用户名: 密码: 验证码:
大跨径悬索桥主缆精细化计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着悬索桥跨径的不断增大,主缆的安全系数已从最初的4.0降到目前的2.0左右,安全系数的降低,必然要求对悬索桥进行更加精确的计算。结合悬索桥结构的特点,开发新单元,建立更加符合实际情况的计算模型,从而达到精细化计算的目的。本文基于空间分段悬链线理论和几何非线性有限元理论,开展了悬索桥的几何非线性、索与鞍座的接触非线性、空间主缆线形等方面的研究。
     首先,将平面缆索的分段悬链线理论拓展到空间缆索体系,建立了空间主缆与空间鞍座的切点位置的计算方法及空间主缆线形的迭代算法,采用数值解析法编制了相应的空间缆索线形计算程序,可全面考虑空间鞍座、散索鞍及锚跨分散索股等因素的影响,能准确计算主缆及锚跨索股的无应力长度、主缆或索股与鞍座的切点坐标及锚跨索股的张力,可用于空间缆索系统的成桥及空缆状态的线形计算。
     然后,在分析索与鞍座的约束关系的基础上,提出并建立了可用于悬索桥有限元计算的两种新单元:鞍座单元和锚碇—锚跨单元,其中鞍座单元用于主缆和塔顶鞍座的接触非线性计算,锚碇—锚跨单元用于锚跨分散索股及边跨主缆与散索鞍的接触非线性计算。新单元自动满足索与鞍座是相切的。首先,以两节点间索的无应力长度保持不变为条件,对单元进行状态求解,确定切点位置,然后,根据空间悬链线理论及索与鞍座的几何关系,推导出精确的单元节点力,同时,以增量代替微分,根据刚度矩阵的定义,推导出单元的切线刚度矩阵,计算表明,新单元具有很高的计算精度。这两种新单元的引入,很好地解决了悬索桥的索与鞍座接触非线性模拟困难的问题,使得计算模型更加符合实际情况。
     最后,建立了以杆端内力全量计算方法为基础的增量迭代法作为非线性有限元基本方程的求解方法,这种全量方法计算杆端抗力的精度不依赖切线刚度的精度且不存在误差累积的缺点,很适合开发的两种新单元;阐述了各类单元根据节点总位移求杆端抗力和切线刚度矩阵的方法;介绍了矢量发生空间大转动时的旋转变换关系、空间梁单元梁端总转角的确定方法及几何非线性中带刚臂单元、节点自由度放松及主从约束的处理方法;采用不平衡力向量分级施加的算法,编制了包括悬链线索单元、梁单元、鞍座单元及锚碇—锚跨单元在内的悬索桥几何非线性空间有限元计算程序。
     计算分析表明,悬索桥的结构计算中需准确考虑鞍座的影响,若采用传统杆系有限元计算方法而不考虑切点位置相对鞍座的变化,计算的成桥线形误差将大于架设精度要求,同时施工过程中出现的误差可能更大。两种新单元的引入提高了悬索桥结构的计算精度,为施工控制提供了准确的计算依据。
With the increasing span length of suspension bridge, the safety factor of main cable was decreased from the original4.0to the current2.0. Therefore it is necessary to perform more accurate calculation of suspension bridge. In order to achieve the purposes of precise calculation, two new elements were developed combined with the structure characteristics of suspension bridge, and the calculation model is more consistent with the actual situation. On the basis of the segmental catenary theory and nonlinear finite element method, a series of research work was carried on around the geometric nonlinear analysis of suspension bridges, the contact nonlinear between cable and saddle, the alignment of the spatial main cable.
     Firstly, the plane cable segmental catenary theory was extended to the spatial cable system. The calculation methods of tangential point position between spatial cable and space saddle and the iterative algorithm of spatial main cable configuration were established. A corresponding spatial cable program, which can comprehensively consider of the space saddle, splay saddle, anchor span strand, has been developed using the numerical analytical method. The unstressed length of main cable and anchor span strand, tangential point and jacking force of strand can also be figured out accurately by using the program. The program can be used to analyse the spatial cable shape in both the finished bridge stage and the cable finished stage.
     Secondly, based on the analysis of cable and saddle constraint relation, two new elements, saddle element and anchorage-anchor span element, have been put forward for suspension bridge finite element calculation. The saddle element is used for contact nonlinear analysis between main cable and saddle on tower, and the anchorage-anchor span element is used for contact nonlinear analysis between anchor span strands, side-span main cable and splay saddle. The new elements automatically satisfy the condition that the main cable should be always tangent to saddle. First of all, on the condition that the total unstressed length of cable between two nodes remains constant, the current state of the element is determined and the location of the tangent points are obtained. After that, according to the spatial catenary theory and the geometric relation between cable and saddle, the accurate element nodal force can be derived. At the same time, with increment instead of differential, the element tangent stiffness matrix can be deduced depending on the definition of the stiffness matrix. Calculation shows that the new elements have high calculation precision. The computational simulation problem of contact nonlinear between cable and saddle has been well solved through the introduction of the two new elements.
     Finally, a combinational method of increment and iteration based on the total method for the element rod end resisting force was chosen to solve the equilibrium equation. The precision of calculation doesn't rely on tangent stiffness matrix and no accumulative error would occur. The calculation method of rod end resisting force and tangent stiffness matrix according to total node displacement was described. The rotation transform relationship when the vector occurring spatial limited rotation was derived from the introduction of Euler-Rodrigues formulation. The method to determine the co-rotational coordinate system and total beam end rotation angle of space beam element was introduced. An improved method, which divides the unbalanced force vector into prescribed parts and makes them act gradually in one load step, was proposed. The processing methods for the element with rigid arms, relaxation of degree of freedom, master-slave constraint, were introduced. A calculation program including catenary cable element, space beam element, saddle element and anchorage-anchor span element which can satisfy the geometric nonlinear analysis of suspension bridges was developed.
     Calculation analysis demonstrates that the effect of saddle should be accurately considered in the calculation of suspension bridge. If using the traditional bar system FEM without considering the change of tangent point location, the calculation error of the final bridge shape will be greater than the erection accuracy requirements, and moreover, the calculation error occurring in the construction process may be greater than that of finished bridge state. The calculation accuracy of suspension bridge has been improved through the introduction of the two new elements. It provides more accurate calculation basis for construction control.
引文
[1]周孟波.悬索桥手册[M].北京:人民交通出版社,2003.
    [2]朱本瑾.多塔悬索桥的结构体系研究[D].同济大学硕士学位论文,2007.
    [3]俄罗斯兴建大跨径斜拉桥[J].世界桥梁(桥梁资讯),2009,(4):76-77.
    [4]钱冬生,陈仁福.大跨径悬索桥的设计与施工[M].成都:西南交通大学出版社,1999.
    [5]严国敏.现代悬索桥[M].北京:人民交通出版社,2002.
    [6]尼尔斯J.吉姆辛.缆索承重桥梁—概念与设计(第二版)[M].北京:人民交通出版社,2002.
    [7]楼庄鸿.国外大跨径悬索桥评述[J].中国公路学报,1991,02(4):67-76.
    [8]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报,2000,33(3):1-6.
    [9]Jennings A. Gravity Stiffness of Classical Suspension Bridges, Civil Engineering Department Report, Ireland, Queen Univisty.1980,15-36.
    [10]徐君兰,向中富.关于悬索桥的重力刚度[J].重庆交通学院学报,2000,19(2):71-74.
    [11]李翠娟.超大跨径CFRP主缆悬索桥合理体系研究[D].西南交通大学博士学位论文,2011.
    [12]刘高,彭运动,周平.坝陵河大桥钢桁加劲梁施工架设方案研究[J].公路交通科技,2009,26(5):80-85.
    [13]沈锐利,张丁盛,沈子钧.空中客车交通系统悬索结构的力学特性[J].土木工程学报,2004,37(4):13-18.
    [14]悬索桥加劲梁轨索运梁架设法足尺模型实验研究报告[R].西南交通大学,2009.
    [15]林长川.现代悬索桥技术的若干进步[J].公路,1996,(8):17-24.
    [16]张新军,应磊东.大跨径悬索桥抗风措施研究综述[J].公路,2006,(11):73-79.
    [17]钟建驰.泰州大桥——世界首座千米级三塔悬索桥[J].中国工程科学,2010,12(4):4-8.
    [18]超旭东,胡建华.桥梁设计百问(第二版)[M].北京:人民交通出版社,2005.
    [19]罗喜恒,肖汝诚,项海帆.空间缆索悬索桥的主缆线形分析[J].同济大学学报(自然科学版),2004,32(10):1394-1354.
    [20]周泳涛,鲍卫刚,韩国杰.自锚式悬索桥空间缆索分析与计算[J].公路交通科技,2007,24(3):51-55.
    [21]Ochsendorf, J.A., Billington, D.P. Self-anchored suspension bridges. Bridge Engineering, 1999,4(3),151-157.
    [22]Kim Ho-Kyung, Lee Myeong-Jae, Chang Sung-Pil. Non-linear shape-finding analysis of a self-anchored suspension bridge[J]. Engineer Structures, 2002,24:1547-1559.
    [23]张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社,2005.
    [24]徐风云,陈德荣,宋凤立.自锚式悬索桥评述[J].公路,2005,(11):9-14.
    [25]张元凯,肖汝诚,金成棣.自锚式悬索桥的概念设计[J].公路,2002,(11):46-48.
    [26]胥润东.琼州海峡超大多主跨公铁两用悬索桥方案设计及抗震研究[D].西南交通大学博士学位论文,2011.
    [27]黄建华.悬索桥施工控制的基本框架[J].铁路建筑技术,2000(2):20-23.
    [28]彭运动,王立新.意大利墨西拿海峡大桥设计概述[J].铁路建筑技术,2003(2):27-31.
    [29]强士中.桥梁工程(下册)[M].北京:高等教育出版社,2004.
    [30]范立础,潘永仁,杜国华.大跨度悬索桥结构架设参数精细算法研究[J].土木工程学报,1999,32(6):20-25.
    [31]沈锐利,廖海黎.悬索桥静动力空间非线性计算有限元模型及其应用[A].全国桥梁结构学术大会论文集[C],上海,同济大学出版社,1992,935-940.
    [32]王晓明,段瑞芳.空间缆索悬索桥的动力特性分析[A].第十八届全国桥梁结构学术大会论文集[C],人民交通出版社,2008,922-926.
    [33]刘海波.空间主缆自锚式悬索桥成桥状态确定方法的研究[D].长沙理工大学硕士学位论文,2010.
    [34]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2004.
    [35]Brotton D.M.. A General Computer Program for the Solution of Suspension Bridge Problems[J]. The Structural Engineer, 1966,44(5):161-167.
    [36]Saafan S.A.. Theoretical Analysis of Suspension Bridges[J]. Proc. ASCE, 1966,92(4):1-11.
    [37]Saafan S.A.. Nonlinear Behavior of Structural Plane Frames[J]. Journal of the Structural Division, 1963,89(ST4):557-579.
    [38]Fleming J.F.. Nonlinear Static Analysis of Cable-stayed Bridge Structures[J]. Computers and Structures,1979,10:621-635.
    [39]Nazmy A.S., Abdel-Ghaffer A.M.. Three-Dimensional Nonlinear Static Analysis of Cable-stayed Bridges[J]. Computers and Structures, 1990,34(2):257-271.
    [40]Fleming J.F.. Computer Analysis of Structure System[M]. New York:McGraw-Hill Book Co.,1989.
    [41]Wang P.H., Tseng T.C., Yang C.G.. Initial Shape of Cable-Stayed Bridges[J]. Computers and Structures,1993,46:1095-1106.
    [42]Ekhande S.G.,Selvappalam M., Madugula M.K.. Stability Functions for Three-Dimension Beam Columns [J]. Computers and Structures, 1993,46:467-479.
    [43]Bathe KJ, Bolourchi S. Large Displacement Analysis of Three-dimensional Beam Structures [J]. Internation Journal for Numerical Methods in Engineering, 1979,14:961-986.
    [44]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-43.
    [45]潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2004.
    [46]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].西南交通大学博士学位论文,2003.
    [47]梁鹏.超大跨度斜拉桥几何非线性及随机模拟分析[D].同济大学博士学位论文,2004.
    [48]陈常松.超大跨度斜拉桥施工全过程几何非线性精细分析理论及应用研究[D].中南大学博士学位论文,2007.
    [49]齐东春,沈锐利,陈卫国.悬索桥结构分析中鞍座单元的研究及应用[J].桥梁建设,2011,(1):35-47.
    [50]潘永仁.悬索桥的几何非线性静力分析及工程控制[D].同济大学博士学位论文,1996.
    [51]潘永仁,范立础.大跨度悬索桥加劲梁架设过程的倒拆分析方法[J].同济大学学报,2001,29(5):510-514.
    [52]肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究[J].中国公路学报,1998,11(4):42-50.
    [53]唐茂林,沈锐利,强士中.大跨度悬索桥非线性静动力分析与软件开发[J].桥梁建设,2000,(1): 9-12.
    [54]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
    [55]唐茂林,沈锐利,强士中.悬索桥索鞍位置设计[J].公路交通科技,2001,18(4):55-58.
    [56]李传习,王雷,刘光冻.悬索桥索鞍位置的分离计算法[J].中国公路学报,2005,18(1):63-68.
    [57]李传习,姚明,柯红军.空间缆索悬索桥倾斜母线索鞍设计位置的计算方法[J].中国公路学 报,2009,22(5):48-53.
    [58]罗喜恒,肖汝诚,项海帆.用于悬索桥非线性分析的鞍座-索单元[J].土木工程学报,2005,38(6):47-53.
    [59]魏建东,刘忠玉.悬索桥结构分析中索鞍的精确模拟[J].工程力学,2006,23(7):114-118.
    [60]许汉铮,黄平明.大跨径悬索桥主缆锚跨张力控制[J].长安大学学报(自然科学版),2002,22(5):32-35.
    [61]沈锐利,薛光雄.悬索桥主缆丝股锚固力的计算方法探讨[J].桥梁建设,2003,(6):25-29.
    [62]罗喜恒,肖汝诚,项海帆.悬索桥锚跨索股分析研究[J].公路交通科技,2004,21(12):45-50.
    [63]罗喜恒.复杂悬索桥施工过程精细化研究[D].同济大学博士学位论文,2004.
    [64]沈良成,文武,沈锐利.高温下悬索桥主缆丝股锚跨张力的合理控制值研究[J].桥梁建设,2004,(4):7-9.
    [65]谭红梅.悬索桥施工监控仿真计算关键问题研究[D].同济大学博士学位论文,2008.
    [66]肖军,张永水,董义.悬索桥锚跨索股分析及程序实现[J].重庆交通大学学报(自然科学版),2011,30(5):907-910.
    [67]干坚定.悬索桥主缆索夹位置计算及放样[J].桥梁建设,1999, (2):33-35.
    [68]Kim Ho-Kyung, Lee Myeong-Jae, Chang Sung-Pil. Determination of hanger installation procedure for a self-anchored suspension bridge [J]. Engineer Structures, 2006,28:959-976.
    [69]Heungbae Gil M., Youngjae Choi. Cable Erection Test at Splay Band for Spatial Suspension Bridge [J]. Journal of Bridge Engineering, 2002,10:300-307.
    [70]罗喜恒.悬索桥缆索系统的数值分析法[J].同济大学学报(自然科学版),2004,32(4)441-446.
    [71]周勇,张峰,叶见曙.悬索桥空间主缆分析[J].东南大学学报(自然科学版),2009,39(1):101-105.
    [72]李传习,柯红军,刘海波.空间主缆自锚式悬索桥成桥状态的确定方法[J].工程力学,2010,27(5):137-146.
    [73]彭苗.空间自锚式悬索桥非线性分析及成桥状态确定[D].武汉理工大学博士论文,2008.
    [74]王晓.自锚式悬索桥空间主缆系统计算与静风稳定性分析[D].湖南大学硕士论文,2008.
    [75]沈洋.江东大桥空间缆自锚式悬索桥体系转换分析研究[J].上海公路,2009,(1):31-35.
    [76]张俊平,黄海云,刘爱荣.空间缆索自锚式悬索桥体系转换过程中受力行为的全桥模型试验研究[J].土木工程学报,2011,44(2):108-115.
    [77]黄海云,张俊平,刘爱荣.空间索面自锚式悬索桥主缆横向位移及索夹横向偏转角的试验研究[J].公路工程,2009,34(2):41-44.
    [78]Shen Ruili,Qi Dongchun,Tang Maolin. Model Test Study of System Transformation for Jiangdong Bridge [A]. The 9th International Conference of Chinese Transportation Professionals, Harbin.
    [79]张玉平,董创文.江东大桥双塔单跨空间主缆自锚式悬索桥的施工控制[J].公路交通科技,2010,27(7):76-82.
    [80]柯红军.广州猎德大桥体系转换施工方法的确定及实施[J].桥梁建设,2010,(2):80-83.
    [81]张剑英,郝维索,戴建国.杭州钱塘江江东大桥总体设计[A].第十八届全国桥梁学术会议论文集[C],北京:人民交通出版社,2008:393-400.
    [82]李喜平.南京江心洲大桥缆索系统设计[J].公路工程,2010,35(5):92-97.
    [83]张革军.青岛海湾大桥大沽河航道桥设计[J].公路,2009,(7):203-208.
    [84]严国敏.韩国的永宗悬索桥[J].国外公路,1998,18(6):16-18.
    [85]John Sun, Rafal Manzanarez, Marwan Nader. Design of looping cable anchorage system for new San Francisco-Oakland Bay bridge main suspension span [J]. Journal of Bridge Engineering, 2002, 7(6):315-324.
    [86]罗东生.空间缆索悬索桥受力特性及缆索成桥线形分析[D].大连理工大学硕士论文,2009.
    [87]史建三.悬索桥大缆架设计算的索长分析法[J].桥梁建设,1993,(4):30-37.
    [88]沈锐利.悬索桥主缆系统设计及架设计算方法研究[J].土木工程学报,1996,29(2):3-9.
    [89]唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报,2003,25(1):87-91.
    [90]Irvine H M Cable structures[M]. London: The MIT Press, 1981.
    [91]栗怀广‘,郑凯锋,文署东.自锚式悬索桥空间主缆线形精确计算方法及其应用研究[A].第十七届全国桥梁学术会议论文集[C],北京:人民交通出版社,2006:1060-1065.
    [92]Peyrot A. H., Goulois A. M., Analysis of Cable Structures. Computer & Structures.1979, 10(5):805-813.
    [93]Ozdemir H., A Finite Element Approach for Cable Problems. International Journal of Solids and Structures.1979,15(5):427-437.
    [94]李传习.混合梁悬索桥非线性精细计算理论及其应用[D].湖南大学博士学位论文,2006.
    [95]齐东春,郭健,沈锐利.悬索桥施工中鞍座顶推的研究[J].中国工程科学,2010,12(7):78-83.
    [96]杨俊.基于影响矩阵的大跨桥梁合理成桥状态与施工控制研究[D].武汉理工大学博士学位论文,2008.
    [97]徐士良.常用算法程序集(C++语言描述)(第四版)[M].北京:清华大学出版社,2009.
    [98]齐东春,沈锐利,唐茂林.考虑鞍座影响的悬索桥空间主缆线形计算方法[A].第二十届全国桥梁学术会议论文集[C],武汉,2012,人民交通出版社.
    [99]谭冬莲.大跨径自锚式悬索桥合理成桥状态的确定方法[C].中国公路学报,2005,18(2):51-55.
    [100]郑莉,董渊.C++语言程序设计(第4版)[M].北京:清华大学出版社,2010.
    [101]马建红,沈西挺.Visual C++程序设计与软件技术基础[M].北京:中国水利水电出版社,2002.
    [102]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [103]李传习,夏桂云.大跨度桥梁结构计算理论[M].人民交通出版社,2002.
    [104]王鹏.悬索桥空缆线形计算[J].结构工程师,2005,21(6):22-27.
    [105]齐东春,沈锐利,唐茂林.悬索桥的锚碇—锚跨单元研究及应用[J].公路交通科技,2011,28(2):82-92.
    [106]魏建东,刘忠玉.具有滑移式散索鞍的悬索桥主缆架设分析[J].计算力学学报,2005,22(6):755-760.
    [107]谭红梅.悬索桥施工监控仿真计算关键问题研究[D].同济大学博士学位论文,2008.
    [108]华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997.
    [109]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [110]吕和祥,朱菊芬,马莉颖.大转动粱的几何非线性分析讨论[J].计算力学学报及其应用,1995,12(4):485-489.
    [111]Hsiao K.M., Hou F.Y.. Nonlinear Finite Element Analysis of Elastic Frames[J]. Computers and Structures,1987,26(4):693-701.
    [112]Mattiasson K., Bengtsson A.. On the accuracy and efficiency of numerical algorithms for geometrically nonlinear structural analysis[A].Finite element methods for nonlinear problems, proceedings of the Europe-US Symposium[C]. Berlin:Springer,1986:3-23.
    [113]Crisfield MA.. A consistent co-rotational formulation for non-linear, three-dimensional beam element[J]. Computers Methods in Applied Mechanics and Engineering, 1990,81:131-150.
    [114]Narayanan G., Krishnamoorthy C.S.. An Investigation of Geometric Nonlinear Formulations for 3D Beam Elements[J]. Non-linear Mechanics,1990,25(6):643-662.
    [115]Pai PF., Anderson TJ., Wheater EA.. Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams[J]. International Journal of Solids and Structures, 2000,37:295-298.
    [116]郭棋武.大跨斜拉桥的非线性及可靠性分析[D].湖南大学博士学位论文,2007.
    [117]丁顺泉.空间杆系结构实用几何非线性分析[J].力学季刊,2001,22(3):300-306.
    [118]王新敏.Ansys工程结构数值分析[M].北京:人民交通出版社,2007.
    [119]Knudson W. C. Static and dynamic analysis of cable net structures[D]. Doctoral Dissertation. University of California, Berkeley, California, 1971.
    [120]Tang Jianmin, Shen Zuyan, Qian Ruojun. A non-linear finite element method with five-node curved element for analysis of cable structures[J]. Proceedings of IASS International Symposium, 1995,2:929-935.
    [121]袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-64.
    [122]张其林.预应力结构非线性分析的索单元理论[J].工程力学,1993,10(4):93-101.
    [123]唐建民,赵引,吴黎华.基于欧拉描述的两节点索单元非线性有限元法[J].上海力学,1999,20(1):89-94.
    [124]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [125]邓安.斜拉桥拉索静力分析及施工控制[D].长沙理工大学硕士学位论文,2009.
    [126]Leu LJ., Yang YB.. Effects of rigid body and stretching on nonlinear analysis with beam elements[J]. Journal of Structural Engineering, 1990,116(10):2582-2598.
    [127]Yang TY. Matrix displacement solution to elastic problems of beams and frames[J]. Solids Struct, 1973,9:829-842.
    [128]Chen WF., Lui EM.. Stability design of steel frames[M]. London: CRC Press, Inc, 1991.
    [129]Chen WF., Toma S.. Advanced analysis of steel frames:theory, software, and application[M]. Boca Raton(FL):CRC Press, 1994.
    [130]Dumir PC., Saha DC., Sengupta S.. Beam-column method for frames under distributed loads[J]. Computers and Structures, 1993,46(1):141-148.
    [131]O'Brien T.. General solution suspended cable problems[J]. Journal of Structural Division, ASCE, 1967,93(ST1):1-126.
    [132]Oran C. Tangent stiffness in space frames[J]. Journal of Engineering Mechanics, 1973,99(ST6): 987-1001.
    [133]Ozdemir H.. A finite element approach for cable problems[J]. International Journal of Solids and Structures,1979,15:427-437.
    [134]Irvine H M.. Statics of suspended cables[J]. Journal of the Engineering Mechanics Division, 1975, 101(3):187-205.
    [135]Zupan D., Saje M.. Rotational invariants in finite element formulation of three-dimensional beam theories[J]. Computer and Structures, 2004,82:2027-2040.
    [136]Petrolito J., Legge K. A.. Nonlinear analysis of frames with curved members[J]. Computer and Structures,2001,79:727-735.
    [137]Shvartsman B. S.. Large deflections of a cantilever beam subjected to a follower force[J]. Journal of Sound and Vibration,2007,304:969-973.
    [138]陈昕,王娜.空间梁单元的切线刚度矩阵[J].哈尔滨建筑工程学院学报,1993,26(3):24-29.
    [139]潘永仁,杜国华,范立础.悬索桥恒载结构几何形状及内力的精细计算[J].中国公路学报,2000,13(4):33-36.
    [140]吴庆雄,陈宝春,韦建刚.三维杆系结构的几何非线性有限元分析[J].工程力学,2007,24(12):19-42.
    [141]夏拥军,陆念力.梁杆结构二阶效应分析的一种新型梁单元[J].工程力学,2007,24(7):39-43.
    [142]赵红华,钱若军.多因素耦合影响下的杆系结构几何非线性分析[J].同济大学学报(自然科学版),2004,32(7):861-865.
    [143]陈滔,黄宗明.基于有限单元柔度法和刚度法几何非线性空间梁柱单元比较研究[J].工程力学,2005,22(3):31-38.
    [144]刘海波,邓继华,邵旭东.基于UL列式的带刚臂平面杆元非线性分析[J].长沙理工大学学报(自然科学版),2011,8(2):40-44.
    [145]程进,江见鲸,肖汝诚.改进的UL列式法及在几何非线性分析中的应用[J].力学与实践,2003,25(2):33-35.
    [146]吴跃梓.平面杆系结构几何非线性计算的全量迭代法[J].安徽建筑工业学院学报,2009,17(3):92-96.
    [147]李国强.考虑轴力和剪切变形影响的梁单元刚度方程及其级数展开[A].中国科协第三届青年学术年会论文集[C],1998:453-457.
    [148]刘永华.空间钢框架高等分析方法研究[D].哈尔滨工业大学博士学位论文,2007.
    [149]孙训方,方孝淑,关来泰.材料力学(第四版)[M].北京:高等教育出版社,2002.
    [150]唐茂林,沈锐利,严琨.受拉构件的索、梁特性变化参数研究[J].桥梁建设,2011,(5):11-19.
    [151]陈常松,颜东煌,陈政清.带刚臂的两节点精确悬链线索元的非线性分析[J].工程力学,2007,24(5):29-34.
    [152]颜东煌,陈常松.带刚臂空间梁单元及其在斜拉桥计算中的应用[J].湖南大学学报(自然科学版),1999,26(2):72-77.
    [153]丁星,王清远.Matlab杆系结构分析[M].北京:科学出版社,2008.
    [154]洪锦如.桥梁结构计算力学[M].上海:同济大学出版社,1998.
    [155]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002.
    [156]霍学晋.异型拱桥的非线性受力行为研究及动力特性分析[D].西南交通大学博士学位论文,2011.
    [157]柯红军,李传习,张玉平.双塔大横向倾角空间主缆自锚式悬索桥体系转换方案与控制方法[J].土木工程学报,2010,43(11):93-101.
    [158]沈锐利,齐东春,唐茂林.杭州江东大桥全桥模型静力特性研究[J].土木工程学报,2011,44(1):74-80.
    [159]罗喜恒,肖汝诚,项海帆.几何非线性问题求解的改进算法[J].公路交通科技,2005,22(12):75-97.
    [160]Hsiao K. M., Horng H.J, Chen Y. R.. A cororational procedure that handles large rotations of spatial beam structures[J]. Computers & Structures, 1987,27(6):769-781.
    [161]Jayaraman H. B., Knudson W.C.. A curved element for tha analysis of cable structures[J]. Computers & Structures, 1981,14(3):325-333.
    [162]Clemente P., Nicolosi G., Raithel A.. Preliminary design of very long-span suspension bridges[J]. Engineering Structures,2000, (22):1699-1706.
    [163]Chan Siu-Lai, Gu Jian-Xin. Exact Tangent Stiffness for Imperfect Beam-Column Members[J].Journal of Structural Engineering,2000, (22):1094-1102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700