用户名: 密码: 验证码:
海流兔河流域地下水对植被指数分布的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海流兔河流域属于我国西北地区典型的半干旱流域,由于降水量稀少,蒸发强烈,当地植被演替受到水资源、特别是地下水资源时空分布格局的控制,其变迁演替和地下水埋深之间具有很强的相关性。浅层地下水与植被分布特征之间的耦合关系,是生态水文地质学的重要研究内容。这一关系的确立,可以为缓和西北地区开发利用地下水与保护生态环境之间的矛盾提供一定的科学依据。本文借助于遥感信息,以归一化植被指数(Normalized Difference Vegetation Index, NDVI)作为研究区植被生态的标志,对其与地下水埋深之间的关系进行了定量研究,明确了海流兔河流域植被指数对地下水埋深的依赖方式和依赖程度。
     为获得全面的地下水位埋深数据,针对全区观测资料较少的难题,提出了一种设计、优化地下水位统测网的方法。首先通过密网格数值模拟获得参考地下水位等值线图,根据设计的若干水位统测方案在模拟结果中进行水位采样,演示统测行为,用Kriging插值法生成地下水位等值线图评价插值误差,从中优选出精度高且投入少的方案作为实施方案。这种优化的水位统测方法与历史资料相结合,获得了研究区地下水埋深的大样本数据。
     综合利用TM NDVI和SPOT VEGETATION遥感数据,对研究区NDVI均值的年际、年内季节性变化及影响因素进行了分析。研究区NDVI平均值年际变化不强,且与前一年降水量有较强的正相关关系。 NDVI的季节性变化与干燥度和温度分别呈较强的负相关和正相关。
     对海流兔河流域NDVI和地下水埋深的空间分布特征进行了统计分析,结果表明两者均呈偏态分布,且偏斜系数均为正值,右侧有拖尾现象。不同地下水埋深区间的NDVI频率分布特征与Gamma分布具有较好的一致性。
     深入探讨了NDVI均值随地下水埋深的变化,证明NDVI平均值与地下水埋深成相关关系,可以近似用负指数函数描述。各种NDVI统计特征值随地下水埋深的变化均指示埋深10m为一个拐点。当地下水埋深超过这一范围时,植被的覆盖度和多样性均显著降低,不再与地下水紧密相关。在此基础上,基于NDVI值进一步对研究区植被类型进行了划分,研究了当地下水埋深小于10m时,不同类型植被NDVI与地下水埋深空间分布的相关性。随着地下水埋深的增加,灌丛植被NDVI值呈现明显的线性下降趋势,两者相关系数达0.85以上;草地植被由于根系较浅(一般为0.5m),基本依赖于大气降水,与地下水埋深关系不大。由于受到人工灌溉的影响,农田地区的植被与地下水埋深的相关性分析比较复杂,旱柳和小叶杨是乔木的主要物种,由于它们的根系均具有较强的穿透性,因而可以吸收埋深较深的地下水(7-8m)。
     为验证上述NDVI与地下水埋深关系在实际景观上的表现,特选择3条样带——分别位于上、中、下游并贯穿流域两侧分水岭,对地形、NDVI、地下水位联合剖面进行分析。剖面上的植被景观变化可以用前述研究成果解释。在地下水埋深较浅地区,NDVI值明显上升;当地下水位埋深增加时,NDVI值下降;下游河谷两岸由于深切地貌地下水埋深均较大,NDVI值很低,但是部分地区由于种植有人工作物,受到人工灌溉的影响,NDVI值出现正异常。
     海流兔河流域NDVI与地下水埋深之间的量化关系与前人在额济纳绿洲和银川平原的研究结果有所不同。在额济纳绿洲和银川平原存在某个最有利于植被的埋深,但在海流兔河流域没有这种优势埋深。其原因可能与气象、土壤、水文地质等条件有关。
     植被分布会影响陆面蒸散,反过来又会影响地下水。因此,植被、地下水与陆面蒸散之间是耦合关系。本文对此进行了初步的模拟研究。把NDVI与地下水埋深、NDVI与蒸散强度的关系近似描述为线性函数,利用Processing Modflow模拟地下水,并对Recharge和Evapotranspiration模块进行特殊处理,初步建立了海流兔河流域地下水-植被-蒸散的耦合模型,对NDVI的概率平均分布状态进行了反演。
     全文对海流兔河流域NDVI分布与地下水埋深的关系进行了定量描述,尝试建立了地下水-植被-蒸散的耦合模型,丰富了生态水文地质学的研究内容和定量研究方法,对于生态水文学的拓展具有一定的理论意义。
Hailiutu River Catchment is a typical semi-arid region in northwest China. Due to the lowprecipitation and high evaporation, the local vegetation is controlled by spatial and temporaldistribution of water resources, especially the groundwater resources. The relationshipbetween shallow groundwater and vegetation becomes an important problem of EcologicalHydrogeology. The solution can be a scientific basis to ease the conflict between the utilizationof groundwater and environment protection. With the application of remote sensing technology,this article used Normalized Difference Vegetation Index (NDVI) as a symbol of vegetation,studied the quantitative relationship between NDVI and depth to groundwater table (DWT),defined the dependent pattern and level of vegetation index to groundwater in Hailiutu RiverCatchment.
     For collecting the DWT data comprehensively, this article proposed a method to designand optimize groundwater level monitoring networks. This method is also appropriate forother ungauged area. Firstly, the referential water table distribution was generated through arough numerical simulation with dense meshes. Secondly, the groundwater level was sampledfrom the modeling results at the nodes on an initially designed network, as a monitoring test.Then, a new contour of groundwater level was obtained with the monitoring test using Krigingmethod and the interpolation error was calculated through comparison with the referentialwater table distribution. With consideration of both the precision and investment, an optimalscheme among the alternative observation networks was chosen. Combined with the previousdata, this optimal method collected the accurate samples of DWT in Hailiutu River Catchment.
     Combined TM NDVI with SPOT VEGETATION data, interannual and seasonalvariations of average NDVI, with the influencing factors were analyzed. The results showedthat interannual variation of NDVI was not strong and may have positive correlation withprecipitation of the last year. The seasonal variation of NDVI was negatively correlated withdrought index and positively correlated with temperature.
     After the statistical analysis of NDVI and DWT spatial distribution, it indicated that bothof them showed the skewed pattern of frequency distribution, and the coefficients of skewnesswere positive. The statistical distribution of NDVI for different intervals of DWT was Gammadistribution.
     The frequency distribution curves of NDVI with respect to different DWT were obtained.The statistical distributions of NDVI values at different DWT intervals indicated that higher vegetation coverage and more plant diversity exist at places of shallow groundwater. Both themean and the standard deviation of NDVI values decreased with the increase of groundwaterdepth when DWT was less than10m. Beyond that depth, a low level of vegetation coverageand diversity was maintained. Comparisons of different sub-areas within the region withdifferent dominant species showed that the NDVI of shrubs was sensitive to DWT. In contrast,NDVI of herbs was not significantly influenced by DWT. The relationship between NDVI andgroundwater depth in farmlands could not be reliably determined because of disturbance byhuman activities. S. matsudana and Populus simonii Carr are the dominant species in grovesof trees, and they can access deep groundwater (7-8m) with their deeply extending roots.
     For confirming the relationship between NDVI and DWT,3DEM-NDVI-DWT profiles,which locating upstream, midstream and downstream of Hailiutu River Catchment andstretching across the whole district from west to east were chosen. The results verified theconclusion above-the response of vegetation distribution on increase of DWT was positivecorrelation, except the area with manual irrigation.
     However, the dependency of vegetation on groundwater was significantly different in thearid Ejina area and Yinchuan Plain in China. Both in Ejina area and Yinchuan Plain, a suitableDWT interval could be found for the vegetation growth, but not in Hailiutu River Catchment.These differences may attribute to multiple factors such as climate, soil cover andhydrogeology.
     The distribution of vegetation can influence the land surface evapotranspiration(ET), andalso be effective to groundwater. As a result, a coupled model of DWT, NDVI and ET wasbuilt. In this model, the relationship between NDVI and DWT, NDVI and ET were presentedas linear formula respectively. The software of Processing Modflow was used to simulate thegroundwater. The Recharge and Evapotranspiration packages were managed specially basedon the linear formula. The model inverted the distribution of average NDVI frequency.
     This article made a quantitative description of the relationship between NDVI and DWTin Hailiutu River Catchment, built a coupled model of DWT-NDVI-ET. We concluded that thisresearch may significantly improve the contents and methodology of Ecological Hydrogeology,and will provide theoretical significance to the development of Ecohydrology.
引文
Benyon R.G., Theiveyanathan S., Doody T. M., et al. Impacts of tree plantations on groundwater insouth-eastern Australia. Australian Journal of Botany,2006,54:181-192.
    Cooper D. J., Sanderson J. S., Stannard D. I., et al. Effects of long-term water table drawdown onevapotranspiration and vegetation in an arid region phreatophyte community. Journal of Hydrology.,2006,325:21-34.
    Dawson T. E., Ehleringer J. R. Stream trees that do not use stream water. Nature,1991,350:335-337.
    Eamus D, Froend R, Loomes R, et al. A functional methodology for determining the groundwater regimeneeded to maintain the health of groundwater-dependent vegetation. Australian Journal of Botany,2006a,54:97-114.
    Eamus D, Hatton T, Cook P, Colvin C. Ecohydrology: vegetation function, water and resourcemanagement. CSIRO publishing, Melbourne, Australia.2006b,348.
    Galdwell MM, Richards J R. Hydraulic lift: Water efflux from upper roots improves effectiveness ofwater uptake by deep roots. Oecologia,1989,79:1~5.
    Gong P, Miao X, Tate K, et al. Water table level in relation to EO-1ALI and ETM+data over amountainous meadow in California. Canadian Journal of Remote Sensing,2004,30:691-696.
    Gries D, Zeng F, Foetzki A, et al. Growth and water relations of Tamarix ramosissima and Populuseuphraticaon Taklamakan desert dunes in relation to depth to a permanent water table. Plant, Celland Environment,2003,26:725~736.
    Hao X, Li W, Huang X, et al. Assessment of the groundwater threshold of desert riparian forest vegetationalong the middle and lower reaches of the Tarim River, China. Hydrol. Process.,2010,24:178-186.
    Horton J L, Kolb T E, Hart S C, et al. Responses of riparian trees to interannual variation in ground waterdepth in a semi-arid river basin. Plant, Cell and Environment,2001,24:293~304.
    Horton J L, Clark J L. Water table decline alters growth and survival of Salix gooddingii and Tamarixchinensis seedlings. Forest Ecology and Management,2001,140:239~247.
    Ibrahim L, Pore M F, Cameron A D.Interactive effects of nitrogen and water availabilities on gasexchange and whole-plant carbon allocation in poplar.Tree Physiology,1998(18):481-487.
    Jin X M, Schaepman M E, Clevers JGPW, et al. Groundwater depth and vegetation in the Ejina area,China. Arid Land Research and Management,2011,25:194-199.
    Kranjcec J, Mahoney J M, Root S B. The responses of three riparian cottonwood species to water tabledecline. Forest Ecology and Management,1998,110:77~87.
    Li C.Population differences in water-use efficiency of Eucalyptus microtheca seedlings under differentwatering regimes.Physiologia Plantarum,2000,108:134-139.
    Marios S. Groundwater observation network design for the Kansas, U.S.A. J. of Hydrology,1983,61.
    Marios S., James E. P., Olea R.A., et al. Ground-water network design for northwest Kansas, using thetheory of regionalized variables. Ground Water,1982,20(1):48-58.
    Meinzer OE. Plants as indicators of groundwater. US Geological Survey Water-Supply Paper,1927,577.
    Michelena V A,Boyer J S. Complete turgor maintenance at low water potentials in the elongatingregions of maize leaves.Plant Physiology,1982,69:1145-1149.
    Miller G R, Chen X, Rubin Y, et al. Groundwater uptake by woody vegetation in a semiarid oak savanna.Water Resources Research,2010,46: W10503.1-W10503.14.
    Naumburg E, Mata-Gonzalez R, Hunter RG, et al. Phreatophytic vegetation and groundwaterfluctuations-a review of current research and application of ecosystem response modeling with anemphasis on Great Basin vegetation. Environmental Management,2005,35:726-740.
    Newman B D, Wilcox B P, Archer S R, et al. Ecohydrology of water-limited environments: a scientificvision. Water Resources Research,2006,42:1-15.
    O’Grady A P, Eamus D, Cook P G, et al. Groundwater use by riparian vegetation in the wet-dry tropics ofnorthern Australia. Australian Journal of Botany,2006a,54:145-154.
    O’Grady A P, Cook P G, Howe P, et al. Groundwater use by dominant tree species in tropical remnantvegetation communities. Australian Journal of Botany,2006b,54:155-171.
    Paruelo J M, Epstein H E, Lauenroth W K, et al. ANPP Esti-mates from NDVI for the Central GrasslandRegion of the United States. Ecology,1997,78(3):953-958.
    Stromberg J C, Tiller R. Effect of groundwater decline on riparian vegetation of semiarid region: The SanPedro, Arizona. Ecological Applications,1996,61(1):113-131.
    Sweda T, Koide T. Applicability of growth equations of the growth of trees in stem radius (I): Applicationto white spruce. J. Jap. for. Sci.,1981,61:321~329.
    Wierda A, Fresco LFM, Grootjans A P, et al. Numerical assessment of plant species as indicators of thegroundwater regime. Journal of Vegetation Science,1997,8:707-716.
    Wu Y, Kuzma J, Marechal E, et al. Abscisic acid signaling through cyclic ADP-ribose in plants. Science,1997,278:2126-2130.
    Zencich S J, Froend R H, Turner G V, et al. Influence of groundwater depth on the seasonal sources ofwater accessed by Banksia tree species on a shallow, sandy, coastal aquifer. Oecologia,2002,131:8-19.
    白恩辉,安建忠,王佳武,等.陕西省榆林市补浪河-红石桥水源地勘探报告,2007.
    曹国亮.鄂尔多斯盆地白垩系地下水流系统及地下水年龄模型研究:[硕士学位论文].北京:中国地质大学(北京),2006.
    陈家鼎,郑忠国.概率与统计.北京:北京大学出版社,2007.
    陈隆亨,曲耀光.河西地区水土资源及其合理开发利用.北京:科学出版社,1992.
    崔旭东,陶正平,张俊,等.基于SEBS方法的蒸散量计算及可靠度分析.勘察科学技术,2011(6):10-12.
    丁宏伟,赵成,黄晓辉,等.疏勒河流域的生态环境与沙漠化.干旱区研究,2001,18(2):5-100.
    董殿伟,林沛,晏婴.北京平原地下水水位监测网优化.水文地质工程地质,2007,1:10-19.
    董立新,吴炳方,孟立霞,等.结合UPSCALING技术与对象多特征的土地利用/覆盖信息提取研究.国土资源遥感,2008,4:75-80.
    房世波,谭凯炎,刘建栋,等.鄂尔多斯植被盖度分布与环境因素的关系.植物生态学报,2009,33(1):25-33.
    郭占荣,刘志明,朱延华.克立格法在地下水观测网优化设计中的应用.地球学报,1998,19(4):429-433.
    郭志华,肖文发,蒋有绪,等.海南岛植被景观的斑块特征.林业科学,2004,40(2):9-15.
    韩建秀,张春亿.南阳市城市地下水监测网优化设计.地下水,2007,29(1):102-105.
    侯光才,张茂省,刘方,等.鄂尔多斯盆地地下水勘查研究.北京:地质出版社,2008.
    胡光成,金晓媚,史晓杰,等.银川平原植被空间分异研究.干旱区资源与环境,2009,23(6):110-113.
    胡欣欣.龙栖山国家级自然保护区森林景观格局分析及其生态评价:[博士学位论文].福建福州:福建农林大学,2009.
    黄金廷,侯光才,陶正平,等.鄂尔多斯高原植被生态分区及其水文地质意义.地质通报,2008,27(8):1330-1334.
    金晓媚,胡光成,史晓杰,等.银川平原土壤盐渍化与植被发育和地下水埋深关系.现代地质,2009,23(1):23-27.
    金晓媚,万力,薛忠歧,等.基于遥感方法的银川盆地植被发育与地下水关系研究.干旱区资源与环境,2008,22(1):129-132.
    金晓媚,万力,张幼宽,等.银川平原植被生长与地下水关系研究.地学前缘,2007,14(3):197-203.
    李洪波. White方法的改进及在地下水蒸散发研究中的应用:[硕士学位论文].北京:中国地质大学(北京),2012.
    李秋元,孟德顺. Logistic曲线的性质及其在植物生长分析中的应用.西北林学院学报,1993,8(3):81~86.
    李生英,兰荣光,许童羽,等.不同杨树品种生理生态特性及其与生长的关系.沈阳农业大学学报,1998,29:47-52.
    李志熙.毛乌素沙地高等植被调查与研究:[硕士学位论文].陕西杨凌:西北农林科技大学,2005.
    刘晓光,高克祥.生长模型预浊法在杨树细菌溃疡病流行预测中的应用.林业科学,1998,34(4):123~128.
    刘永和,张万昌,朱时良,等.基于广义线性模型和NCEP资料的降水随机发生器.大气科学,2010,34(3):599-610.
    刘志仁,王红,贺生成,等.基于毛乌素沙漠成因与现状的生态经济开发模式与制度保障.生态环境,2007,10:136-139.
    刘治政,吴晓东,林洪孝. Kriging插值模型在地下水位监测网优化中的应用.人民长江,2010,41(9):14-15.
    卢桦.鄂尔多斯盆地海流兔河流域优势植被(沙柳)与地下水关系研究:[硕士学位论文].陕西西安:长安大学,2010.
    鲁松.干旱胁迫对植物生长及其生理的影响.江苏林业科技,2012,39(4):51-54.
    马龙.科尔沁沙地地表环境演变及其与水文气象因子间的响应关系研究:[博士学位论文].呼和浩特:内蒙古农业大学,2007.
    马娜,胡云锋,庄大方,等.基于遥感和像元二分模型的内蒙古正蓝旗植被覆盖度格局和动态变化.地理科学,2012,2:251-256.
    牛婷.基于中低分辨遥感数据的塔里木河下游植被恢复分析:[硕士学位论文].新疆乌鲁木齐:新疆农业大学,2008.
    秦延军,宋雷鸣,刘梅侠,等.大庆油田西部地区地下水动态监测网优化设计.水文地质工程地质,2001,2:21-25.
    任建民,张香台,俞兆权.干旱区非地带性植被生态需水量的研究.沈阳农业大学学报,2007,38(3):383-386.
    苏里坦,宋郁东,张展羽,等.天山北麓地下水与自然植被的空间变异及其分形特征.山地学报,2005,23(1):14-20.
    孙睿,刘昌明,李小文,等.利用累积NDVI估算黄河流域年蒸散量.自然资源学报,2003,18(2):156-161.
    孙宪春,金晓媚,万力.地下水对银川平原植被生长的影响.现代地质,2008a,22(2):321-324.
    孙宪春,金晓媚,万力.应用混合分布研究银川平原地下水埋深对植被的影响.地学前缘,2008b,15(5):344-348.
    汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程.北京:科学出版社,2010.
    万力,曹文炳,胡伏生,等.生态水文地质学.北京:地质出版社,2010.
    王芳,梁瑞驹,杨小柳,等.中国西北地区生态需水研究(1)—干旱半干旱地区生态需水理论分析.自然资源学报,2002,17(1):1~8.
    王庆兵,段秀铭,高赞东,等.济南岩溶泉域地下水位监测.水文地质工程地质,2007(2):1-7.
    王睿,张闰生.温度与盐度对卤虫生物学特性的影响.生态学报,1995,15(2):214~219.
    吴剑锋,郑春苗.地下水污染监测网的设计研究进展.地球科学进展,2004,19(3):429-436.
    仵彦卿,边农方.岩溶地下水监测网优化分析.地学前缘,2003,10(4):637-643.
    仵彦卿,张倬元,李俊亭,等.地下水动态观测网的优化设计.成都:成都科技大学出版社,1993.
    武吉华,张绅.植物地理学.北京:高等教育出版社,1995.
    徐海量,宋郁东,王强,等.塔里木河中下游地区不同地下水位对植被的影响.植物生态学报,2004,28(3):400-405.
    薛忠歧,龚斌,万力,等.黑河下游额济纳绿洲变化规律及其相关因素分析.地学前缘,2006,13(1):48-51.
    杨春杰.地表蒸散量估算及空间分布研究:[硕士学位论文].北京:中国地质大学(北京),2011.
    杨纪珂,齐翔林.现代生物统计.合肥:安徽教育出版社,1985.
    杨泽元,王文科,黄金廷,等.陕北风沙滩地区生态安全地下水位埋深研究.西北农林科技大学学报,2006,34(8):67-74.
    殷祚云. Logistic曲线拟合方法研究.数理统计与管理,2002,21(1):41-46.
    于小飞,孙睿,陈永俊,等.乌审旗植被覆盖度动态变化及其与降水量的关系.资源科学,2006,28(4):31-37.
    于小飞,孙睿,陈永俊,等.乌审旗植被覆盖度动态变化及其与降水量的关系.资源科学,2006,28(4):31-37.
    袁超.渭河流域主要河流水文干旱特性研究:[硕士学位论文].陕西杨凌:西北农林科技大学,2008.
    詹晓敏.补浪河水源地地下水流三维数值模拟:[硕士学位论文].陕西西安:长安大学,2007.
    张贵,曹世恩.广义Logistic模型的推导及其应用.中南林学院学报,1999,19(1):48-51.
    张宏锋,陈亚宁,陈亚鹏,等.塔里木河下游植物群落的物种数量变化与生态系统动态研究.生态学杂志,2004,23(4):21~24.
    张金屯.植被数量生态学方法.北京:中国科学技术出版社,1995.
    张竞.植被对地下水依赖程度的实验研究——以鄂尔多斯盆地典型植被沙柳为例:[硕士学位论文].北京:中国地质大学(北京),2012.
    张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究.中国沙漠,2004,24(1):110~113.
    张强.海流兔流域生态植被变化与环境影响因素研究:[硕士学位论文].北京:中国地质大学(北京),2011.
    张武文,马秀珍,谭志刚,等.额济纳平原植被分布与地下水关系的研究.干旱区资源与环境,2000,14(5):31~35.
    张学霞,葛全胜,郑景石.近50年北京植被对全球变暖的响应及其时效.生态学杂志,2005,24(2):123-130.
    张雨航,王晓林,胡光成.基于MODIS数据的海流兔河流域蒸散量的计算.地球科学—中国地质大学学报,2012,37(2):375-380.
    张遵强,何希诚,胡超宗,等.紫竹生物学特性的研究.竹子研究汇刊,1997,16(1):6~12.
    赵静,姜琦刚,李卫东,等.基于NDVI变化的三江源生态环境演变分区研究.世界地质,2008,27(4):427-431.
    赵明,郭志中,王耀琳,等.不同地下水位植物蒸腾耗水特性研究.干旱区研究,2003,20(4):286~291.
    赵文智,刘鹄.荒漠区植被对地下水埋深响应研究进展.生态学报,2006,26(8):2702-2708.
    赵英时.遥感应用分析原理与方法.北京:科学出版社,2003.
    郑丹,李卫红,陈亚鹏,等.干旱地区地下水与天然植被关系研究综述.资源科学,2006,27(4):160-167.
    郑明,陈子毅,汪嘉冈,等.数理统计讲义.上海:复旦大学出版社,2005.
    中国地下水科学战略研究小组.中国地下水科学的机遇与挑战,北京:科学出版社,2009.
    钟华平,刘恒,王义,等.黑河流域下游额济纳绿洲与水资源的关系.水科学进展,2002,13(2):223-228.
    周仰效,李文鹏.区域地下水位监测网优化设计方法.水文地质工程地质,2007,1:1-9.
    周仰效.地下水—陆生植被系统研究评述.地学前缘,2010,17(6):21-30.
    朱瑾,霍传英,姜越,等.乌鲁木齐河流域地下水水位监测网设计.水文地质工程地质,2007,2:8-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700