe upper ocean, indicating a higher organic carbon export flux. The biogeniccomponent deposition flux acquired by the trap was the highest in summer and almostnothing in winter, while the terrigenous component deposition flux was higher insummer and slightly lower in winter.
     The organic carbon and mud content in surface sediments shared the similardistribution trend in Prydz Bay, where revealed more mud sediment and a highercontent of organic carbon in the east inner bay and less contents of organic carbon andmud in the west area. The distribution of organic carbon and biogenic silicon insediments displayed a good consistency which was closely related to phytoplankton inthe upper ocean, and the dominant diatom community was the main contributor forthe sedimentation and burial of organic carbon. Organic carbon in the sediment wasclosely and linearly correlated to total nitrogen with C/N ratio ranging between5.5and8.2, reflecting that the main organic material was ocean biogenic sediment.Organic carbon content decreased with the increase of sediment depth and finallyreached stability at a certain depth. The study area had a high organic carbonpreservation rate and a high carbon sequestration.
     The sedimentation rates of5cores in Prydz Bay were estimated by210Pb datingmethods, and the mean was1.06mm·a~(-1), which was equivalent to the sedimentationrate in the shelf ocean in Antarctic and Arctic oceans. The central inner bay areadisplayed a relatively faster sedimentation rate, and a relatively slow rate atcontinental margin and ice shelf. The sediment mass accumulation rate ranged from313to1254g·m~(-2)·a~(-1)and was influenced by terrigenous sand input and biogenicmatter sedimentation. The organic carbon accumulation rate was not only related tomass accumulation rates, but also influenced by the content of organic carbon in sediments. The average organic carbon accumulation rate was4gC·m~(-2)·a~(-1),accounting for4.9%of the primary productivity in the upper ocean, indicating ahigher biogenic pump efficiency in the study area.
     The contents of biomarkers and biogenic matters such as organic carbon andbiogenic silicon in surface sediments displayed a good consistency. The surface watertemperature calculated by U37kin sediments ranged from-1.85℃to1.44℃in PrydzBay over the past100years. The sea surface temperature was clearly higher during ElNi o period and lower during La Ni a period, showing that it was apparentlyinfluenced by abnormal climate events. Phytoplankton markers were utilized forreconstruction of the changes of phytoplankton community structure which wasinfluenced by El Ni o and La Ni a events. Phytoplankton community changedsignificantly during El Ni o period with significantly increased content of diatom anddecrease of dinoflagellate and the opposite trends during La Ni a period. The contentof biomarker buried in sediments was highly consistent with diatom community,reflecting the response of ocean sediment to marine biogeochemistry process in theupper ocean.
     The biogenic barium flux in sedimental particulate matters was well consistentwith biogenic matter flux, and the export productivity estimated by flux modelreflected the primary productivity in the upper ocean. The content of biogenic bariumwas positively correlated to biogenic silicon and organic carbon in sediments, andalso closely related to the productivity and phytoplankton in the upper ocean. Theexport productivity in recent100years was estimated by flux model and the resultsindicated that in recent several decades such productivity displayed an increasingtrend which was the same with the sea surface temperature trend and corresponded toEl Ni o event, suggesting that the marine sedimentary records in polar regions can notonly reflect the environmental changes of the upper ocean, but also be closely relatedto global climate changes.
引文
Anderson L D, Delaney M L. Middle Eocene to early Oligocene paleoceanographyfrom Agulhas Ridge, Southern Ocean (Ocean Drilling Program Leg177, Site1090). Paleoceanography,20, PA1013, doi:10.1029/2004PA001043.
    Bathrnann U V, Scharek R, Klaas C, et al. Spring development of phytoplanktonbiomass and composition in major water masses of the Atlantic sector of theSouthern Ocean. Deep-Sea Research II,1997,44:51-67.
    Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends incontemporary ocean productivity. Nature,2006,444:752-755.
    Bentalab I, Fontugne M. The role of the southern Indian Ocean in the glacial to theinterglacial atmospheric CO2change organic carbon isotope evidences. Earth andPlanetary Change,1998,16/17:25-36.
    Berger W H, Smetacek V, Wefer G. Productivity of the Ocean: past and present. LifeSciences Research Report44, Wiley, NewYork,1989,471pp.
    Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine plankton. MarineBiology,1971,8:183-189.
    Bonn W J, Gingele F X, Grobe H, et al. Paleoproductivity at the Antarctic continentalmargin: opal and barium records for the last400ka. Palaeogeography,Palaeoclimatology, Palaeoecology,1998,139:195-211.
    Boyd P W, Trull T W. Understanding the export of biogenic particles in oceanicwaters: Is there consensus? Progress in Oceanography,2007,72(4):276-312.
    Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: a new tool forClimatic assessment. Nature,1986,320:129-133.
    Brassell S C. Application of biomarkers for delineating marine paleoclimaticfluctuations during Pleistocene. In: Engel M H and Macko S A, eds. OrganicGeochemistry Principles and Applications. New York: Plenum Press,1993,699-738.
    Brummer G J A,van Eijden A J M.“Blue-ocean” Paleoproductivity estimates frompelagic carbonate mass accumulation rates.Marine Micropalcontlgy,1992,19:99-117.
    Cai W J, Chen L Q, Chen B, et al. Decrease in the CO2uptake capacity in an ice–freeArctic Ocean basin. Science,2010,329:556-559.
    Carroll J, Zaborska A, Papucci C, et al. Accumulation of organic carbon in westernBarents Sea sediments. Deep-Sea Research II,2008,55:2361-2371.
    Caldeira K, Duffy P B. The role of the Southern Ocean in uptake and storage ofanthropogenic carbon dioxide. Science,2000,287:620-622.
    Chen M T, Shian L J, Yu P S, et al.500000-year records of carbonate, organic carbon,and foraminiferal sea-surface temperature from the southeastern South China Sea(near Palawan Island). Palaeogeography, Palaeoclimatology, Palaeoecology,2003,197:113-131.
    Cranwell P A. Lipid geochemistry of sediments from Upton Broad, a small productivelake. Organic Geochemistry,1984,7:25-37.
    Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relationto post-glacial environmental change. Freslwater Biology,1973,3:259-265.
    Collier R, Dymond J, Honjo S, et al. The vertical flux of biogenic and lithogenicmaterial in the Ross Sea: moored sediment trap observations1996-1998.Deep-Sea Research II,2000(47):3491-3520.
    Dehairs F, Fagel N, Antiam A N, et al. Expot production in the Gulf of Biscay asestimated from barium-barite in setting material: A comparison with newproduction. Deep-Sea Research I,2000,47:583-601.
    de leeuw J W and Bass M. Early-stage diagenesis of steroids. In: Johns R B, eds.Biological markers in the sedimentary record. Amsterdam: Elsevier,1986:101-123.
    de leeuw J W, Cox H C, Peakman T M, et al. Relative stabilities of sedimentaryrearranged sterenes as calculated by molecular mechanics: a key to unravel furthersteroid diagenesis. Organic Geochemistry,1993,20:1297-1302.
    DeMaster D J, Mckee B A, Nittrouer C A, et al. Rates of sediment accumulation andparticle reworking based on radiochemical measurement for continental shelfdeposits in the East China Sea. Continental Shelf Research,1985,4(1-2):143-158.
    DeMaster D J, Nelson T M, Harden S L, et al. The cycling and accumulation ofbiogenic silica and organic carbon in Antarctic deep-sea and continental marginenvironments. Marine Chemistry,1991,35:489-502.
    Dronkers J, Miltenburg A G. Fine sediment deposits in shelf seas. Journal of MarineSystems,1996,7:119-131.
    Ducklowa H W, Ericksona M, Kellyb J, et al. Particle export from the upper oceanover the continental shelf of the west Antarctic Peninsula: A long-term record,1992–2007. Deep Sea Research Part II,2008,55(18-19):2118-2131.
    Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy forpaleoproductivity. Paleoceanography,1992,7(2):163-181.
    Eshet Y, Alnogi-Labin A. Calcareous nannofossils as paleoproductivity indicators inupper cretaceous organic rich sequences in Israel. Marine Micropaleontology,1996,29:37-61.
    Fagel N, Dehairs F, et al. Ba distribution in surface Southern Ocean sediments andexport production estimates. Paleoceanography,2002,17(2):1-20.
    Fagel N, Dehairs F, Peinert R, et al. Reconstructing export production at the NEAtlantic margin: potential and limits of the Ba proxy. Marine Geology,2004,204:11-25.
    Ficken K J, Li B, Swaim D L, et al. An n-alkane proxy for the sedimentary input ofsubmerged/floating freshwater aquatic macrophytes. Organic Geochemistry,2000,31:745-749.
    Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea:implications for paleoproductivity reconstruction. Global Biogeochemical Cycles,1995,9(2):289-303.
    Gall M P, Strzepek R, Maldonado M, et al. Phytoplankton processes. Part2: Rates ofprimary production and factors controlling algal growth during the SouthernOcean Iron Release Experiment (SOIREE) Original Research Article. Deep SeaResearch Part II,2001,48(11–12):2571-2590.
    GB12763-2007.海洋监测规范
    GB/T17378-2007.海洋调查规范
    Goad L J and Goodwin T W. The biosynthesis of plant sterols. Progress inPhytochemistry,1972,3:113-198.
    Hans-Martin S, Anne S, Kay-Christian E. Long-chain alkenone patterns in the BalticSea—an Ocean-freshwater transition. Geochimica et Cosmochimica Acta,2000,64(3):469-477.
    Hauck J, Gerdes D, Hillenbrand C D, et al. Distribution and mineralogy of carbonatesediments on Antarctic shelves. Journal of Marine Systems,2012,90:77-87.
    Hernandez-Sanchez M T, Mills R A, Planquette H, et al. Quantifying exportproduction in the Southern Ocean: Implications for the Baxs proxy.Paleoceangraphy,2011,26:1-19.
    Honjo S, Manganinia S J, Krishfield R A, et al. Particulate organic carbon fluxes tothe ocean interior and factors controlling the biological pump: A synthesis ofglobal sediment trap programs since1983. Progress in Oceanography,2008,76(3):217-285.
    Honjo S. Particle fluxes and modem sedimentation in the polar oceans. PolarOceanography, Part B: Chemistry, Biology and Geology, Acadernic Press,1990,687-739.
    Hosie G W, Cochran T G, Pauly T, et al. Zooplankton community structure of PrydzBay, Antarctica, January-February1993(18th Symposium on Polar Biology).Proceedings of the NIPR Symposium on Polar Biology,1997,10:90-133.
    Houghton J T, Ding Y H, Griggs D G, et al. IPCC Climate Change2001: TheScientific Basis. UK: Cambridge University Press,2001,900.
    Howea J A, Wilsona C R, Shimmield T M, et al. Recent deep-water sedimentation,trace metal and radioisotope geochemistry across the Southern Ocean andNorthern Weddell Sea, Antarctica. Deep Sea Research Part II,2007,54(16-17):1652-1681.
    Huiling L, Chunting L, Hsinchung T, et al. Late Pleistocene nutrients and sea-surfaceproductivity in the South China Sea: a record of the connections with northernhemisphere events. Marine Geology,1999,156:197-210.
    Hulth S, Tengberg A, Landén A, et al. Mineralization and burial of organic carbon insediments of the southern Weddell Sea (Antarctica). Deep Sea Research Part I,1997,44(6):955-981.
    IPCC,2007:气候变化2007:综合报告.政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[核心撰写组、Pachauri, R.K和Reisinger,A.(编辑)]. IPCC,瑞士,日内瓦,104页.
    Ichii T. Distribution of Antarctic krill concentrations exploited by Japanese krilltrawlers and minke whales. Proceedings of the NIPR Symposium on PolarBiology,1990,3:36-56.
    Isla E, Masque P, Palanques A, et al. Sediment accumulation rates and carbon burialin the bottom sediment in a high-productivity area: Gerlache Strait (Antarctica).Deep-Sea Research Part II,2002,49:3275-3287.
    Jeandel C, Tachikawa K, Bory A, et al. Biogenic barium in suspended and trappedmaterial as a tracer of export production in the tropical NE Atlantic (EUMELIsites). Marine Chemistry,2000,71(1-2):125-142.
    Justie D, Rabaliais N, Turner R E, et a1. Changes in nutrient structure ofriver-dominated coastal water: stoiehiomatrie nutrient balance and itsconsequences. Estuarine, Coastal and She1f Science,1995,40:339-356.
    Klages M, Boetius A, Christensen J P, et al. The benthos of Arctic Seas and its role forthe organic carbon cycle at the seafloor. In: Stein R, Macdonald R W.(Eds.), TheOrganic Carbon Cycle in the Arctic Ocean. Springer, Berlin, Heidelberg,2004,139-167.
    Kolla V, Sullivan L, Streeter S S, et al. Spreading of Antarctic bottom water and itseffect on the floor of the Indian Ocean inferred from bottom-water potentialtemperature, turbidity, and sea-floor photography. Marine Geology,1976,21:171-189.
    Langone L, Frignani M, Labbrozzi L, et al. Present-day biosiliceous sedimentation inthe northwestern Ross Sea, Antarctica. Journal of Marine Systems,1998,17(1-4):459-470.
    Legendre L. Flux of particulate organic material from the euphoric zone of ocean:Estimation phytoplankton biomass. Journal of Geophysical Research,1998,103(C2):2897-2903.
    Leonardo L, Mauro F, et al. Particle fluxes and biogeochemical processes in an areainfluenced by seasonal retreat of the ice margin (northwestern Ross Sea,Antarctic). Journal of Marine Systems,2000(27):221-234.
    Lepland A, Sather O, Thorsnes T. Accumulation of barium in recent Skagerraksediments: sources and distribution controls. Marine Geology,2000,163:13-26.
    Macdonald R W, Anderson L G, Christensen J P, et al. The Arctic Ocean. In: Liu K K,et al. Carbon and nutrient fluxes in continental margins: A global synthesis. NewYork: Springer,2010,291-303.
    Mackenzie A S, Brassell S C, Eglinton G, et al. Chemical fossils: the geological fateof steroide. Science,1982,217:491-504.
    Madureira L A S, Conte M H, Eglinton G. Early diagenesis of lipid biomarkercompounds in North Atlantic ediments. Paleoceanography,1995,10:620-642.
    Martin J H, Knauer G, Karl D M, et al. VERTEX: carbon cycling in the northeastPacific. Deep-Sea Research,1987,34:267-285.
    Mann K H, Lazier J R N. Dynamics of Marine Ecosystems (Second Edition).Blackwe11, Oxford,1996.
    Marlowe I T, Green J C, Neal A C, et al. Long chain(n-C37-C39) alkenones in thePrymnesiophyceae. Distribution of alkenones and other lipids and their taxonomicsignificance. British Phycological Journal.1984a,19:203-216.
    Marlowe I T, Brassell S C, Eglinton G, et al. Long chain unsaturated ketones andesters in living algae and marine sediments. Organic Geochemistry,1984b,6:135-141.
    Masque P, Isha E, Joan A, et al. Sediment accumulation rates and carbon fluxes tobottom sediments at the Western Bransfield Strait (Antarctica). Deep-SeaResearch II,2002,49:921-933.
    Massom R A, Harris P T, Michael K J. The distribution and form active processes oflatent-heat polynyas in East Antarctica. Annals of Glaciology,1998,27:420-426.
    Mathot S, Lancelot C, Dandois J M. Gross and net primary production in theScotia-Weddell Sea sector of the Southern Ocean during spring1988. PolarBiology,1992,12:321-332.
    Maureen, N Ralph, E H Ross. Seasonal and interannual variability in deep oceanparticle fluxes at the Oceanic Flux Program(OFP)/Bermuda Atlantic Time Series(BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Research II,2001(48):1471-1505.
    McManus J, Dymond J, Dunbar R B, et al. Particulate barium fluxes in the Ross Sea.Marine Geology,2002,184:1-15.
    Menzel D, van Bergen P F, Schouten S, et al. Reconstruction of changes in exportproductivity during Pliocene sapropel deposition: a biomarker approach.Palaeogeography, Palaeoclimatology, Palaeoecology,2003,190:273-287.
    Metzl N, Brunet C, Jabaud-Jan A, et al. Summer and winter air-sea CO2fluxes in theSouthern Ocean. Deep-Sea Research I,2006,53(9):1548-1563.
    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic andpaleoclimatic processes. Organic Geochemistry,1997,27(5-6):213-250.
    Miller G H, Brigham-Grette, Alley R B, et al. Temperature and precipitation history ofthe Arctic. Quaternary Science Reviews,2010,29:1679-1715.
    Mortlock R A, Charles C D, Froelich P N, et al. Evidence for lower productivity in theAtlantic Ocean during the last glaciation. Nature,1991,351:220-223.
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenicopal in pelagic marine sediments. Deep-Sea Research,1989,36(9):1415-1426.
    Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperatureindes U37kbased on core-tops from the eastern South Atlantic and the global ocean(60°N~60°S). Geochimica et Cosmochimica Acta,1998,62(10),1757-1772.
    Nelson D M, DeMaster D J, Dunbar R B, et al. Cycling of organic carbon andbiogenic silica in the Southern Ocean: estimates of water-column and sedimentaryfluxes on the Ross Sea continental shelf. Journal of Geophysical Research,1996,101(C8):18519-18532.
    Nelson D M, Smith W O, Gordon L, et al. Spring distributions of density, nutrientsand phytoplankton biomass in the ice edge zone of the Weddell-Scotia Sea.Journal of Geophysical Research,1987,92:7181-7190.
    Nelson D M, Treguer P, Brzezinski M A, et al. Production and dissolution of biogenicsilica in the ocean: Revised global estimates, comparison with regional data andrelationship to biogenic sedimentation. Global Biogeochemistry Cycles,1995,9:359-372.
    Nelson D M, Anderson R F, Barber R T, et al. Vertical budgets for organic carbon andbiogenic silica in the Pacific sector of the Southern Ocean,1996-1998. Deep-SeaResearch II,2002,49(9-10):1645-1674.
    Nuernborg C C, Bohrmann G, Schlueter M, et al. Barium accumulation in the Atlanticsector of the Seuthem Ocean: Results from190000-year records.Paleoceanography,1997, l2(4):594-603.
    Nunes Vaz, R A, Lennon G W. Physical oceanography of the Prydz Bay region ofAntarctic waters. Deep Sea Research Part I,1996,43(5):603-641.
    Nürnberg D, Brughmans N, Sch nfeld, et al. Paleo-export production, terrigenousflux and sea surface temperatures around Tasmania–implications forglacial/interglacial changes in the Subtropical Convergence Zone. Geophysicalmonograph,2004,151:291-318.
    Nytoft H P, Bojesen-Koefoed J A, Christiansen F G. C26and C28-C3428-norhopanesin sediments and petroleum. Organic Geochemistry,2000,31:25-39.
    O’Brien P E, Truswell E M, Burton T. Morphology, seismic stratigraphy andsedimentary history of the Mac.Robertson shelf, East Antarctica. Terra Antarctica1,1994,407-408.
    Olbers D, Borowski D, Volker C, et al. The dynamical balance, transport andcirculation of the Antarctic Circumpolar Current. Antarctic Science,2004,16(4):439-470.
    Paytan A and Kastner M. Benthic Ba fluxes in the central Equatorial Pacific:implications for the oceanic Ba cycle. Earth&Planetary Science Letters,1996a,142:439-450.
    Paytan A, Kastner M, Chavez F P. Glacial to interglacial fluctuations in productivityin the Equatorial Pacific as indicated by marine barite. Science,1996b,274:1355-1357.
    Pfefer K, Kastan S, Hensen C, et al. Reconstruction of primary productivity from thebarium contents in surface sediments of the South Atlantic Ocean. MarineGeology,2001,177(1-2):13-24.
    Pirrung M, Illner P, Matthiessen J. Biogenic barium in surface sediments of theEuropean Nordic Seas. Marine Geology,2008,250(1-2):89-103.
    Prahl F G, Muehlhausen L A and Zahnle D L. Further evaluation of long-chainalkenones as indicators of paleoceanographic conditions. Geochimica etCosmochimica Acta,1988,52(9):2303-2310.
    Prahl F G and Wakeham S G. Calibration of unsaturation patterns in long-chainketone compositions for paleotemperature assessment. Nature,1987,330:367-369.
    Rechka J A and Maxwell J R. Characterization of alkenone temperature indicators insediments and organisms. Organic Geochemistry,1988,13:727-734.
    Reitz A, Pfeifer K, De Lange G.J. Biogenic barium and the detrital Ba/Al ratio: acomparison of their direct and indirect determination. Marine Geology,2004,204:289-300.
    Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K.-I: source correlation of leaf wax inputs to the sedimentary lipid record. OrganicGeochemistry,1991,17:901-912.
    Robbins T A and Edgington D N. Determination of recent sedimentation rates in LakeMichigan using210Pb and137Cs. Geochimica et Cosmochimica Acta,1975,39:285-304.
    Rosell-Melé A. Interhemispheric appraisal of the value of alkenone indices astemperature and salinity proxies in high-latitude locations. Paleoceanography,1998,13(6):694-703.
    Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2.Science,2004,305:367-371.
    Sarnthein M, Winn K. Global variations of surface ocean productivity in low and midlatitudes: influences on CO2reservoirs of the deep ocean and atmosphere duringthe last21000years. Paleoceangraphy,1988,3:361-399.
    Schenau S J, Prins M A, De Lange G J, et al. Barium accumulation in the Arabian Sea:Controls on barite preservation in marine sediments. Geochimica etCosmochimica Acta,2001,65(10):1545-1556.
    Schmitz B. Barium, equatorial high productivity and the northward wandering of theIndian continent. Paleoceanography,1987,2(1):63-77.
    Schroeder J O, Murray R W, Leinen M, et al. Barium in Equatorial Pacific carbonatesediment: Terdgenous, oxide, and biogenic associations. Paleoceanography,1997,12(1):125-146.
    Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean. Nature,1993,365:119-125.
    Siesser W G. Paleoproductivity of the Indian Ocean during the Tertiary period. Globaland Planetary Change,1995,11:71-88.
    Sikes E L, Volkman J K, Robertson L G, et al. Alkenones and alkenes in surfacewaters and sediments of the Southern Ocean: Implications for paleotemperatureestimation in polar regions. Geochimica et Cosmochimica Acta,1997,61(7):1495-1505.
    Smith N R, Dong Z Q, Kerry K R, et al. Water masses and circulation in the region ofPrydz Bay Antarctica. Deep-Sea Research I,1984,31:1121-1147.
    Smith W O and Nelson D M. Phytoplankton bloom produced by a receding ice edgein the Ross Sea: Spatial coherence with the density field. Science,1985,227:163-166.
    Smith W O, Nelson D M, DiTullio G R, et al. Temporal and spatial patterns in theRoss Sea: Phytoplankton biomass, elemental composition productivity and growthrates. Journal of Geophysical Research,1996,101:18455-18465.
    Smith N and Tréguer P. Physical and chemical oceanography in the vicinity of Prydzbay, Antarctica. In “Southern Ocean Ecology: The BIOMASS Perspective”.Cambridge University Press, Cambridge,1994,25-45.
    Smith W O and Gordon L I. Hyperproductivity of the Ross Sea (Antarctica) polynyaduring austral spring. Geophysical Research Letters,1997,24:233-236.
    Sternberg E, Jeandel C, Miquel J C, et al. Particulate barium fluxes and exportproduction in the northwestern Mediterranean. Marine Chemistry,2007,105:281-295.
    Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadalchange in surface ocean pCO2, and net sea-air CO2flux over the global oceans.Deep-Sea Research II,2009,56:554-577.
    Treguer P. Silica and the cycle of carbon in the ocean. Comptes Rendus Geoscience,2002,334:3-11.
    van Kreveld S A, Knappertsbusch M, Ottens J, et a1. Biogenic carbonate andice—rafted debris (Heinrich layer) accumulation in deep—sea sediments from aNortheast Atlantic piston core. Marine Geo1ogy,1996,131:21-46.
    Versteegh G J M, Riegman R, de Leeuw J W, et al. UK37value for isochrysis galbanaas a function of culture temperature, light intensity and nutrient concentrations.Organic Geochemistry,2001,32:785-794.
    Volkman J K and Maxwell J R. Acyclic isoprenoids as biological markers. In: Johns RB, eds. Biological markers and the sedimentary record. New York: ElsevierPublishers,1986,1-42.
    Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review ofrecent research developments. Organic Geochemistry,1998,29(5-7):1163-1179.
    Volkman J K, Barrett S M. Blackburn S I, et al. Alkenones in Gephyrocapsa oceanica:implications for studies of paleoclimate. Geochim Cosmochim Acta,1995,59:513-520.
    Wilson D L, Smith W O and Nelson D M. Phytoplankton bloom dynamics of thewestern Ross Sea ice edge-I. Primary productivity and species-specific production.Deep-Sea Research Part A,1986,33:1375-1387.
    Wong C S, Whitney F A, Crawford D W, et al. Seasonal and interannual variability inparticle fluxes of carbon, nitrogen and silicon from time series of sediment traps atOcean Station P,1982–1993: relationship to changes in subarctic primaryproductivity. Deep Sea Research Part II,1999,46(11-12):2735-2760.
    Wong A. Structure and Dynamics of Prydz Bay, Antarctica, as Inferred from aSummer Hydrographic Data Set. University of Tasmania, Institute of Antarcticand Southern Ocean Studies, Hobart,1994.
    Worby A P, Massom R A, Allison I, et al. East Antarctic sea ice: a review of itsstructure, properties and drift. Antarctic Research Series,1998,74:41-67.
    WMO.2010. WMO-No.1055, WMO Statement on the Status of the Global Climatein2009. Geneva.
    Yoshikazu S and Eiji Matsumoto. C/N ratios in a sediment core from NakaumiLagoon, southwest Japan-usefulness as an organic source indicator. GeochemicalJournal,2001,35:189-205.
    卞林根,马永锋,逯昌贵,等.南极长城站(1985-2008)和中山站(1989-2008)地面温度变化.极地研究,2010,22(1):1-9.
    蔡昱明,宁修仁,朱根海,等.南极普里兹湾浮游植物现存量与初级生产力粒级结构和新生产力研究.海洋学报,2005,27(4):135-145.
    常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义.地质论评,2009,55(1):91-97.
    陈建芳.古海洋学研究中的地球化学新指标.地球科学进展,2002,17(3):402-409.
    陈志强,王玉衡.南极普里兹湾营养盐消耗及新生产力的估算.极地研究,1998,10(3):204-211.
    董兆乾, Neville S, Knowles K,等.南极普里兹湾海域夏季的水团和环流//南极科学考察论文集,第二集.北京:海洋出版社,1984,1-24.
    段毅.海洋和沼泽沉积有机地球化学.北京:科学出版社,2008,74-93.
    高郭平,董兆乾,侍茂崇.南极普里兹湾附近73°E断面水文结构及多年变化.青岛海洋大学学报,2003,33(4):493-502.
    高学鲁,陈绍勇,马福俊,等.南沙群岛西部海域两柱状沉积物中碳和氮的分布和来源特征及埋藏通量估算.热带海洋学报,2008,27(3):38-44.
    高众勇,陈立奇.南大洋碳循环研究进展.世界科技研究与发展,2002,24(4):41-48.
    高众勇,陈立奇,王伟强.南大洋二氧化碳源汇分布及其海-气通量研究.极地研究,2001,13(3):175-186.
    郝玉,龙江平.北极楚科奇海海底表层沉积物有机碳的生物地球化学特征.海洋科学进展,2007,25(1):63-72.
    候奎,陈镇东,陈延成,等.颗石藻与环境.植物资源与环境学报,2001,10(1):51-53.
    扈传昱,潘建明,刘小涯,等.南大洋沉积物间隙水中营养盐分布及扩散通量研究.海洋学报,2006a,28(4):102-107.
    扈传昱,潘建明,张海生,等.南极普里兹湾外海沉降颗粒物通量、组成变化及其与罗斯海对比研究.海洋学报,2006b,28(5):49-55.
    扈传昱,姚梅,于培松,等.南大洋普里兹湾沉积物中生物硅含量与分布.海洋学报,2007,29(5):48-54.
    扈传昱,张海生,潘建明,等.夏季南极普里兹湾碳的生物地球化学循环.极地研究,2001,13(3):195-204.
    扈传昱,薛斌,于培松,等.夏季南大洋普里兹湾有机质耗氧及营养盐再生过程模拟研究.极地研究,2011,23(1):19-25.
    李超伦,孙松.南极普里兹湾临近海域夏季纽鳃樽对浮游植物的摄食研究.极地研究,2000,12:97-104.
    李凤业,高抒,贾建军,等.黄、渤海泥质沉积区现代沉积速率.海洋与湖沼,2002,33(4):364-369.
    李晋超,唐运千,姜善春.表层沉积物的有机地球化学,南大洋考察报告.北京:海洋出版社,1987,146-178.
    李守军.正烷烃、姥鲛烷与植烷对沉积环境的指示意义——以山东济阳坳陷下第三系为例.石油大学学报(自然科学版),1999,23(5):27-29.
    刘诚刚,宁修仁,孙军,等.2002年夏季南极普里兹湾及其邻近海域浮游植物现存量、初级生产力粒级结构和新生产力研究.海洋学报,2004,26:107-117.
    刘传联,成鑫荣.从超微化石看南沙海区近2Ma海水上层结构的变化.中国科学(D辑),2001,31(10):834-839.
    刘子琳,宁修仁,蔡昱明,等.1999/2000年夏季环南极表层海水叶绿素a和初级生产力.极地研究,2000,12(4):235-244.
    刘子琳,潘建明,陈忠元.南大洋浮游植物现存量对颗粒有机碳的贡献.海洋科学,2004,28(5):44-48.
    刘子琳,史君贤,陈忠元,等.南极夏季普里兹湾邻近海域浮游植物、粒度分级叶绿素a和初级生产力的分布.极地研究,1997,9(1):18-27.
    刘子琳,蔡昱明,陈忠元,等.1998/1999年南极夏季普里兹湾及北部海区叶绿素a和初级生产力的分布特征.极地研究,2002,14(1):12-21.
    卢鸿,孙永革,彭平安.单甲基支链烷烃的单体碳同位素研究.沉积学报,2003,21:360-365.
    陆龙骅.极地气象考察与全球变化研究.山东气象,2007,27(3):1-5.
    吕晓霞,翟世奎,牛丽凤,等.长江口柱状沉积物中有机质C/N比的研究.环境化学,2005,24(3):255-259.
    倪建宇,潘建明,扈传昱,等.南海表层沉积中生物钡的分布特征及其与初级生产力的关系.地球化学,2006,35(6):615-622.
    宁修仁,刘子琳,史君贤,等.南极普里兹湾及其邻近海域浮游植物粒度分级生物量和初级生产力.南极研究,1993,5(4):50-62.
    蒲书箴,董兆乾,胡筱敏,等.普里兹湾海域的夏季上层水及其北向运动.极地研究,2000,12(3):157-167.
    邱雨生,黄奕普,刘广山,等.南极普里兹湾及邻近海域初级生产力的时空变异.厦门大学学报(自然科学版),2004,43(5):676-681.
    孙军,刘动艳,宁修仁,等.2001/2002年夏季南极普里兹湾及其邻近海域的浮游植物.海洋与湖沼,2003,34:519-532.
    孙青,储国强.长链烯酮不饱和度温标研究进展.地质地球化学,2002,30:63-67.
    孙日彦.南极普里兹湾海域夏季异常表层水温及其成因.青岛海洋大学学报:自然科学版,1994,24(4):593-598.
    田正隆,陈绍勇,龙爱民.以Ba为指标反演海洋古生产力的研究进展.热带海洋学报,2004,23(3):78-86.
    汪品先.气候演变中的冰和碳.地学前缘,2002,9(1):85-94.
    王世平.厄尔尼诺事件的判据、分析和特征.海洋学报,1991,13(5):611-619.
    王绍武,龚道溢.近百年来ENSO事件及其强度.气象,1999,25(1):9-14.
    王欣,卞林根,陆龙骅,等.普里兹湾地区近10年来的气候变化特征.极地研究,2002,14(3):195-202.
    王志广,陈发荣,郑立,等.微波消解-电感耦合等离子体质谱同时测定普里兹湾沉积物中微量元素.分析实验室,2012,31(8):50-53.
    王自磐.极地海洋生物学过程与全球气候变化.东海海洋,1997,3:29-36.
    吴庆余,章冰,宋一清,等.水解和细菌降解作用对小球藻热模拟烷烃及生物标志物的影响.科学通报,1998,43:76-80.
    夏小明,杨辉,李炎,等.长江口-杭州湾毗连海区的现代沉积速率.沉积学报,2004,22(1):130-134.
    杨伟锋,陈敏,刘广山,等.楚科奇海陆架区沉积物中核素的分布及其对沉积环境的示踪.自然科学通报,2002,12(5):515-518.
    许武成,王文,马劲松,等.1951-2007年的ENSO事件及其特征值.自然灾害学报,2009,18(4):18-24.
    殷建平,王友绍,徐继荣,等.海洋碳循环研究进展.生态学报,2006,26(2):566-575.
    于洪华,苏纪兰,苗育田.南极普里兹湾及其邻近海域的水文结构特征和底层水的来源.海洋学报,1998,20(1):11-20.
    于培松,扈传昱,朱小萤,等.南极普里兹湾沉积物中的糖类分布及意义.海洋学报,2008,30(1):59-66.
    于培松,扈传昱,刘小涯,等.南极普里兹湾海域的近现代沉积速率.沉积学报,2009,27(6):1172-1177.
    于宇,宋金明,李学刚,等.沉积物生源要素对水体生态环境变化的指示意义.生态学报,2012,32(5):1623-1632.
    余雯,何建华,李奕良,等.基于210Pb测年法的楚科奇海陆架北缘有机碳沉积通量研究.极地研究,2012,24(4):391-396.
    郑少军,史久新.南极普里兹湾邻近海域海冰生消发展特征分析.中国海洋大学学报,2011,41(7/8):9-16.
    赵一阳,栾作峰,孙作庆,等.南海北部湾现代海洋沉积物中的一元脂肪酸和烷烃的特征.中国科学院地球化学研究所有机地球化学开放研究实验室研究年报.贵阳:贵州人民出版社,1987,1-9.
    张海龙,邢磊,赵美训,等.东海和黄海表层沉积物生物标志物的分布特征及古生态重建潜力.中国海洋大学学报,2008,38(6):992-996.
    张海生,宁修仁,乐凤凤,等.三门湾沉积记录中长链烯酮不饱和指数-海表温度和浮游动物群落对厄尔尼诺/拉尼娜的响应.海洋学报,2010,32(3):40-50.
    张乃星,宋金明,贺志鹏.海水颗粒有机碳(POC)变化的生物地球化学机制.生态学报,2006,26(7):2328-2339.
    郑敏芳,陈敏,杨俊鸿,等.应用镭-226解读南极普里兹湾表层水的来源与运移.海洋学报,2010,32(4):88-97.
    仲学锋,王荣.普里兹湾及其邻近海域晶磷虾的生态特点研究.南极研究,1993,5:32-39.
    朱根海,宁修仁.1991/1992年夏季南极普里兹湾邻近海域网采浮游植物的聚类分析.南极研究,1995,7(2):38-44.
    朱根海,宁修仁,刘子琳,等.2000年夏季南极普里兹湾邻近海域浮游植物研究.海洋学报,2006,28(1):118-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700