用户名: 密码: 验证码:
饱和地基中隧道纵向地震反应的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地震动存在空间变异性,长大隧道沿纵向的地震反应将有较为显著的行波效应,进行隧道纵向地震反应分析是评价其抗震性能的重要方面。而饱和地基为固液两相体,其动力反应较之单相体更为复杂。本文对饱和地基中隧道在非一致地震作用下纵向反应分析的数值方法进行了较为系统的研究,包括饱和多孔介质波动方程及反应特性的梳理、传输边界的研发、非一致地震输入的三维有限元实现、隧道-地基系统动力反应的数值模拟等。取得的主要研究成果如下:
     1、对饱和土动力方程及波动传播特点进行了系统的梳理。重点讨论了流体运动方程的建立,指出两相体动力分析时土骨架和孔隙水之间的相互作用包含渗透力和惯性耦合力两项。并进一步澄清,由于惯性耦合力的存在,即使渗透系数无穷大,两类压缩波波速也不会分别等于土骨架和孔隙水单相体中的压缩波波速。
     2、采用渗透系数为0时柱面波的u-p方程,推导得出了饱和两相介质无限域时域动力有限元分析的高阶弹簧-阻尼-质量传输边界。数值算例表明只要渗透系数的量级满足u-p方程的适用条件,该高阶传输边界均能给出足够精确的结果。将其直接运用于一般二维平面应变内源波动问题时,只要将传输边界布置在离散射波源稍远的位置,所得计算结果仍足以满足工程问题的精度要求。
     3、通过引入精确的人工边界改进了二维平面内自由波场的一维化时域有限元算法。将一维算法得到的自由场反应扩展至三维,基于一致质量有限元平衡方程,给出了通过边界单元节点的自由场位移求取自由波场产生的等效荷载的公式。采用粘弹性边界,通过在人工边界上施加等效荷载实现波动输入。编制FORTRAN辅助程序并借助有限元软件ANSYS,实现了瞬态平面内体波斜入射至成层半空间场地的三维数值模拟,数值算例验证了其精度和有效性。
     4、针对饱和地基中长大隧道纵向地震反应数值模拟开展研究。论证了按照非一致地震输入方法计算边界等效荷载,对隧道结构的截断边界不作特殊处理,只需将模型沿隧道纵向取得较长,即可得到满意的精度。研究了体波入射角、隧道刚度对纵向反应的影响,讨论了成层土基中隧道地震反应行波效应的分析方法。
     5、对非一致地震作用下港珠澳沉管隧道的动力反应进行了较为系统的数值模拟,重点讨论了沉管隧道采用不同接头类型时接头处的内力及变形规律,对实际工程的抗震性能做出评价。
Due to the spatial variation of earthquake ground motion, there will be travelingwave effect along tunnels in soils. As a two phase material, the dynamic response ofsaturated soil is more complex than one phase material. Therefore, dynamic analysis oflongitudinal tunnel response is an important topic for the seismic performanceevaluation of a tunnel. In this thesis, numerical methods for the analysis of longitudinalresponse of tunnels in saturated soils under asynchronous seismic wave is extensivelystudied, including the clarification of the basic equations for wave propagation andcharacteristics in saturated porous media, development of transmitting boundary,3Dfinite element implementation for asynchronous seismic wave motion and numericalsimulation of seismic response of soil-tunnel system. The main research results are asfollows:
     1. Systematically clarification of the dynamic basic formulations and wavepropagation characteristics in saturated soils was carried out with special attention paidto the establishment of pore water motion equation. It is pointed out that in dynamicanalysis of saturated soils the interaction between soil skeleton and pore water consistsof two parts: seepage force and inertial-coupling-force. It is also revealed that due to theexistence of inertial-coupling-force, the speeds of two dilatational waves are not equalrespectively to those in single-phased solid skeleton and pore water, even if thepermeability approaches to infinity.
     2. A high-order accurate local time-domain transmitting boundary for simulatingthe transient scalar wave propagation in unbounded saturated porous media, based onthe u-p formulation with an assumption of zero permeability coefficient, is derived fromthe cylindrical elastic wave radiation problem. Good wave-absorbing capabilities of thishigh-order transmitting boundary are demonstrated by several types of numericalexamples. Despite the assumption made in the derivation of this transmitting boundary,results showed that it can provide sufficiently accurate results in case the u-pformulation is applicable. Although numerical results show that direct application of theproposed transmitting boundary to general two dimensional wave problems in infinitesaturated porous media is not so accurate, solutions of acceptable engineering accuracy may still be achieved by setting the transmitting boundary relatively far away from thescatter.
     3. By introducing the accurate artificial boundary condition, the1D time domainfinite element method used to calculate the in-plane free field wave motion in elasticlayered half space is improved. The results obtained through1D finite element methodare extended to3D. Based on the consistent mass finite element equilibrium equations,the formula for calculating the equivalent loads generated by the free filed is given,which is expressed by nodal displacements of the element at the boundary.Viscous-spring boundary is used to absorb the scattered wave, and the input of seismicwave motion is realized by applying equivalent loads on the artificial boundary.Through compiling FORTRAN program combined with finite element softwareANSYS,3D numerical simulation of elastic layered half space site response underoblique seismic incidence of in-plane wave is achieved, and its accuracy and validity areproved by numerical examples.
     4. Based on the research above, a soil-tunnel structure interaction model wasestablished and research is conducted on the numerical method for longitudinal seismicresponse analysis of tunnels in saturated soils. It is demonstrated that using theequivalent loads calculated from asynchronous seismic waves input method as the inputloads without extral treatment to the truncated boundaries on the tunnel sturcture,satisfactory accuracy can be achieved as long as the model is relatively long along thelongitudinal direction. Numerical examples are given to study the influence of theincident angle and tunnel stiffness on the longitudinal internal force. Analytical methodfor traveling wave effect on tunnels in layered soil foundation under earthquakes is alsobriefly discussed.
     5. Based on the background of HK-Zhuhai-Macau immersed tunnel project, theasynchronous seismic analysis of immersed tunnel is presented. Discussion is focusedon the internal force and deformation at the joints of immersed tunnels when differenttypes of joints are adoptted. Safety of the project under seismic load is evaluated.
引文
[1]钱七虎.现代城市地下空间开发利用技术及其发展趋势.铁道建筑技术,2000,(05).
    [2]中国工程院课题组.中国城市地下空间开发利用研究.北京:中国建筑工业出版社,2001.
    [3]钱七虎.岩土工程的第四次浪潮.地下空间,1999,19(4):267-272.
    [4]施仲衡,王新杰,沈子钧.解决我国大城市交通问题的根本途径——稳步发展地铁与轻轨交通.都市快轨交通,1996(1):2-5.
    [5]郑永来,杨林德.地下结构震害与抗震对策.工程抗震,1999(4):23-28.
    [6]钱七虎,何川,晏启祥.隧道工程动力响应特性与泣川地震隧道震害分析及启示.汶川大地震工程震害调查分析与研究,第四章.
    [7] Wang W L, et al. Assessment of Damage in Mountain Tunnels Due to the Taiwan Chi-ChiEarthquake, Tunnelling and Underground Space Technology,2001(16):133-150.
    [8]禹海涛等.超长沉管隧道抗震设计及其关键性问题分析.上海交通大学学报,2012,46(1):94-98.
    [9] Bogdanoff J L, Goldber J L, Shiff J C. The effect of ground transmission time on the responseof long structures. Bull Seism Soc Am,1965,55:627-640.
    [10] European Committee for Standardization. Eurocode8: Structures in seismic regions-designpart2: Bridges. Brussels: European Committee for Standardization,1995.
    [11]中华人民共和国建设部. GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [12]中华人民共和国建设部. JGJ3-2002.高层建筑混凝土结构技术规程.北京:中国建筑工业出版社,2002.
    [13]中华人民共和国交通部. JTJ004-89.公路工程抗震设计规范.北京:人民交通出版社,1989.
    [14]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展.同济大学学报:1999,27(2):189~193.
    [15]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征.计算力学学报:2001,18(3):358-363.
    [16]苏亮,董石麟.多点输入下结构地震反应的研究现状与对空间结构的见解.空间结构:2006,12(1):6-10.
    [17]邱法维,钱稼茹.多点地震动输入下的拟动力试验.地震工程与工程振动:1998,18(2):38-47.
    [18] Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid: I.Low-frequency range. J Acoust Soc Am,1956,28:168~178.
    [19]门福录.波在饱含流体的孔隙介质中的传播问题.地球物理学报,1981,24(1):65~75.
    [20]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传播.力学学报,1987,1(93):276~283.
    [21]吴世明.土介质中的波.北京:科学出版社,1997.
    [22] Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media; The generalizedBiot formulation and its numerical solution. Int J Number Anal Methods Geotech,1984,8:71-96.
    [23]赵成刚,杜修力,崔杰.固体、流体多相孔隙介质中的波动理论及数值模拟的进展.力学进展,1998,28(1),83~91.
    [24]宋二祥.无限地基数值模拟的传输边界.工程力学,1997:613-619.
    [25] Zhao M, Du X. Explicit finite element artificial boundary scheme for transient scalar waves intwo-dimensional unbounded waveguide. International Journal for Numerical Methods inEngineering2011,87:1074-1104.
    [26] Hall WS, Oliveto G. Boundary Element Methods for Soil–Structure Interaction. KluwerAcademic Publishers: Dordrecht,2003.
    [27] Kausel E. Thin-layer method: Formulation in the time domain. International Journal forNumerical Methods in Engineering1994,37:927–941.
    [28] Lysmer J, Kuhlmeyer RL. Finite dynamic model for innite media. Journal of the EngineeringMechanics Division, ASCE1969,95:859–877.
    [29] Kuhlmeyer RL, Lysmer J. Finite element method accuracy for wave propagation problems.Journal of the Soil Mechanics and Foundations Division, ASCE1973,99:421–427.
    [30] Deeks AJ, Randolph MF. Axisymmetric time-domain transmitting boundaries. Journal ofEngineering Mechanics, ASCE1994,120:25–42.
    [31] Kellezi L. Local transmitting boundaries for transient elastic analysis. Soil Dynamics andEarthquake Engineering2000,19:533–547.
    [32] Liu J, Du Y, Du X, Wang Z, Wu J.3D viscous-spring artificial boundary in time domain.Earthquake Engineering and Engineering Vibration2006,5(1):93–102.
    [33] Smith WD. A nonreflecting plane boundary for wave propagation problems. Journal ofComputational Physics1974,15:492–503.
    [34] Kunar RR, Marti J. Computational methods for infinite domain media-structure interaction.Journal of the Applied Mechanics Division (ASME)1981,46:183–204.
    [35] Clayton J, Enquist B. Absorbing boundary conditions for acoustic and elastic wave equations.Bulletin of the Seismological Society of America1977,67:1529–1541.
    [36] Engquist B, Majda A. Radiation boundary conditions for acoustic and elastic wavecalculations. Communications on Pure and Applied Mathematics1979,32:313–357.
    [37] Liao Z, Wong H. A transmitting boundary for the numerical simulation of elastic wavepropagation. Soil Dynamics and Earthquake Engineering1984,3:174–183.
    [38] Liao Z. Extrapolation nonreflecting boundary conditions. Wave Motion1996,24:117–138.
    [39] Engquist B, Majda A. Radiation boundary conditions for acoustic and elastic wavecalculations. Communications on Pure and Applied Mathematics1979,32:313–357.
    [40] Givoli D. High-order local non-reflecting boundary conditions: a review. Wave Motion2004,39:319–26.
    [41] Deeks AJ, Randolph MF. Axisymmetric time-domain transmitting boundaries. Journal ofEngineering Mechanics, ASCE1994,120:25–42.
    [42] Baker GA, Graves-Morris P. Pade Approximants(2nd ed.). Cambridge University Press,Cambridge,1996.
    [43] Wolf JP. Foundation Vibration Analysis using Simple Physical Models. Prentice-Hall:Englewood Cliffs, NJ,1994.
    [44] Wolf JP. Consistent lumped-parameter models for unbounded soil: physical representation.Earthquake Engineering and Structural Dynamics1991,20:11–32.
    [45] Wolf JP, Paronesso A. Errata: consistent lumped-parameter models for unbounded soil.Earthquake Engineering and Structural Dynamics1991,20:597–599.
    [46] Wu WH, Lee WH. Systematic lumped-parameter models for foundations based onpolynomial-fraction approximation. Earthquake Engineering and Structural Dynamics2002,31:1383–1412.
    [47] Wu WH, Lee WH. Nested lumped-parameter models for foundation vibrations. EarthquakeEngineering and Structural Dynamics2004,33:1051–1058.
    [48] Du X, Zhao M. A local time-domain transmitting boundary for simulating cylindrical elasticwave propagation in infinite media. Soil Dynamics and Earthquake Engineering2010,30:937-946.
    [49] Modaressi H, Benzenati I. Absorbing boundary element for dynamic analysis of two-phasemedia. Proceedings of the World Conference on Earthquake Engineering,1992,11:57-61.
    [50] Modaressi H, Benzenati I. Paraxial approximation for poroelastic media. Soil dynamics andearthquake engineering1994,13:117-129.
    [51] Akiyoshi T, Fuchida K.Fang H L. Absorbing boundary conditions for dynamic analysis offluid-saturated porous media. Soil dynamics and earthquake engineering,1994,13:387-397.
    [52] Akiyoshi T, Sun X, Fuchida K. General absorbing conditions for dynamic analysis offluid-saturated porous media. Soil Dynamics and earthquake engineering,1998,17:397-406.
    [53] Degrande G, De Roeck G. An absorbing boundary condition for wave propagation in saturatedporous media. Part I: Formulation and efficiency evaluation. Soil Dynamics and EarthquakeEngineering,1993,12:411-421.
    [54] Gajo A, Saetta A, Vitaliani R. Silent boundary conditions for wave propagation in saturatedporous media. International Journal for Numerical and Analytical Methods in Geomechanics,1996,13:253-273.
    [55] Zohra Zerfa, Benjamin Loret. A viscous boundary for transient analyses of saturated porousmedia. Earthquake Engineering and Structural Dynamics,2004,33:89-110.
    [56]刘光磊,宋二祥.饱和无限地基数值模拟的粘弹性传输边界.岩土工程学报,2006(28):2128-2133.
    [57]王子辉,赵成刚,董亮.流体饱和多孔介质黏弹性动力人工边界.力学学报,2006(38):605-611.
    [58] Kiureghian A D, Neuenhofer A. A coherency model for spatially varying ground motions.Earthquake Engineering and Structure Dynamics,1996,25:99-111.
    [59] D. Zendagui, M.K. Berrah. Spatial variation of seismic motion induced by propagation ofbody waves. Soil Dynamics and earthquake engineering,2002,22:805-811.
    [60] N. Laouami, P. Labbe. Analytical approach for evaluation of the seismic ground motioncoherency function. Soil Dynamics and earthquake engineering,2001,21:723-733.
    [61]李信富,李小凡等.地震波数值模拟方法研究综述.防灾减灾工程学报,2007,27(2):241-248.
    [62] Djbaj M, Penzien J. Response of earth dams to traveling seismic waves. Journal of SoilMechanics and Foundations Division,1969,95:541-560.
    [63]项海帆.斜张桥在行波作用下的地震反应.同济大学学报:1983,(2):1-9.
    [64] Nazmy A S, Abdel-Ghffor A M. Effect of ground motion spatial variability on the response ofcable-stayed bridges. Earthquake Engineering and Structure Dynamics,1992,21:1~20.
    [65]刘吉柱.大跨度拱桥地震反应的行波效应分析[同济大学博士学位论文].上海:同济大学桥梁工程系,1987.
    [66]韩大建,唐增洪.珠江水下沉管隧道的抗震分析与设计(II)——行波法.华南理工大学学报:1999,27(11):120-130.
    [67]阎盛海.地下结构抗震.大连:大连理工大学出版社,1989.
    [68] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismicexcitations. Earthquake Engineering and Structure Dynamics,1996,25:99-111.
    [69] Loh C H, Ku B D. An efficient analysis of structural response for multiple-support seismicexcitations. Engineering Structure,1995,17(1):15-26.
    [70]苗家武.大型桥梁抗震多点激励反应谱方法应用研究与研究实验[博士学位论文].上海:同济大学桥梁工程系,1999.
    [71] Kahan M, Gibert Rene-Jean, Bard Pierre-Yves. Influence of seismic waves spatial variabilityon bridges: A sensitivity analysis. Earthquake Engineering and Structure Dynamics.1996,25:795-814.
    [72]王君杰,王前信,江近仁.大跨度拱桥在空间变化地震动下的响应.振动工程学报:1995,8(2):119-126.
    [73] Youssef M A, Hashash, et al. Seismic design and analysis of underground structures.Tunneling and Underground Space Technology,2001,16(4):247-293.
    [74] St John C M, Zahrah T F. Aseismic design of underground structures. Tunnelling andUnderground Space Technology,1987,2(2):165-197.
    [75] Thomson W T. Transmission of elastic waves through a stratified soil medium. Journal ofApplied Physics,1950,21(1):89-93.
    [76] N. A. Haskell. The dispersion of surface waves on multilayered media. Bulletin of theSeismological Society of America,1953,43(1):17-34.
    [77] Knopoff L. A matrix method for elastic wave problem. Bulletin of the Seismological Societyof America,1964,54(1):431-438.
    [78] Dunkin. J. Computation of model solutions in layered elastic media at high frequency.Bulletin of the Seismological Society of America,1965,55(2):335-358.
    [79] Gilbert F, Backus G. E. Propagator matrices in elastic wave and vibration problem.Geophysics,1966,31(2):326-332.
    [80] Waston T. H. A note on fast computation of rayleigh wave dispersion in the multilayeredelastic half space. Bulletin of the Seismological Society of America,1970,60(1):161-166.
    [81]陈运泰.多层弹性半空间中的地震波(一).地球物理学报:1974,17(1):20-44.
    [82]陈运泰.多层弹性半空间中的地震波(二).地球物理学报:1974,17(3):173-186.
    [83]王育生,田春林.波在多层弹性介质中的一些特性研究.地震工程与工程振动:1983,3(4):69-82.
    [84] Z. S. Alterman, F.C. Jr. Karal. Propagation of elastic waves in layered media by finitedifference methods. Bulletin of the Seismological Society of America,1968,58:367-398.
    [85] Boore D.M. Finite difference methods of seismic wave propagation in heterogeneous material.Methods of Computational Physics,1972,11:1~37.
    [86] Jean V. SH-wave propagation in heterogeneous media, velocity-stress finite difference method.Geophysics,1984,49(11):1933-1957.
    [87] Tal-EzarH, Carcione J.M, Kosloff D. An accurate and efficient scheme for wave propagationin linear viscoelastic media. Geophysics,1990,55(10):1366-1379.
    [88] Robertsson J O, Blanch J O, Symes W W. Viscoelastic finite-difference modeling.Geophysics,1994,59(9):1444-1456.
    [89] Lysmer J, Drake L A. A finite element method for seismology. In Alder B, Fernbach S. Bolt BA, Eds., Methods in computational physics II, Seismology. Academic Press,1972.181-216.
    [90] Seron F J, Sanz F J, Kindelan M, et al. Finite-element method for elastic wave propagation.Comm. Appl. Numerical Methods,1990,6(2):359-368.
    [91] Padovani E, Priolo E, Seriani. Low and high-order finite element method: experience inseismic modeling. J. Comp. Acoust.,1994,2(1):371-422.
    [92]廖振鹏,杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究.地震工程与工程振动:1982,2(1):1-11.
    [93]廖振鹏.无限弹性介质中暂态标量波问题的有限模型.地震工程与工程振动:1982,2(4):38-53.
    [94]廖振鹏,黄孔亮,杨柏坡,等.暂态波透射边界.中国科学:1984,6:556-564.
    [95] Kuo J K, Yeng Y C, Pecholes P, et al. A note on the influence of elasticity of wavepropagation in an acoustic/elastic media. Computers and Mathematics with Applications,1985,11:887-896.
    [96]刘晶波,王艳.成层介质中平面内自由波场的一维化时域算法.工程力学,2007,7:16-22.
    [97]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报:1998,31(3):55-64.
    [98]王艳.非一致地震动场数值方法研究及在结构动力分析中的应用.北京:清华大学土木工程系,2007.
    [99]赵建峰,杜修力等.外源波动问题数值模拟的一种实现方式.工程力学:2007,4:52-58.
    [100]杜修力,陈维等.斜入射条件下地下结构时域地震反应分析初探.震灾防御技术,2007,2(3):290-296.
    [101]徐海滨,杜修力等.地震波斜入射对高拱坝地震反应的影响.水利发电学报,2011,30(6):159-165.
    [102]王琴,陈隽,李杰.斜入射地震波作用下地下管线的地震反应分析.华中科技大学学报,2008,25(4):283-286.
    [103]张如林,楼梦麟.基于FLAC3D的斜入射地震波作用的数值模拟方法研究.土木工程学报,2010,43:22-27.
    [104]刘晶波,刘祥庆,杜修力.地下结构抗震理论分析与试验研究的发展展望.地震工程与工程振动,2007,27(6):38-45.
    [105]杨军.饱和土动力反应分析及其在桩基振动阻抗计算中的应用:[清华大学博士学位论文].北京:清华大学土木工程系,2001.
    [106]王国军.饱和多孔介质粘弹性动力人工边界及其在隧道动力分析中的应用.北京:北京交通大学,2007.
    [107]黄茂松,李进军.饱和多孔介质土动力学理论与数值解法.同济大学学报,2004,32(7):851~856.
    [108]傅淑芳,刘宝诚.地震学教程.北京:地震出版社,1991.
    [109]赵密,杜修力,刘晶波,韩强. P-SV波斜入射时成层半空间自由场的时域算法.地震工程学报,2013,35(1):84-90.
    [110]曹文宏等.外环沉管隧道地震响应的三维数值模拟.隧道工程试验研究.
    [111] ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics withspecial reference to earthquake enineering. New York: John Wiley&Sons,1998.
    [112]李春光,王水林,郑宏等.多孔介质孔隙率与体积模量的关系.岩土力学,2007,28(2):293-296.
    [113] GAJO A. Experimental analysis of the effects of fluid-soil coupling on the velocity of elasticwaves in saturated porous media. Geotechnique,1997,47(5):993-1008.
    [114] GAJO A. The influence of viscous coupling in pro-pagation of elastic waves in saturated soil.Journal of Geotechnical&Geoenvironmental Engineering, ASCE,1995,121(9):636-644.
    [115]杨峻.层状饱和土中波的传播.[浙江大学博士学位论文].杭州:浙江大学土木工程系,1995.
    [116] Deresiewicz H. On uniqueness in dynamic poroelasticity. Bull Seism Soc Am, Skalak R.1963,53:783-789.
    [117] B Ebgquist and A Majda. Absorbing boundary conditions for the numerical simulation ofwaves. Math. Comp.1977,31(139).
    [118] R Clayton and B Ebgquist. Absorbing boundary conditions for acoustic and elastic waveequations. Bull. Seism. Soc. Am.,Vol.67,1977:1529-1540.
    [119] Bowen RM. Incompressible porous media models by use of the theory of mixture.International Journal of Engineering Science1980,18:1129-1148.
    [120] Bowen RM. Compressible porous media models by use of the theory of mixture. InternationalJournal of Engineering Science1982,20(6):697-735.
    [121] Liu Jingbo, Lu Yandong. A direct method for analysis of dynamic soil-structure interactionbased on interface idea. In:Zhang Chuhan, Wolf J P, edit. Dynamic Soil-Structure Interaction.International Academic Publishers,1997:258-273.
    [122]王振宇.大型结构-地基系统动力反应计算理论及其应用研究[清华大学博士学位论文].北京:清华大学土木工程系,2002.
    [123]李彬.地铁地下结构抗震理论分析与应用研究[清华大学博士学位论文].北京:清华大学土木工程系,2005.
    [124]刘光磊.饱和地基中地铁地下结构地震反应机理研究[清华大学博士学位论文].北京:清华大学土木工程系,2007.
    [125]赵密.近场波动有限元模拟的应力型时域人工边界条件及其应用[北京工业大学博士学位论文].北京:工业大学土木工程系,2009.
    [126] Novak M. Vertical vibration of floating piles. Journal of the Engineering Mechanics Division,ASCE1977,103(1):153-168.
    [127] Novak M, Mitwally H. Transmitting boundary for axisymmetrical dilation problems. Journalof the Engineering Mechanics Division, ASCE.1988,114(1):181-187.
    [128] Alpert B, Greengard L, Hagstrom T. Nonreflecting boundary conditions for thetime-dependent wave equation. Journal of Computational Physics2002,180:270–296.
    [129] Birk C, Ruge P. Representation of radiation damping in a dam-reservoir interaction analysisbased on a rational stiffness approximation. Computers and Structures2007,85:1152–1163.
    [130] Du X, Zhao M. Stability and identification for rational approximation of frequency responsefunction of unbounded soil. Earthquake Engineering and Structural Dynamics2010,39:165–186.
    [131] Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T. ComputationalGeomechanics with Special Reference to Earthquake Engineering. New York: John Wiley andSons,1998.
    [132]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元.岩土工程学报,2006,28(9):1070-1075.
    [133] Wang J, Zhang C, Du X. An explicit integration scheme for solving dynamic problems ofsolid and porous media. Journal of Earthquake Engineering2008,12:293–311.
    [134] Dewoolkar MM. A study of seismic effects on centiliver-retaining walls with saturatedbackfill. PHD Thesis, Department of Civil Engineering, University of Colorado, Boulder,USA,1996.
    [135] Kuhlemeyer RL, Lysmer J. Finite element method accuracy for wave propagation problems.Journal of Soil Mechanics and Foundations Division, ASCE1973,99(SM5):421-427.
    [136] Gajo A. Influence of viscous coupling in propagation of elastic-waves in saturated soil.Journal of Geotechnical Engineering, ASCE1995,19:399-414.
    [137]邵秀民,蓝志凌.流体饱和多孔介质波动方程的有限元解法.地球物理学报,2000,43(2):264-278.
    [138] Pastor M, Zienkiewicz O C. A generalized plasticity, hierarchial modal for sand undermonotonic and cyclic loading.2nd International Symposium on Numerical Models inGeomechanics,1986.
    [139] Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modeling of soilbehavior. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14:151-190.
    [140]叶耀先等译.地震工程学原理.北京:中国建筑工业出版社,1986.10.
    [141]谷音.结构-地基相互作用问题高效数值方法研究及工程应用.北京:清华大学土木工程系,2005.
    [142]傅淑芳,刘宝诚.地震学教程.北京:地震出版社,1991.
    [143]杨文武.沉管隧道工程技术的发展.隧道建设,2009,29(4):397-403.
    [144]肖晓春.大型沉管隧道管节工厂化预制关键技术.隧道建设,2011,31(6):701-705.
    [145] Menq F y. Dynamic properties of sandy and gravelly soils. Austin, TX: University of Texas atAustin,2003.
    [146]施仲衡.地下铁道设计与施工.陕西科学技术出版社,2006.
    [147]彭海阔等.在地震激励下动水压力对沉管隧道的影响.上海交通大学学报,2008,42(6):1027-1031.
    [148]陈贵红,高波,赵玉光.沉管隧道抗震研究.地震研究,2006,29(1):60-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700