用户名: 密码: 验证码:
亨廷顿蛋白相关蛋白1与BDNF及p75NTR的胞吞和逆向囊泡运输关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的拟探讨亨廷顿蛋白相关蛋白1(HAP1)与脑源性神经营养因子(BDNF)及其受体p75NTR的胞吞和逆向囊泡运输关系,深入阐述亨廷顿舞蹈病的分子生物学机制。
     方法1、首先构建荧光融合蛋白质粒,利用基因转染、细胞免疫荧光染色等技术,在激光共聚焦显微镜下观察HAP1与BDNF、p75NTR在细胞中的表达和共定位现象:
     1)构建荧光融合蛋白质粒HAPlA-CFP和BDNF-DsRed、pro-BDNF-DsRed、pre-BDNF-DsRed;制备含BDNF-DsRed、pro-BDNF-DsRed和pre-BDNF-DsRed荧光融合蛋白的培养液,以及生物素标记BDNF、pro-BDNF、pre-BDNF蛋白。
     2)分为BDNF组、pro-BDNF组和pre-BDNF组三部分。利用荧光融合蛋白质粒HAP1A-CFP和(或)BDNF-DsRed转染PC12细胞,分别在含不同成分的培养液孵育后,应用激光共聚焦显微镜研究HAP1与BDNF在细胞中的表达和定位。
     3)荧光融合蛋白质粒HAP1A-CFP和p75NTR-YFP转染PC12细胞,分别在含有或无BDNF-DsRed的培养液孵育后,应用激光共聚焦显微镜研究HAP1与p75NTR在细胞中的表达和定位。
     4)采用免疫荧光染色的方法,将PC12细胞分二组,在含有或无生物素标记的BDNF培养基中孵育后进行免疫荧光标记(双标或三标),在激光共聚焦显微镜下观察HAP1、p75NTR和BDNF的表达与定位。
     2、通过转基因鼠皮层神经元培养、基因转染和蛋白免疫印迹(Western-Blot)技术对HAP1与BNDF的胞吞和逆向囊泡运输的相关性进行更加深入的探讨和寻求相关性证据:
     1)根据PCR扩增基因产物鉴定鼠尾DNA结果,将离体培养的新生鼠皮层神经元为三组:正常型(HAP1~(+/+))、HAP1基因敲除型(HAP1~(-/-))和HAP1杂合型(HAP1~(+/-))。细胞在含有生物素标记的BDNF培养基中孵育,采用免疫荧光标记(双标或三标)技术,利用激光共聚焦显微镜观察和对照三种神经元的BDNF胞吞情况。同样的方法应用于pro-BDNF和pre-BDNF。
     2)荧光融合蛋白质粒HAP1A—CFP转染入HAP1~(-/-)神经元,在同样含有lnM生物素标记BDNF蛋白(BDNF组)的Neurobasal培养基中孵育后,在激光共聚焦显微镜下监测HAP1~(-/-)神经元的胞吞情况。同样的方法应用于pro-BDNF组和pre-BDNF组。
     3)培养在25cm~2培养瓶中的新生鼠皮层神经元分为二组,正常组和HAP1基因敲除组。细胞在含有生物素标记的BDNF培养基中孵育,提取细胞总蛋白,采用Western-Blot技术,对照不同基因型的神经元胞吞BDNF的情况。
     3、通过生物素标记胞膜受体蛋白、受体漂白荧光能量转移和免疫共沉淀技术进一步探讨在BDNF的胞吞过程中,HAP1和BDNF的受体p75NTR之间的相互关系:
     1)离体培养新生鼠皮层神经元,按照基因分型分为二组HAP1~(+/+)组和HAP1~(-/-)组,采用sulfo-NHS-S-S-biotin(可逆性的不可透膜的生物素交联剂)标记活细胞膜表面蛋白,二组细胞分别在含有或无BDNF的培养基中孵育,然后利用免疫沉淀(Precipitaion)和Western-Blot技术对胞吞的p75NTR受体进行检测,探讨在BDNF胞吞过程中,HAP1是否对p75NTR的信号传递也起着重要调控作用。
     2)以CFP和YFP作为FRET荧光对,将载有这二种荧光蛋白探针的重组质粒—HAP1A-CFP和p75NTR-YFP共转染PC12细胞,分别在含有或无BDNF的培养基中孵育后,应用激光共聚焦显微镜和受体漂白FRET技术研究HAP1A-CFP和p75NTR-YFP的胞内能量传递和相互作用。
     3)将重组质粒HAP1A-CFP和p75NTR-YFP共转染HEK293细胞,将细胞在含有或无BDNF的培养基中孵育1hr,提取细胞总蛋白,采用免疫共沉淀和Western-Blot技术,并进行蛋白浓度的内参校正,检测HAP1蛋白与p75NTR是否存在生理性的相互作用。
     结果1、HAP1蛋白与经胞吞途径进入细胞的BDNF有高度的共定位现象,但是,与细胞内表达的BDNF几乎没有共定位,BDNF抗体或者p75NTR抗体可以完全阻断后者的共定位。
     2、HAP1蛋白与细胞内表达的和经胞吞途径进入细胞的pro-BDNF均有高度共定位现象;BDNF抗体可以完全阻断后者的共定位,p75NTR抗体或者sortilin抗体可以部分阻断共定位。
     3、HAP1蛋白与细胞内表达的和经胞吞途径进入细胞的pre-BDNF蛋白均有高度共定位现象;pre-BDNF抗体或者sortilin抗体可以完全阻断后者的共定位。
     4、PC12细胞转染荧光融合蛋白质粒HAP1A-CFP和p75NTR-YFP后,激光共聚焦显微镜显示BDNF、p75NTR和HAP1三种蛋白分别存在共定位,并且,BDNF可增强胞浆内HAP1蛋白与p75NTR的共定位,与对照组相比P<0.05。
     5、采用细胞免疫荧光染色技术,激光共聚焦显微镜显示分化的PC12细胞中的内源性HAP1、p75NTR蛋白仅存在部分共定位,BDNF可增强胞浆内HAP1与p75NTR的共定位,与对照组相比P<0.01。
     6、离体培养新生鼠皮层神经元,在含生物素标记的BDNF的培养基孵育后,经细胞免疫荧光染色技术,激光共聚焦显微镜显示HAP1~(+/+)和HAP1~(+/-)神经元的胞膜、树突和胞体中都有BDNF的荧光,但是HAP1~(-/-)神经元中没有,提示BDNF的胞吞和逆向囊泡运输需要HAP1的参与,p<0.01。
     7、和HAP1~(+/+)神经元相比,HAP1~(+/-)神经元内摄的BDNF荧光强度减弱,p<0.05,提示皮层神经元对BDNF的胞吞可能受HAP1基因表达水平的影响。
     8、HAP1~(-/-)神经元成功转染质粒HAP1A-CFP后,可以恢复对BDNF的胞吞,进一步证实HAP1是BDNF胞吞的关键蛋白。
     9、Western-Blot实验证明,HAP1~(+/+)神经元中可以检测到胞吞的BDNF,分子量14kD左右;但是HAP1~(-/-)神经元中没有。
     10、离体培养新生鼠皮层神经元,采用sulfo-NHS-S-S-biotin标记活细胞膜表面蛋白,然后利用免疫沉淀和Western-Blot技术对胞吞的受体进行检测。结果显示HAP1~(-/-)神经元中检测不到胞吞的p75NTR,提示在皮层神经元胞吞BNDF的过程中,HAP1蛋白对p75NTR的信号传递起着重要的调控作用。
     11、利用受体漂白荧光共振能量转移(FRET)技术研究HAP1A-CFP和p75NTR-YFP之间的能量传递,结果显示,BDNF可以使HAP1A-CFP和p75NTR-YFP之间出现能量传递,即HAP1与p75NTR蛋白之间的距离在1-10nm范围,表明在活细胞生理条件下,二种蛋白之间很可能存在相互作用,与对照组相比p<0.05。
     12、采用免疫共沉淀技术检测生理条件下HAP1与p75NTR之间是否相互结合。结果显示,p75NTR抗体和蛋白质A Sepharose可以从细胞蛋白质提取液中拉下HAP1,证实HAP1蛋白可以与p75NTR存在生理性的结合和相互作用。
     结论本研究在国际上首次发现HAP1蛋白是BDNF及其受体p75NTR的胞吞和逆向囊泡运输的关键蛋白,并且可以与p75NTR存在生理性的结合,从而介导BDNF的胞吞和逆向囊泡运输。
Objective This project aims to elucidate whether Huntingtin associated protein 1(HAP1) plays a role in the endocytosis and retrograde transport of BDNF and its receptors,which may offer a way to investigate the molecular biology mechanism of Huntington disease.
     Methods 1.Plasmids were constructed firstly.PC12 cells were transfected with plasmids,or followed by triple labeling with an immunofluorescence method.Co-localization was analyzed and quantified with confocal imaging software:
     1) Plasmids of HAP1A-CPF,BDNF-DsRed,pro-BDNF-DsRed and pre-BDNF-DsRed were constructed.The biotin labeled BDNF, pro-BDNF,pre-BDNF,and medium containing DsRed labeled mature BDNF,were prepared.
     2) We have co-transfected PC12 cells with HAP1A-CPF and BDNF-DsRed,and incubated cells with the conditioning medium containing exogenous DsRed labeled mature BDNF,in the absence,or presence,of the antibodies to mature BDNF or to p75NTR extracellular domain.Confocal images were taken and merged.The same methods were used with pro-BDNF and pre-BDNF.
     3) PC12 cells were used to co-transfected with the plasmid HAP1-A-CFP and p75NTR-YFP.After co-transfection,differentiated PC12 cells were incubated in the presence or absence of DsRed-labeled BDNF conditioning medium to allow internalization,followed by immunofluorescence confocal imaging.
     4) We compared the intracellular distribution of p75NTR and HAP1 in differentiated PC12 cells which were incubated with biotin labeled BDNF,followed by triple labeling with an immunofluorescence method. Co-localization was analyzed and quantified with confocal imaging software.
     2.Cortical neurons from transgenic mice were incubated with biotin-labeled BDNF,followed by triple labeling with an immunofluorescence confocal imaging,or analyzed by Western blot,in order to elucidate whether HAP1 plays a role in the endocytosis and retrograde transport of BDNF:
     1) Cortical neurons from HAP1~(+/+),HAP1~(+/-),and HAP1~(-/-) from mice at postnatal day 1 were cultured.Then applied biotin labeled BDNF to trigger endocytosis,followed by immunostaining experiments and confocal imaging.
     2) We transfected the HAP1~(-/-) neurons with HAP1-CFP plasmids and incubated with incubated with biotin-labeled BDNF,followed by immunostaining experiments and confocal imaging.
     3) Cortical neurons were incubated with biotin labeled BDNF for 1 hour,lysed and analyzed by Western blot.
     3.The p75NTRs on the surface of cultured cortical neurons from transgenic mice were biotin labeled,followed by incubation,precipitation and Western-Blot;the apFRET technology was used to see the fluorescence resonance energy transfer between HAP1 A-CFP and p75NTR-YFP;finally,a Co-immunoprecipitation assay was done to elucidate whether and how HAP1 plays a role in the endocytosis and retrograde transport of BDNF receptors-p75NTR:
     1) The p75NTRs on the surface of cultured cortical neurons from HAP1~(+/+) and HAP1~(-/-) neonatal mice were biotin labeled using a reversible, membrane-impermeable cross-linker(sulfo-NHS-S-S-biotin).Then we incubated neurons with BDNF(25nM) or not for 1 hour.The cell surface biotin was then cleaved from the remaining surface- exposed receptors as described,and the neurons were lysed in RIPA buffer.Equal amounts of protein lysates containing internalized biotinylated receptors were subjected to precipitation with streptavidin- agarose.Immunoblotting was performed with p75 antibodies.
     2) The apFRET technology was used to see the fluorescence resonance energy transfer between HAP1 A-CFP and p75NTR-YFP, which were expressed by co- transfected PC12 cells with plasmids of HAP1A-CFP and p75NTR-YFP,by BDNF stimulation.
     3) A Co-immunoprecipitation assay was done using HEK293 cell lysate which co-expressed HAP1A-CFP and p75NTR-YFP by co-transfection,followed by precipitation with p75NTR antibody and protein A Sepharose and immunoblotting.
     Results 1.Internalized BDNF in PC12 cells is highly co-localized with HAP1 but the co-localization was completely abolished by the antibodies to BDNF or to p75NTR.
     2.Internalized pro-BDNF in PC12 cells is highly co-localized with HAP1 but the co-localization was completely abolished by the antibodies to BDNF,and partly to p75NTR or sortilin.
     3.Internalized pre-BDNF in PC12 cells is highly co-localized with HAP1 but the co-localization was completely abolished by the antibodies to BDNF or to sortilin,not to p75NTR.
     4.The co-localization of the HAP1A-CFP with p75NTR-YFP,which were expressed by co-transfected PC12 cells with plasmids of HAP1A-CFP and p75NTR- YFP,was found and the co-localization was increased by BDNF stimulation.
     5.Substantial co-localization of the intracellular distribution of HAP1 with p75NTR was found in differentiated PC12 cells,and the co-localization was increased by BDNF stimulation.
     6.Upon incubation of cortical neurons with exogenous labeled BDNF,the labeled factor was detected on the cell surface,and within neurites and cell bodies,in most HAP1~(+/+) and HAP1~(+/-),but not in HAP1~(-/-) neurons,suggesting HAP1 is required for BDNF endocytosis and intracellular trafficking.
     7.Moreover,the intensity of internalized BDNF was attenuated in HAP1~(+/-) neurons compared with WT neurons.
     8.The defect in BDNF endocytosis in HAP1~(-/-) neurons could be rescued by HAP1 plasmid transfection.
     9.A Western blot assay showed endocytosed BDNF at 14 kDa was detected in HAP1~(+/+),but not in HAP1~(-/-) neurons.
     10.Incubation of cortical neurons with sulfo-NHS-S-S-biotin,a reversible membrane-impermeable cross-linker of biotin,followed by precipitation and immunoblotting,showed that the endocytosed p75NTR were abolished in HAP1~(-/-) mice,suggesting HAP1 is significant for the signaling of p75NTR in the endocytosis of BDNF in cortical neurons.
     11.The FRET technology suggested that there were fluorescence resonance energy transfer between HAP1 A-CFP and p75NTR-YFP, which were expressed by co-transfected PC12 cells with plasmids of HAP1A-CFP and p75NTR-YFP,by BDNF stimulation,suggesting that HAP1 may interact with p75NTR.
     12.A Co-immunoprecipitation assay showed that HAP1 A-CFP at about 100Kd was detected by precipitation with p75NTR antibody and protein A Sepharose using HEK293 cell lysate which co-expressed HAP1A-CFP and p75NTR-YFP by co-transfection,and immunoblotting. Results verify that HAP1 could binds with p75NTR in the endocytosis and retrograde transport of BDNF.
     Conclusions We found that HAP1 is an essential molecule required for the endocytosis and trafficking of BDNF and its associated receptor p75NTR.The mechanism underlying the effect is that HAP1 could binds with p75NTR in the endocytosis and retrograde transport of BDNF.
引文
[1] Aharoni, R., et al, (2005) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice, Proc Natl Acad Sci U S A, 102:19045-50.
    [2] Alderson RF., Alterman AL., Brade YA. et al. (1990) Brain-derived neurotrophic factor increase survival and differentiated functions of rat septal neurons. Neuron, 5: 297.
    [3] Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., Acheson, A. L., Lindsay, R. M. and Wiegand, S. J. (1997) Anterograde transport of brainderived neurotrophic factor and its role in the brain. Nature, 389, 856-860.
    [4] Balkowiec, A. and Katz, D.M., (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons, J Neurosci, 22, 10399-407.
    [5] Bamji, S. X., Majdan, M., Pozniak, C. D., Belliveau, D. J., Aloyz, R., Kohn, J., Causing, C. G. and Miller, F. D. (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol, 140, 911-923.
    [6] Barde YA,Edger D, (1982) Thoenen H.Purification of a new neurotro-phicfactor from mammalian brain.MBO, 1(5):549
    [7] Berridge, M. J. (1998) Neuronal calcium signaling. Neuron, 21, 13-26.
    [8] Bertaux, F., Sharp, A. H., Ross, C. A., Lehrach, H., Bates, G. P. and Wanker, E. (1998) HAP1-huntingtin interactions do not contribute to the molecular pathology in Huntington's disease transgenic mice. FEBS Lett, 426, 229-232.
    [9] Bibel, M., Hoppe, E. and Barde, Y. A. (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. Embo J, 18, 616-622.
    [10] Bossy-Wetzel, E., Schwarzenbacher, R. and Lipton, S. A. (2004) Molecular pathways to neurodegeneration. Nat Med, 10 Suppl, S2-9.
    [11] Brada YA, Edger D, Thoene H. (1975) Purification of a new neurotrophic factor from mammalian brain. Biochem, 14 12, 2733.
    [12] Butowt, R. and von Bartheld. C. S. (2001) Sorting of internalized neurotrophins into an endocytic transcytosis pathway via the Golgi system: Ultrastructural analysis in retinal ganglion cells. J Neurosci, 21, 8915-8930.
    [13] Cattaneo, E., Zuccato, C. and Tartari, M. (2005) Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci, 6, 919-930.
    [14] Chaldakov, G.N., et al., (2004) Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res, 146, 279-89.
    [15] Chan, E. Y., Nasir, J., Gutekunst, C. A. et al. (2002) Targeted disruption of Huntingtin-associated protein-1 (Hap l) results in postnatal death due to depressed feeding behavior. Hum Mol Genet, 11, 945-959.
    [16] Chao, M. V. and Bothwell, M. (2002) Neurotrophins: to cleave or not to cleave. Neuron, 33,9-12.
    [17] Charrin, B. C., Saudou, F. and Humbert, S. (2005) Axonal transport failure in neurodegenerative disorders: the case of Huntington's disease. Pathol Biol (Paris), 53, 189-192.
    [18] Chen, Z. Y., Ieraci, A., Teng, H., Dall, H., Meng, C. X., Herrera, D. G., Nykjaer, A., Hempstead, B. L. and Lee, F. S. (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci, 25, 6156-6166.
    [19] Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L. and Lee, F. S. (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci, 24, 4401-4411.
    [20] Colomer, V., Engelender, S., Sharp, A. H., Duan, K., Cooper, J. K., Lanahan, A., Lyford, G., Worley, P. and Ross, C. A. (1997) Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a racl guanine nucleotide exchange factor domain. Hum Mol Genet, 6, 1519-1525.
    [21] Davies, S. and Ramsden, D. B. (2001) Huntington's disease. Mol Pathol, 54, 409-413.
    [22] Dechant, G. (2001) Molecular interactions between neurotrophin receptors. Cell Tissue Res, 305, 229-238.
    [23] Deinhardt, K., et al., Neurotrophins Redirect p75NTR from a clathrin-independent to a clathrin-dependent endocytic pathway coupled to axonal transport, Traffic, 8 (2007) 1736-49.
    [24] DiFiglia, M., Sapp, E., Chase, K. et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14, 1075-1081.
    [25] Douma, S., et al, Suppression of anoikis and induction of metastasis by theneurotrophic receptor TrkB, Nature, 430 (2004) 1034-9.
    [26] Dragatsis, I., Zeitlin, S. and Dietrich, P. (2004) Huntingtin-associated protein 1 (Hap1) mutant mice bypassing the early postnatal lethality are neuroanatomically normal and fertile but display growth retardation. Hum Mol Genet, 13,3115-3125.
    [27] Egan, M. F., Kojima, M., Callicott, J. H. et al. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257-269.
    [28] Engelender, S., Sharp, A. H., Colomer, V., Tokito, M. K., Lanahan, A., Worley, P., Holzbaur, E. L. and Ross, C. A. (1997) Huntingtin-associated protein 1 (HAP1) interacts with the pl50Glued subunit of dynactin. Hum Mol Genet, 6, 2205-2212. [29] Erickson, J. W. and Cerione, R. A. (2004) Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes. Biochemistry, 43, 837-842.
    [30] Gatzinsky, K. P., Haugland, R. P., Thrasivoulou, C., Orike, N., Budi-Santoso, A. W. and Cowen, T. (2001) p75 and TrkA receptors are both required for uptake of NGF in adult sympathetic neurons: use of a novel fluorescent NGF conjugate. Brain Res, 920, 226-238.
    [31] Gauthier, L. R., Charrin, B. C., Borrell-Pages, M. et al. (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118, 127-138.
    [32] Goodman, S. R., Zimmer, W. E., Clark, M. B., Zagon, I. S., Barker, J. E. and Bloom, M. L. (1995) Brain spectrin: of mice and men. Brain Res Bull, 36, 593- 606.
    [33] Guillin O, Diaz J, Griffon H, et al. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature, 411 (6833): 86.
    [34] Gunawardena, S. and Goldstein, L. S. (2004a) Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. In: J Neurobiol, Vol. 58, pp. 258-271.
    [35] Gunawardena, S. and Goldstein, L. S. (2004b) Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol 58,258-271.
    [36] Gutekunst, C. A., Li, S. H., Yi, H., Ferrante, R. J., Li, X. J. and Hersch, S. M. (1998) The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci, 18, 7674-7686.
    [37] Hempstead, B. L. (2006) Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res, 3, 19-24.
    [38] Hendry, I. A., Stach, R. and Herrup, K. (1974a) Characteristics of the retrograde axonal transport system for nerve growth factor in the sympathetic nervous system. Brain Res, 82, 117-128.
    [39] Hendry, I. A., Stockel, K., Thoenen, H. and Iversen, L. L. (1974b) The retrograde axonal transport of nerve growth factor. Brain Res, 68, 103-121.
    [40] Huang, E. J. and Reichardt, L. F. (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci, 24, 677-736.
    [41] Iskandrian AS. Adenosine myocardial ferfusion imaging. (1994) Nucl Med., 35(4):734.
    [42] Kalb, R. (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci, 28, 5-11.
    [43] Karlin, S. and Burge, C. (1996) Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci U S A, 93, 1560-1565.
    [44] Kittler, J. T., Thomas, P., Tretter, V., Bogdanov, Y. D., Haucke, V., Smart, T. G. and Moss, S. J. (2004) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A,101, 12736-12741.
    [45] Komada, M. and Kitamura, N. (2001) Hrs and hbp: possible regulators of endocytosis and exocytosis. Biochem Biophys Res Commun, 281, 1065-1069.
    [46] Lee, P., Zhuo, H. and Helke, C. J. (2001a) Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion of the rat. Brain Res Mol Brain Res, 87,31-41.
    [47] Lee, R., Kermani, P., Teng, K. K. and Hempstead, B. L. (2001b) Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945-1948.
    [48] Li, H., Li, S. H., Yu, Z. X., Shelbourne, P. and Li, X. J. (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci, 21, 8473-8481.
    [49] Li, H., Wyman, T., Yu, Z. X., Li, S. H. and Li, X. J. (2003a) Abnormal association of mutant huntingtin with synaptic vesicles inhibits glutamate release. Hum Mol Genet, 12, 2021-2030.
    [50] Li, S. H., Gutekunst, C. A., Hersch, S. M. and Li, X. J. (1998a) Association of HAP1 isoforms with a unique cytoplasmic structure. J Neurochem, 71, 2178- 2185.
    [51] Li, S. H., Gutekunst, C. A., Hersch, S. M. and Li, X. J. (1998b) Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci, 18, 1261- 1269.
    [52] Li, S. H., Hosseini, S. H., Gutekunst, C. A., Hersch, S. M., Ferrante, R. J. And Li, X. J. (1998c) A human HAP1 homologue. Cloning, expression, and interaction with huntingtin. J Biol Chem, 273, 19220-19227.
    [53] Li, S. H., Yu, Z. X., Li, C. L., Nguyen, H. P., Zhou, Y. X., Deng, C. and Li, X. J. (2003b) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington's disease. J Neurosci, 23, 6956-6964.
    [54] Li, X. J., Li, S. H., Sharp. A. H., Nucifora, F. C, Jr., Schilling, G., Lanahan, A., Worley, P., Snyder, S. H. and Ross, C. A. (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature, 378, 398-402.
    [55] Li, X. J., Sharp, A. H., Li, S. H., Dawson, T. M., Snyder, S. H. and Ross, C. A. (1996) Huntingtin-associated protein (HAP1): discrete neuronal localizations in the brain resemble those of neuronal nitric oxide synthase. Proc Natl Acad Sci U S A, 93, 4839-4844.
    [56] Li, Y., Chin, L. S., Levey, A. I. and Li, L. (2002b) Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking. J Biol Chem, 277, 28212- 28221.
    [57] Lu, B., BDNF and activity-dependent synaptic modulation, Learning & Memory, 10(2003)86-98.
    [58] Martin, E. J., Kim, M., Velier, J. et al. (1999) Analysis of Huntingtinassociated protein 1 in mouse brain and immortalized striatal neurons. J Comp Neurol, 403,421-430.
    [59] Matsudaira, P. (1991) Modular organization of actin crosslinking proteins. Trends Biochem Sci, 16, 87-92.
    [60] Mei Zhang (2008) Endocytic mechanisms and drug discovery in neurodegenerative diseases. Bioscience, 13, 6086-6105.
    [61] Michalski, B. and Fahnestock, M. (2003) Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer's disease. Brain Res Mol Brain Res, 111,148-154.
    [62] Milgram, S. L., Mains, R. E. and Eipper, B. A. (1996) Identification of routing determinants in the cytosolic domain of a secretory granule-associated integral membrane protein. J Biol Chem, 271, 17526-17535.
    [63] Moss, S. J. and Smart, T. G. (2001) Constructing inhibitory synapses. Nat Rev Neurosci, 2, 240-250.
    [64] Mowla, S. J., Farhadi, H. F., Pareek, S., Atwal, J. K., Morris, S. J., Seidah, N. G. and Murphy, R. A. (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem, 276, 12660- 12666.
    [65] Mukherjee S, Ghosh RN, Maxfield FR: Endocytosis. Physiol Rev77, 759-803. (1997)
    [66] Nasir, J., Duan, K., Nichol, K. et al. (1998) Gene structure and map location of the murine homolog of the Huntington-associated protein, Hap1. Mamm Genome, 9, 565-570.
    [67] Nucifora, F. C, Jr., Sasaki, M., Peters, M. F. et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 291, 2423-2428.
    [68] Nykjaer, A., Lee, R., Teng, K. K. et al. (2004) Sortilin is essential for proNGFinduced neuronal cell death. Nature, All, 843-848.
    [69] Page, K. J., Potter, L., Aronni, S., Everitt, B. J. and Dunnett, S. B. (1998) The expression of Huntingtin-associated protein (HAP1) mRNA in developing, adult and ageing rat CNS: implications for Huntington's disease neuropathology. Eur J Neurosci, 10, 1835-1845.
    [70] Pang, P. T., Teng, H. K., Zaitsev, E. et al. (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306, 487-491.
    [71] Peng, S., et al.., Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease, J Neurochem, 93 (2005) 1412-21.
    [72] Poo, M.M., (2001) Neurotrophins as synaptic modulators, Nature Reviews, Neuroscience, 2 ,24 - 32.
    [73] Pringle AK,Sundstrom LE,Wild GJ. (1996) Brain derived neurotrophic factor, but not neurophin- 3, prevents ischemia induced neuronal cell death in orgenotypic rat hippocampus slice cultures.Neurosci Lett, 211: 203- 206.
    [74] Raiborg, C., Bache, K. G., Mehlum, A. and Stenmark, H. (2001) Function of Hrs in endocytic trafficking and signalling. Biochem Soc Trans, 29, 472-475.
    [75] Reichardt, L. F. (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci, 361, 1545-1564.
    [76] Ringstedt, T., Ibanez, C. F. and Nosrat, C. A. (1999) Role of brain-derived neurotrophic factor in target invasion in the gustatory system. J Neurosci, 19, 3507-3518.
    [77] Rose CR, Blum R, Kafitz KW et al. (2004) From modulator to mediator: rap id effects ofBDNF on ion channels. Bioessays, 26: 1185- 1194.
    [78] Sadri-Vakili, G. and Cha, J. H. (2006) Mechanisms of disease: Histone modifications in Huntington's disease. Nat Clin Pract Neurol, 2, 330-338.
    [79] Saxena, S., et al., Differences in the surface binding and endocytosis of neurotrophins by p75NTR, Mol Cell Neurosci, 26 (2004) 292-307.
    [80] Schmidt, A. and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev, 16, 1587-1609.
    [81] Sheng, G. Q., Xu, X. S., Lin, Y. F., Wang, C. E., Rong, J., Cheng, D. M., Peng, J., M., Jiang, X., Y., Li., S. H., and Li., X. J. (2008) Huntingtin-associated protein 1 interacts with Ahi 1 to regulate cerebellar and brainstem development in mice. J. Clin. Invest. 118:2785-2795.
    [82] Sieghart, W. and Sperk, G. (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem, 2, 795-816.
    [83] Tang, T. S., Tu, H., Chan, E. Y., Maximov, A., Wang, Z., Wellington, C. L., Hayden, M. R. and Bezprozvanny, I. (2003) Huntingtin and huntingtinassociated protein 1 influence neuronal calcium signaling mediated by inositol- (1,4,5) triphosphate receptor type I. Neuron, 39, 227-239.
    [84] Tang, T. S., Tu, H., Orban, P. C., Chan, E. Y., Hayden, M. R. and Bezprozvanny, I. (2004) HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons. Eur J Neurosci, 20, 1779-1787.
    [85] Trushina, E., Dyer, R. B., Badger, J. D., 2nd et al. (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol, 24, 8195-8209.
    [86] Tsukahara T,Yonekawa Y,Tanaka K. (1994) The role of brain derived neurotrophic fator in transientforebrain ischemia in the rat brain[J].Neurosurgery, 34:323- 331.
    [87] von Bartheld, C. S. (2004) Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. J Neurobiol, 58, 295-314.
    [88] Wiesmann C., de VosAM. (2001) Nerve growth factor: structure and function. Cell Mol Life Sci, 58: 748 - 759.
    [89] Wong, S. T., Henley, J. R., Kanning, K. C, Huang, K. H., Bothwell, M. and Poo, M. M. (2002b) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci, 5, 1302- 1308.
    [90] Yamashita, T., Fujitani, M., Hata, K., Mimura, F. and Yamagishi, S. (2005) Diverse functions of the p75 neurotrophin receptor. Anat Sci Int, 80, 37-41.
    [91] Yamashita, T. and Tohyama, M. (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci, 6, 461- 467.
    [92] Yamashita, T., Tucker, K. L. and Barde, Y. A. (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24, 585-593.
    [93] Ying SX, Cheng JS. (1994) Effect of electro- acupuntureon c- fos expression in gerbil hippcampus during transient global ischemia. Acupuncture Electro- therapeutics Res, 19:207- 213.
    [94] Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., Hayden, M. R. and Raymond, L. A. (2002) Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron, 33, 849-860.
    [95] Zhou, X. F. and Rush, R. A. (1996) Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience, 74, 945-953.
    [96] Zhou, X. F., Song, X. Y., Zhong, J. H., Barati, S., Zhou, F. H. and Johnson, S. M. (2004) Distribution and localization of pro-brain-derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat. J Neurochem, 91, 704-715.
    [97] Zucker, B., Luthi-Carter, R., Kama, J. A., Dunah, A. W., Stern, E. A., Fox, J. H., Standaert, D. G., Young, A. B. and Augood, S. J. (2005) Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1. Hum Mol Genet, 14, 179-189.
    [1] Aharoni, R., et al, (2005) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice, Proc Natl Acad Sci U S A , 102:19045-50.
    [2] Alderson RF., Alterman AL., Brade YA. et al. (1990) Brain-derived neurotrophic factor increase survival and differentiated functions of rat septal neurons. Neuron, 5: 297.
    [3] Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., Acheson, A. L.. Lindsay, R. M. and Wiegand, S. J. (1997) Anterograde transport of brainderived neurotrophic factor and its role in the brain. Nature, 389, 856-860.
    [4] Altar, C. A. and DiStefano, P. S. (1998) Neurotrophm trafficking by anterograde transport. Trends Neurosci, 21, 433-437.
    [5] Bagshaw RD, Mahuran DJ, Callahan JW, (2005) Lysosomal membrane proteomics and biogenesis of lysosomes. Mol Neurobiol 32, 27-41.
    [6] Balkowiec, A. and Katz, D.M., (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons, J Neurosci, 22, 10399-407.
    [7] Bamji, S. X., Majdan, M., Pozniak, C. D., Belliveau, D. J., Aloyz, R., Kohn, J., Causing, C. G. and Miller, F. D. (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol, 140, 911-923.
    [8] Barde YA,Edger D, (1982) Thoenen H.Purification of a new neurotro- phicfactor from mammalian brain.MSO, 1(5):549
    [9] Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG,Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N, (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest, 115, 3265-75.
    [10] Berkemeier, L. R., Winslow, J. W., Kaplan, D. R., Nikolics, K., Goeddel, D. V. and Rosenthal, A. (1991) Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron, 7, 857-866.
    [11] Berridge, M. J. (1998) Neuronal calcium signaling. Neuron, 21, 13-26.
    [12] Bertaux, F., Sharp, A. H., Ross, C. A., Lehrach, H., Bates, G. P. and Wanker, E. (1998) HAP1-huntingtin interactions do not contribute to the molecular pathology in Huntington's disease transgenic mice. FEBS Lett, 426, 229-232.
    [13] Bibel, M., Hoppe, E. and Barde, Y. A. (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. Embo J, 18, 616-622.
    [14] Bossy-Wetzel, E., Schwarzenbacher, R. and Lipton, S. A. (2004) Molecular pathways to neurodegeneration. Nat Med, 10 Suppl, S2-9.
    [15] Bothwell, M. (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci, 18, 223-253.
    [16] Brada YA, Edger D, Thoene H. (1975) Purification of a new neurotrophic factor from mammalian brain. Biochem, 14 12, 2733.
    [17] Bradshaw, R. A., Murray-Rust, J., Ibanez, C. F., McDonald, N. Q., Lapatto, R. and Blundell, T. L. (1994) Nerve growth factor: structure/function relationships. Protein Sci, 3, 1901-1913.
    [18] Bronfman, F. C, Tcherpakov, M., Jovin, T. M. and Fainzilber, M. (2003) Ligand-induced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome. J Neurosci, 23, 3209-3220.
    [19] Butowt, R. and von Bartheld, C. S. (2001) Sorting of internalized neurotrophins into an endocytic transcytosis pathway via the Golgi system: Ultrastructural analysis in retinal ganglion cells. J Neurosci, 21, 8915-8930.
    [20] Campenot, R. B. and MacInnis, B. L. (2004) Retrograde transport of neurotrophins: fact and function. J Neurobiol, 58, 217-229.
    [21] Carter, B. D., Dechant, G., Frade, J. M., Kaltschmidt, C. and Barde, Y. A. (1996) Neurotrophins and their p75 receptor. Cold Spring Harb Symp Quant Biol, 61,407-415.
    [22] Cattaneo, E., Zuccato, C. and Tartari, M. (2005) Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci, 6, 919-930.
    [23] Chaldakov, G.N., et al., (2004) Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res, 146, 279-89.
    [24] Chan, E. Y., Nasir, J., Gutekunst, C. A. et al. (2002) Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Hum Mol Genet, 11, 945-959.
    [25] Chao, M. V. and Bothwell, M. (2002) Neurotrophins: to cleave or not to cleave. Neuron, 33, 9-12.
    [26] Charrin, B. C., Saudou, F. and Humbert, S. (2005) Axonal transport failure in neurodegenerative disorders: the case of Huntington's disease. Pathol Biol (Paris), 53, 189-192.
    [27] Chen, Y. W. (2003) Local protein unfolding and pathogenesis of polyglutamine-expansion diseases. Proteins, 51, 68-73.
    [28] Chen, Z. Y., Ieraci, A., Teng, H., Dall, H., Meng, C. X., Herrera, D. G., Nykjaer, A., Hempstead, B. L. and Lee, F. S. (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci, 25, 6156-6166.
    [29] Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L. and Lee, F. S. (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci, 24, 4401-4411.
    [30] Cohen, S. and Levi-Montalcini, R. (1957) Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res, 17, 15-20.
    [31] Colomer, V., Engelender, S., Sharp, A. H., Duan, K., Cooper, J. K., Lanahan, A., Lyford, G., Worley, P. and Ross, C. A. (1997) Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a racl guanine nucleotide exchange factor domain. Hum Mol Genet, 6, 1519-1525.
    [32] Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M. and Varon, S. (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci, 17,2295-2313.
    [33] Davies, S. and Ramsden, D. B. (2001) Huntington's disease. Mol Pathol, 54, 409-413.
    [34] Dechant, G. (2001) Molecular interactions between neurotrophin receptors. Cell Tissue Res, 305, 229-238.
    [35] [35] Dechant, G. and Barde, Y. A. (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci, 5, 1131-1136.
    [36] Dechant, G. and Neumann, H. (2002) Neurotrophins. Adv Exp Med Biol, 513, 303-334.
    [37] Dechant, G., Tsoulfas, P., Parada, L. F. and Barde, Y. A. (1997) The neurotrophin receptor p75 binds neurotrophin-3 on sympathetic neurons with high affinity and specificity. J Neurosci, 17, 5281-5287.
    [38] Deinhardt, K., et al., Neurotrophins Redirect p75NTR from a clathrin-independent to a clathrin-dependent endocytic pathway coupled to axonal transport, Traffic, 8 (2007) 1736-49.
    [39] DiFiglia, M., Sapp, E., Chase, K. et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14, 1075-1081.
    [40] Douma, S., et al, Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB, Nature, 430 (2004) 1034-9.
    [41] Dragatsis, I., Zeitlin, S. and Dietrich, P. (2004) Huntingtin-associated protein 1 (Hap1) mutant mice bypassing the early postnatal lethality are neuroanatomically normal and fertile but display growth retardation. Hum Mol Genet, 13,3115-3125.
    [42] Egan, M. F., Kojima, M., Callicott, J. H. et al. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257-269.
    [43] Engelender, S., Sharp, A. H., Colomer, V., Tokito, M. K., Lanahan, A., Worley, P., Holzbaur, E. L. and Ross, C. A. (1997) Huntingtin-associated protein 1 (HAP1) interacts with the pl50Glued subunit of dynactin. Hum Mol Genet, 6, 2205-2212.
    [44] Erickson, J. W. and Cerione, R. A. (2004) Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes. Biochemistry, 43, 837-842.
    [45] Ernfors, P., Ibanez, C. F., Ebendal, T., Olson, L. and Persson, H. (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc Natl Acad Sci U S A , 87,5454-5458.
    [46] Farhadi, H. F., Mowla, S. J., Petrecca, K., Morris, S. J., Seidah, N. G. and Murphy, R. A. (2000) Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J Neurosci, 20, 4059-4068.
    [47] Fawcett JP, Aloyz R, Mclean JH et al. (1997) Detection of brain - derived neurotrophic factor in a vesicular fraction of brain synap tosomes. Biol Chem, 272: 8837-8840o
    [48] Fayard, B., Loeffler, S., Weis, J., Vogelin, E. and Kruttgen, A. (2005) The secreted brain-derived neurotrophic factor precursor pro-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC. J Neurosci Res, 80, 18-28.
    [49] Garzon, D. J. and Fahnestock, M. (2007) Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci, 27, 2628-2635.
    [50] Gatzinsky, K. P., Haugland, R. P., Thrasivoulou, C., Orike, N., Budi-Santoso, A. W. and Cowen, T. (2001) p75 and TrkA receptors are both required for uptake of NGF in adult sympathetic neurons: use of a novel fluorescent NGF conjugate. Brain Res, 920, 226-238.
    [51] Gauthier, L. R., Charrin, B. C., Borrell-Pages, M. et al. (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118, 127-138.
    [52] Gines, S., Bosch, M., Marco, S., Gavalda, N., Diaz-Hernandez, M., Lucas, J. J., Canals, J. M. and Alberch, J. (2006) Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain. Eur J Neurosci, 23, 649-658.
    [53] Ginty, D. D. and Segal, R. A. (2002) Retrograde neurotrophin signaling: Trking along the axon. Curr Opin Neurobiol, 12, 268-274.
    [54] Goodman, S. R., Zimmer, W. E., Clark, M. B., Zagon, I. S., Barker, J. E. and Bloom, M. L. (1995) Brain spectrin: of mice and men. Brain Res Bull, 36, 593- 606.
    [55] Grimmer S, Iversen TG, van Deurs B, Sandvig K, (2000) Endosome to Golgi transport of ricin is regulated by cholesterol. Mol Biol Cell 11, 4205-4216.
    [56] Guillin O, Diaz J, Griffon H, et al. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature, 411 (6833): 86. [57] Gunawardena, S. and Goldstein, L. S. (2004a) Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. In: J Neurobiol, Vol. 58, pp. 258-271.
    [58] Gunawardena, S. and Goldstein, L. S. (2004b) Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol, 58,258-271.
    [59] Gutekunst, C. A., Li, S. H., Yi, H., Ferrante, R. J., Li, X. J. and Hersch, S. M. (1998) The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci, 18, 7674-7686.
    [60] Hamanoue, M., Middleton, G., Wyatt, S., Jaffray, E., Hay, R. T. and Davies, A. M. (1999) p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol Cell Neurosci, 14, 28-40.
    [61] Hempstead, B. L. (2006) Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res, 3, 19-24.
    [62] Hendry, I. A., Stach, R. and Herrup, K. (1974a) Characteristics of the retrograde axonal transport system for nerve growth factor in the sympathetic nervous system. Brain Res, 82, 117-128.
    [63] Hendry, I. A., Stockel, K., Thoenen, H. and Iversen, L. L. (1974b) The retrograde axonal transport of nerve growth factor. Brain Res, 68, 103-121.
    [64] Hohn. A., Leibrock, J., Bailey, K. and Barde, Y. A. (1990) Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature, 344, 339-341.
    [65] Hongo, T., Hakuba, A., Shiota, K. and Naruse, I. (2000) Suckling dysfunction caused by defects in the olfactory system in genetic arhinencephaly mice. Biol Neonate, 78, 293-299.
    [66] Huang, E. J. and Reichardt, L. F. (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci, 24, 677-736.
    [67] Iskandrian AS. Adenosine myocardial ferfusion imaging. (1994) Nucl Med., 35(4):734.
    [68] Johnson, F., Hohmann, S. E., DiStefano, P. S. and Bottjer, S. W. (1997) Neurotrophins suppress apoptosis induced by deafferentation of an avian motor-cortical region. J Neurosci, 17,2101-2111.
    [69] Kalb, R. (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci, 28, 5-11.
    [70] Karlin, S. and Burge, C. (1996) Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci U S A , 93, 1560-1565.
    [71] Kells, A. P., Fong, D. M., Dragunow, M., During, M. J., Young, D. and Connor, B. (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther, 9, 682-688.
    [72] Kim, M., Velier, J., Chase, K. et al. (1999) Forskolin and dopamine D1 receptor activation increase huntingtin's association with endosomes in immortalized neuronal cells of striatal origin. Neuroscience, 89, 1159-1167.
    [73] Kiss J, Shooter EM, Patal AJ. (1993) A low-affinity nerve factor receptor antibody is internalized and retrograde transported selectively into cholinergic neurons of the rat basal forebrain. Neuroscience, 57(1): 297.
    [74] Kittler, J. T., Thomas, P., Tretter, V., Bogdanov, Y. D., Haucke, V., Smart, T. G. and Moss, S. J. (2004) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A, 101, 12736-12741.
    [75] Komada, M. and Kitamura, N. (2001) Hrs and hbp: possible regulators of endocytosis and exocytosis. Biochem Biophys Res Commun, 281, 1065-1069.
    [76] Korsching, S. (1993) The neurotrophic factor concept: a reexamination. J Neurosci, 13,2739-2748.
    [77] Lalli, G. and Schiavo, G. (2002) Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J Cell Biol, 156, 233-239.
    [78] [7Larson, M. A. and Stein, B. E. (1984) The use of tactile and olfactory cues in neonatal orientation and localization of the nipple. Dev Psychobiol, 17, 423- 436.
    [79] Lee, P., Zhuo, H. and Helke, C. J. (2001a) Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion of the rat. Brain Res Mol Brain Res, 87,31-41.
    [80] Lee, R., Kermani, P., Teng, K. K. and Hempstead, B. L. (2001b) Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945-1948.
    [81] Levi-Montalcini, R. (1949) The development to the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol, 91, 209-241, illust, incl 203 pl.
    [82] Levi-Montalcini, R., Skaper, S. D., Dal Toso, R., Petrelli, L. and Leon, A. (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci, 19,514-520.
    [83] Li, H., Li, S. H., Yu, Z. X., Shelbourne, P. and Li, X. J. (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci, 21, 8473-8481.
    [84] Li, H., Wyman, T., Yu, Z. X., Li, S. H. and Li, X. J. (2003a) Abnormal association of mutant huntingtin with synaptic vesicles inhibits glutamate release. Hum Mol Genet, 12, 2021-2030.
    [85] Li, S. H., Gutekunst, C. A., Hersch, S. M. and Li, X. J. (1998a) Association of HAP1 isoforms with a unique cytoplasmic structure. J Neurochem, 71, 2178- 2185.
    [86] Li, S. H., Gutekunst, C. A., Hersch, S. M. and Li, X. J. (1998b) Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci, 18, 1261- 1269.
    [87] Li, S. H., Hosseini, S. H., Gutekunst, C. A., Hersch, S. ML, Ferrante, R. J. And Li, X. J. (1998c) A human HAP1 homologue. Cloning, expression, and interaction with huntingtin. J Biol Chem , 273, 19220-19227.
    [88] Li, S. H., Yu, Z. X., Li, C. L., Nguyen, H. P., Zhou, Y. X., Deng, C. and Li, X. J. (2003b) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington's disease. J Neurosci, 23, 6956-6964.
    [89] Li, X. J., Li, S. H., Sharp, A. H., Nucifora, F. C., Jr., Schilling, G., Lanahan, A., Worley, P., Snyder, S. H. and Ross, C. A. (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature, 378, 398-402.
    [90] Li, X. J., Sharp, A. H., Li, S. H., Dawson, T. M., Snyder, S. H. and Ross, C. A. (1996) Huntingtin-associated protein (HAP1): discrete neuronal localizations in the brain resemble those of neuronal nitric oxide synthase. Proc Natl Acad Sci U S A, 93, 4839-4844.
    [91] Li, Y., Chin, L. S., Levey, A. I. and Li, L. (2002b) Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking. J Biol Chem , 277, 28212- 28221.
    [92] Liu, Q. R., Lu, L., Zhu, X. G., Gong, J. P., Shaham, Y. and Uhl, G. R. (2006) Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Res, 1067, 1-12.
    [93] Lou, H., Kim, S. K., Zaitsev, E., Snell, C. R., Lu, B. and Loh, Y. P. (2005) Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron, 45, 245- 255.
    [94] Lu, B., BDNF and activity-dependent synaptic modulation, Learning & Memory, 10(2003)86-98.
    [95] Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegand, S. J., Furth, M. E., Lindsay, R. M. and Yancopoulos, G. D. (1990a) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron, 5, 501-509.
    [96] Maisonpierre, P. C., Belluscio, L., Squinto, S., Ip, N. Y., Furth, M. E., Lindsay, R. M. and Yancopoulos, G. D. (1990b) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science, 247, 1446-1451.
    [97] Marco, S., Canudas, A. M., Canals, J. M., Gavalda, N., Perez-Navarro, E. and Alberch, J. (2002) Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol, 174,243-252.
    [98] Martin, E. J., Kim, M., Velier, J. et al. (1999) Analysis of Huntingtinassociated protein 1 in mouse brain and immortalized striatal neurons. J Comp Neurol, 403,421-430.
    [99] Matsudaira, P. (1991) Modular organization of actin crosslinking proteins. Trends Biochem Sci, 16, 87-92.
    [100] Maudsley S, Martin B, Luttrell LM, (2007) G protein-coupled receptor signaling complexity in neuronal tissue, implications for novel therapeutics. Curr Alzheimer Res 4, 3-19.
    [101] Maxfield FR, McGraw TE, (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5, 121-132.
    [102] Maxfield FR, Wustner D, (2002) Intracellular cholesterol transport. J Clin Investl 10, 891-898.
    [103] McBride, J. L., Ramaswamy, S., Gasmi, M. et al. (2006) Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A , 103,9345-9350.
    [104] McDonald, N. Q., Lapatto, R., Murray-Rust, J., Gunning, J., Wlodawer, A. and Blundell, T. L. (1991) New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature, 354, 411-414.
    [105] Mei Zhang (2008) Endocytic mechanisms and drug discovery in neurodegenerative diseases. Bioscience, 13, 6086-6105.
    [106] Michalski, B. and Fahnestock, M. (2003) Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer's disease. Brain Res Mol Brain Res, 111,148-154.
    [107] Middleton, G., Hamanoue, M., Enokido, Y., Wyatt, S., Pennica, D., Jaffray, E., Hay, R. T. and Davies, A. M. (2000) Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons. J Cell Biol, 148, 325- 332.
    [108] Milgram, S. L., Mains, R. E. and Eipper, B. A. (1996) Identification of routing determinants in the cytosolic domain of a secretory granule-associated integral membrane protein. J Biol Chem, 211, 17526-17535.
    [109] Moss, S. J. and Smart, T. G. (2001) Constructing inhibitory synapses. Nat Rev Neurosci, 2, 240-250.
    [110] Mowla, S. J., Farhadi, H. F., Pareek, S., Atwal, J. K., Morris, S. J., Seidah, N. G. and Murphy, R. A. (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem, 276, 12660- 12666.
    [111] Mowla, S. J., Pareek, S., Farhadi, H. F., Petrecca, K., Fawcett, J. P., Seidah, N. G., Morris, S. J., Sossin, W. S. and Murphy, R. A. (1999) Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J Neurosci, 19, 2069-2080.
    [112] Mukherjee S, Ghosh RN, Maxfield FR: Endocytosis. Physiol Rev77, 759-803. (1997)
    [113] Murphy, R. A., Saide, J. D., Blanchard, M. H. and Young, M. (1977) Molecular properties of the nerve growth factor secreted in mouse saliva. Proc Nail Acad Sci U S A, 74, 2672-2676.
    [114] Nasir, J., Duan, K., Nichol, K. et al. (1998) Gene structure and map location of the murine homolog of the Huntington-associated protein, Hap1. Mamm Genome, 9, 565-570.
    [115] Nucifora, F. C., Jr., Sasaki, M., Peters, M. F. et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 291, 2423-2428.
    [116] Nykjaer, A., Lee, R., Teng, K. K. et al. (2004) Sortilin is essential for proNGFinduced neuronal cell death. Nature, 421, 843-848.
    [117] Page, K. J., Potter, L., Aronni, S., Everitt, B. J. and Dunnett, S. B. (1998) The expression of Huntingtin-associated protein (HAP1) mRNA in developing, adult and ageing rat CNS: implications for Huntington's disease neuropathology. Eur J Neurosci, 10, 1835-1845.
    [118] Pang, P. T., Teng, H. K., Zaitsev, E. et al. (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306, 487-491.
    [119] Peng, S., et al.., Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease, J Neurochem, 93 (2005) 1412-21.
    [120] Poo, M.M., (2001) Neurotrophins as synaptic modulators, Nature Reviews, Neuroscience, 2 .24 - 32.
    [121] Pringle AK,Sundstrom LE,Wild GJ. (1996) Brain derived neurotrophic factor, but not neurophin- 3, prevents ischemia induced neuronal cell death in orgenotypic rat hippocampus slice cultures.Neurosci Lett, 211: 203- 206.
    [122] Radka, S. F., Hoist, P. A., Fritsche, M. and Altar, C. A. (1996) Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Res, 709, 122- 301.
    [123] Rady, R., Zaidi, S. I., Mayer, C. and Katz, D. M. (1999) BDNF is a targetderived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci, 19, 2131-2142.
    [124] Raiborg, C., Bache, K. G., Mehlum, A. and Stenmark, H. (2001) Function of Hrs in endocytic trafficking and signalling. Biochem Soc Trans, 29, 472-475.
    [125] Reddy A, Caler EV, Andrews NW, (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106, 157-69.
    [126] Reichardt, L. F. (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci, 361,1545-1564.
    [127] Rmgstedt, T., Ibanez, C. F. and Nosrat, C. A. (1999) Role of brain-derived neurotrophic factor in target invasion in the gustatory system. J Neurosci, 19, 3507-3518.
    [128] Rose CR, Blum R, Kafitz KW et al. (2004) From modulator to mediator: rap id effects ofBDNF on ion channels. Bioessays, 26: 1185- 1194.
    [129] Sadri-Vakili, G. and Cha, J. H. (2006) Mechanisms of disease: Histone modifications in Huntington's disease. Nat Clin Pract Neurol, 2, 330-338.
    [130] Sadri-Vakili, G., Menon, A. S., Farrell, L. A., Keller-McGandy, C. E., Cantuti- Castelvetri, I., Standaert, D. G., Augood, S. J., Yohrling, G. J. and Cha, J. H. (2006) Huntingtin inclusions do not down-regulate specific genes in the R6/2 Huntington's disease mouse. Eur J Neurosci, 23, 3171-3175.
    [131] Saxena, S., et al., Differences in the surface binding and endocytosis of neurotrophins by p75NTR, Mol Cell Neurosci, 26 (2004) 292-307.
    [132] Schmidt, A. and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev, 16, 1587-1609.
    [133] Seidah, N. G., Benjannet, S., Pareek, S., Chretien, M. and Murphy, R. A. (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett, 379, 247-250.
    [134] Selby, M. J., Edwards, R., Sharp, F. and Rutter, W. J. (1987) Mouse nerve growth factor gene: structure and expression. Mol Cell Biol, 7, 3057-3064.
    [135] Sheng, G. Q., Xu, X. S., Lin, Y. F., Wang, C. E., Rong, J., Cheng, D. M., Peng, J., M., Jiang, X., Y., Li., S. H., and Li., X. J. (2008) Huntingtin-associated protein 1 interacts with Ahil to regulate cerebellar and brainstem development in mice. J. Clin. Invest. 118:2785-2795.
    [136] Sieghart, W. and Sperk, G. (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem, 2, 795-816.
    [137] Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O. et al. (2000) The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A , 97, 6763-6768.
    [138] Sugars, K. L. and Rubinsztein, D. C. (2003) Transcriptional abnormalities in Huntington disease. Trends Genet, 19, 233-238.
    [139] Tang, T. S., Tu, H., Chan, E. Y., Maximov, A., Wang, Z., Wellington, C. L., Hayden, M. R. and Bezprozvanny, I. (2003) Huntingtin and huntingtinassociated protein 1 influence neuronal calcium signaling mediated by inositol- (1,4,5) triphosphate receptor type 1. Neuron, 39, 227-239.
    [140] Tang, T. S., Tu, H., Orban, P. C., Chan, E. Y., Hayden, M. R. and Bezprozvanny, I. (2004) HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons. Eur J Neurosci, 20, 1779-1787.
    [141] Tonra, J. R., Curtis, R., Wong, V. et al. (1998) Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci, 18, 4374-4383.
    [142] Trushina, E., Dyer, R. B., Badger, J. D., 2nd et al. (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol, 24,8195-8209.
    [143] Tsukahara T,Yonekawa Y,Tanaka K. (1994) The role of brain derived neurotrophic fator in transientforebrain ischemia in the rat bvain[J].Neurosurgery, 34:323- 331.
    [144] von Bartheld, C. S. (2004) Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. J Neurobiol, 58, 295-314.
    [145] von Bartheld, C. S., Byers, M. R., Williams, R. and Bothwell, M. (1996a) Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system. Nature, 379, 830-833.
    [146] von Bartheld, C. S., Williams, R., Lefcort, F., Clary, D. O., Reichardt, L. F. and Bothwell, M. (1996b) Retrograde transport of neurotrophins from the eye to the brain in chick embryos: roles of the p75NTR and trkB receptors. J Neurosci, 16, 2995-3008.
    [147] Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R. and He, Z. (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature, 420, 74-78.
    [148] Weibezahn, J., Bukau, B. and Mogk, A. (2004) Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb Cell Fact, 3, 1.
    [149] Wiesmann, C., Ultsch, M. H., Bass, S. H. and de Vos, A. M. (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature, 401, 184-188.
    [150] Wiesmann C, de VosAM. (2001) Nerve growth factor: structure and function. Cell Mol Life Sci, 58: 748 - 759.
    [151] Williams, R., Gaber, B. and Gunning, J. (1982) Raman spectroscopic determination of the secondary structure of crystalline nerve growth factor. J Biol Chem , 257, 13321-13323.
    [152] Wong, S. T., Henley, J. R., Kanning, K. C., Huang, K. H., Bothwell, M. and Poo, M. M. (2002b) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci, 5, 1302- 1308.
    [153] Yamashita, T., Fujitani, M., Hata, K., Mimura, F. and Yamagishi, S. (2005) Diverse functions of the p75 neurotrophin receptor. Anat Sci Int, 80, 37-41.
    [154] Yamashita, T. and Tohyama, M. (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci, 6, 461- 467.
    [155] Yamashita, T., Tucker, K. L. and Barde, Y. A. (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24, 585-593.
    [156] Yeiser, E. C., Rutkoski, N. J., Naito, A., Inoue, J. and Carter, B. D. (2004) Neurotrophin signaling through the p75 receptor is deficient in traf6-/- mice. J Neurosci, 24, 10521-10529.
    [157] Ying SX, Cheng JS. (1994) Effect of electro- acupuntureon c- fos expression in gerbil hippcampus during transient global ischemia. Acupuncture Electro therapeutics Res, 19:207- 213.
    [158] Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., Hayden, M. R. and Raymond, L. A. (2002) Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron, 33, 849-860.
    [159] Zhang M, Liu P, Dwyer NK, Christenson LK, Fujimoto T, Martinez F, Comly M, Hanover JA, Blanchette-Mackie EJ, Strauss JF 3rd, (2002) MLN64 Mediates Mobilization of Lysosomal Cholesterol to Steroidogenic Mitochondria. J Biol Chem 277,33300-33310.
    [160] Zhang M, Dwyer NK, Love DC, Cooney A, Comly M, Neufeld E, Pentchev PG, Blanchette-Mackie EJ, Hanover JA, (2001) Cessation of rapid late endosomal tubulovesicular trafficking in Niemann-Pick type Cl disease. Proc Natl Acad Sci U S A 98, 4466-447'1.
    [161] Zhou, X. F. and Rush, R. A. (1996) Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience, 74, 945-953.
    [162] Zhou, X. F., Song, X. Y., Zhong, J. H., Barati, S., Zhou, F. H. and Johnson, S. M. (2004) Distribution and localization of pro-brain-derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat. J Neurochem, 91, 704-715.
    [163] Zuccato, C., Ciammola, A., Rigamonti, D. et al. (2001) Loss of huntingtinmediated BDNF gene transcription in Huntington's disease. Science, 293,493-498.
    [164] Zuccato, C., Tartari, M., Crotti, A. et al. (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controUed neuronal genes. Nat Genet, 35, 76-83.
    [165] Zucker, B., Luthi-Carter, R., Kama, J. A., Dunah, A. W., Stern, E. A., Fox, J. H., Standaert, D. G., Young, A. B. and Augood, S. J. (2005) Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1. Hum Mol Genet, 14,179-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700