用户名: 密码: 验证码:
松辽盆地永平油田油藏开发地质与开发部署研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永平油田位于吉林省松原市宁江区境内,区域构造位于松辽盆地南部东南隆起区登娄库背斜带北部的扶余Ⅰ号构造上。油田含油层系为泉四段扶余油层,油层温度下脱气原油粘度为6000~30000mPa.s,根据中国稠油分类标准,原油性质属于普通稠油Ⅱ类和特稠油,常规条件投产没有产量,必须通过热采才能提高单井产能,前期开展的蒸汽吞吐试验见到了一定效果。为了合理、高效开发永平油田,论文开展了稠油油藏开发地质特征综合研究、稠油注蒸汽开发动态分析、稠油注蒸汽开发油藏工程设计及总体方案优化部署等方面的研究工作。
     在详细研究油藏构造特征、储层沉积微相、储层分布、油水分布及油藏控制因素、岩石渗流特征及流体性质等开发地质特征基础上,永平油田具有埋蔵浅、油层厚度薄、油层分布零散、含油饱和度低及原油粘度高等特点,并分析了这些开发地质特征对热采开发效果的影响。
     在测井资料综合解释的基础上,利用容积法分单元计算了油田原油地质储量。应用地质统计学和随机过程的相控随机模拟方法,建立了油藏构造模型和能够反映地下储层物性(孔、渗、饱)参数空间分布的属性模型,地质建模网格计算的地质储量符合建模储量精度要求,为数值模拟提供了基础。
     通过对热采井生产动态分析,明确认为油层厚度薄、含油饱和度低及原油粘度高是影响热采效果的主要原因,部分井注入强度差及底水锥进也有重要影响。提出增大注汽强度而有效加热油层,并通过混合气助排增加地层压力等,解决油层温度低原油不流动的问题,又能有效解决地层压力低、有效期短的矛盾,提高吞吐井产量及改善多轮次吞吐开发效果。
     利用数值模拟、物理模拟和注采参数优化、同类油田类比等方法进行了油藏工程优化研究,结果表明永平油田稠油油藏适合采用蒸汽吞吐和蒸汽驱方式开发;井位部署采用100×86m反九点长方形井网;蒸汽吞吐注汽强度为90~110t/m;吞吐四周期后转为蒸汽驱。通过储层厚度、含油饱和度及裂缝等对开发效果有影响的敏感性参数研究,认为有效厚度大于4m、含油饱和度大于55%的油层更适合注蒸汽开发;适当延长东西向注汽井和吞吐井的井距,能够延缓蒸汽窜流的速度。
     针对永平油田油层厚度薄、油层跨度大及砂地比低进而导致注蒸汽过程中各个层位吸汽不均匀的问题,提出了在主力油层集中发育的区域部署井位的思路。通过对油砂体分布及砂地比的综合研究,确定在主力油层集中发育、有效厚度大于4m及砂地比大于0.4的区域部署开发。根据永平油田储量丰度、产能水平、落实程度的差异及地面条件、现有设施的差别,根据先肥后瘦的原则,按照大于8m、6~8m及大于4m的顺序分三期实施。预测开发期11年,总注汽量2216.7×10~4t,总开采原油315.6×10~4t,阶段采出程度为32.3%。
Yongping Oilfield is located on the northern part of Denglouku Cline of the southeast uplift district of the Southern Songliao Basin, is located in the territory of Ning Jiang, Songyuan City, Jilin province. Oil layer of oilfield is fourth members of Quan for the Fuyu oil layer, dead oil viscosity is 6000 ~ 30000mPa.s in the oil temperature. According to the Chinese classification standard of heavy oil, the crude oil properties are belonging to the ordinary heavy typeⅡand special heavy type. The single well production, which do not-yield in the general conditions, could be improved by thermal recovery, Prophase Steam stimulation had be carried out to see some effects. For rational and efficient development of Yongping oil fields, the paper launched a lot of research work, including a heavy oil reservoir geological characteristics developed comprehensive study, Performance Analysis of Steam Injection, Steam injection heavy oil reservoir engineering development and optimization of overall development and so on.
     Studied in detail based on the development of geological features such as structural features of the reservoir, reservoir microfacies, reservoir distribution, water distribution, reservoir control factors, flow characteristics of rock, and fluid properties, Yongping oilfield has the characteristics of buried shallow, thin oil, oil scattered distribution, oil saturation characteristics of low and high viscosity of crude oil, and analyze development geological features impact on development effect of thermal recovery.
     On the basis of comprehensive interpretation of the log data, sub-unit of crude oil reserves could be calculated by using volume method. Application of geostatistics and stochastic processes of stochastic simulation phased method, the reservoir constructed underground reservoir model and the properties spatial distribution parameters model to reflect the physical properties (pore、permeability and saturated) could be established, the geological reserves, which to be calculated by geological modeling grid meets the modeling reserves accuracy requirement, had provided the foundation for the numerical simulation.
     Through to picks the hotly well production performance analysis, it is explicit to consider that the main effect of thermal recovery had thin oil, crude oil low saturation and high viscosity, and other effect included intensity difference in some wells and underground injection of water coning. The method, which were increasing the strength of steam injection and effective heating oil, and increasing formation pressure through mixed gas cleanup and so on, could be solution the problem of the low temperature un-flow oil layer, and also an effective solution the conflict of the low layer pressure and a short period, and increased the stimulated well production and improved the effect of multi-round development.
     Optimization of petroleum reservoir engineering had be researched through using numerical simulation, physical simulation, injection/production parameter optimization, allied field analogy and other methods. The results showed that cyclic steam injection and steam flooding were suitable for the development of inspissated pool of Yongping Oilfield. We arrange the wells with 100×86m inverted nine spot rectangle well patterns, set the steaming strength of steam stimulation as 90~110t/m, and turn into steam flooding after four cycles of steam huff and puff. After studies on the sensible parameters that influential for development effect, such as reservoir thickness, SATO, fracture, we thought that steam injection development is more suitable for the petroleum reservoir whose effective thickness is bigger than 4m, and whose SATO is bigger than 55%. And we can slow the speed of steam channeling by extending the well spacing of steamed well and stimulating well in EW direction in appropriate level.
     Aiming at Yongping oil fields' reservoir thickness thin, reservoir span wide and sandstone thickness and stratum thickness ratio low resulting in steam injection process each position suction steam the uneven, deploy locating wells in the major reservoirs centralized development thought the area was proposed. Based on the distribution and oil-bearing sand body rather than the comprehensive research of the major reservoirs, determine the centralized development, effective thickness is greater than 4m and sandstone thickness and stratum thickness ratio more than 0.4 areas deployment. According to the Yongping oil fields' reserves abundance, and capacity level, implement a difference of degree and ground conditions, the difference of the existing facilities, and first development rich reservoirs then the lean reservoirs principle, the Yongping oilfield reservoirs steam injection process in accordance with greater than 8m, 6 ~ 8m and greater than 4m order into three times to implement. It was forecasted that development period is 11 years, total steam injection quantity is 2216.7×10~4t, total mining crude oil 315.6×104t, and stage for recovery degree is 32.3%.
引文
[1]李美霞.沥青质沉积问题文献综述[J].特种油气藏,1996,3(3):59~62.
    [2]蒲万芬.油田开发过程中的沥青质沉积[J].西南石油学院学报,1999,21(4):38~41.
    [3]杨照,郭天民.沥青质沉淀研究进展综述[J].石油勘探与开发,1997,24(5):98~103.
    [4]于连东.世界稠油资源的分布及其开采技术的现状与展望[J].特种油气藏,2001,8(2):98~103.
    [5]崔波,石文平,戴树高,等.高粘度稠油开采方法的现状与研究进展[J].石油化工技术经济,2000,6(2):5~10.
    [6]胡见义,牛嘉玉.中国重油和沥青砂资源[J],1998(1):23~32.
    [7] R.George s.Ritchis,Rodney s.Roche,William Steedman.Pyrolysis of Athabasca tar sands:analysis of the condensible products from asphaltene.fuel,1979,58(6):523~530.
    [8]R.J.Gallant et,al,Steaming and Operating Strategies at a Midlife Css Operation,SPE 25794,Feb,1988.
    [9]Renata Costa Ribeiro da Silva,Rahoma Sadeq Mohamed,Antonio Carlos Bannwart.Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow.Journal of Petroleum Science and Engineering,2006,51(2):17~25.
    [10]Reza Azin,Riyaz Kharrat,Cyrus Ghotbi,et al.Simulation study of the VAPEX process in fractured heavy oil system at reservoir conditions.Journal of Petroleum Science and Engineering,2008,60(2):51~66105.
    [11] Maria T.Martinez,Ana M.Benito,Maria A.Calljas.Thermal cracking of coal residues:kinetics ofasphaltene decomposition.FUEL,1997,76(9):871~876.
    [12] Morteza Nobakht,Samane Moghadam. Mutual interactions between crude oil and CO2 under different pressures.Fluid Phase Equilibria,2008,265(5):94~103.
    [13]N.C.Wardlaw, M.McKellar.Wettability and connate water saturation in hydrocarbon reservoirs with bitumen deposits.Journal of Petroleum Science and Engineering,1998,20(3):141~146.
    [14] Ohen H.A.,Civna F..Simulation of Formation Dmaage in Petroleum Resevroirs.SPE AdvancedTechnology Series,1993,ll(l):27~35.
    [15] R.G.S.Arafijo,jlao,Sousa,M.Bloch.experimental investigation on the influence of temperature on the mechanical properties of reservoir rocks int J,Rock Mec h.&Min.Sci.,1997,34(3):3-4.
    [16]程金财、魏桂平、郑南方.高升油田热采开发效果分析[M].辽河油田开发实例,北京:石油工业出版社,1994.
    [17] Behnam Sedaee Sola,Fariborz Rashidi,Tayfun Babadagli.Temperature effects on the heavy oil/water relative permeabilities of carbonate rocks.Journal of Petroleum Science and Engineering,2007,59(1):27~42.
    [18] Aggour M.A.,Malik S.A.,Harari Z.Y.Effect of Cyclic Formation Pressure Changes on Permeability,SPE157286(3):54~58.
    [19]Azfar Hassan,Lante Carbognani,Pedro Pereira-Almao.Development of an alternative setup for the estimation of microcarbon residue for heavy oil and fractions:Effects derived from air presence.Fuel,2008,55(4):101–109.
    [20]Richard.P.Dutta,William C.Mc.Caffrey,Murray R.Gray . Thermal cracking of athabasca bitumen:influence of steam on reaction chemistry.Engergy&Fuels,2000,14(2):671~676.
    [21]Tushar V.Choudhary,Stephen Parrott,Byron Johnson.Understanding the hydrodenitrogenation chemistry of heavy oils.Catalysis Communications,2008,9(1):1853~1857.
    [22]Amy Hinkle,Eun-Jae Shin,Matthew W.Liberatore,et al.Correlating the chemical and physical properties of a set of heavy oils from around the world.Fuel,2008,87(6):3065~3070.
    [23]Clark P.D,Hyne J.B,Tyrer J.D.Chemistry of organosulphur compound type occurring in heavy oil sands 5 Reactions of thiophene and tetrahydrothiophene with aqueous group VIIIB metal species at high temperature.FUEL,1987,66(2):1699~1702.
    [24]Desbene P L,Abderrezag A,Desmazieres B,et al.The transalkylation reaction:Analytical tool for the study of heavy crude oil fraction.Application to asphaltenes of various types.Org.Geochem.,1990,16(4-6):969~980.
    [25]Dewall J A.Measurement and Evaluation of Resistivity-Index Curves.The Log Analyst,1991,(5):111~124.
    [26]Tayfun Babadagli.Temperature effect on heavy-oil recovery by imbibition in fractured reservoirs.Journal of Petroleum Science and Engineering,1996,14(3):197~208.
    [27]E.Kowalewski,T.Holt b,O.Torsaeter.Wettability alterations due to an oil soluble additive.Journal of Petroleum Science and Engineering,2002,33(2):19~28.
    [28]F.Plantier,D.Bessieres,J.L.Daridon,et al.Structure and thermodynamic consistency of heavy oils:A study on the basis of acoustic measurements.Fuel,2008,87(2):196~201.
    [29]Gaters C.F.&B.G.Holmes,“Thermal Well Completions and Operation”,Proceedings of Seventh World petroleum Congress,Mexico City 1967,P419.
    [30]Gilbert F.Froment,Luis Carlos Castaneda-Lopez,Celia Marin-Rosas.Kinetic modeling of the hydrotreatment of light cycle oil and heavy gas oil using the structural contributions approach.Catalysis Today,2008,130(6):446~454.
    [31] Tayfun Babadagli,Yaman Boluk.Oil recovery performances of surfactant solutions by capillary106imbibition. Journal of Colloid and Interface Science,2005,282(5):162~175.
    [32]杨瑞琪、罗梅仙、廖广志.克拉玛依油田浅层稠油油藏蒸汽先导试验研究[J].北京:第三届中加稠油技术讨论会,1995.
    [33]胡常忠、刘新福、宋振宇.井楼零区浅薄层稠油油藏蒸汽驱先导试验[J].北京:第三届中加稠油技术座谈会,1995.
    [34]蔺玉秋、包连纯、张学汝.辽河油田开发实例[M].北京:石油工业出版社,1994.
    [35]邓兰鸿,徐士进.热采条件下砂岩储层矿物转化的实验研究[J].高校地质学报,2000,6(2):315~321.
    [36]范洪富,刘永建,钟立国.油层矿物对蒸汽作用下稠油组成与粘度变化的影响[J].油田化学,2001,18(4):299~301.
    [37]李相远,郭平,李向良,等.疏松砂岩稠油油藏热采储层伤害研究[J].油气采收率技术,7(1):57~61.
    [38]党犇,赵虹,隗合明,等.稠油热采条件下沥青质沉积热模拟实验研究及影响因素分析-以辽河油田曙一区杜84块兴隆台油层稠油油藏为例[J].石油实验地质,2003,25(3):305~3089.
    [39] Glen Brons,Michael Siskin.Bitumen chemical changes during aquathermolytic treatments of coldlake tar sands.Fuel,1994,73(6):183~191.
    [40]Gunter W.D.Modeling formation damage caused by kaolinite from 25 to 350℃in the oil sand reservoirs of Alverta.SPE23786,1992.
    [41]Hajdol E.Formation damage of a nonconsolidated reservoir during steamflooding.SPE27385,1994.
    [42]Helset H.M.Relative permeability from displacement experiments with full account for capillarypressure.SPE Reservoir Eval&Eng,1998,1(2):92~98.
    [43]T.Babadagli.Scaling capillary imbibition during static thermal and dynamic fracture flow conditions.Journal of Petroleum Science andEngineering,2002,33(2):223~239.
    [44]Hidetsugu Fukuyama,Satoshi Terai.Preparing and characterizing the active carbon produced bysteam and carbon dioxide as a heavy oil hydrocracking catalyst support.Catalysis Today,2008,130(3):382~388.
    [45]Huang W.S.Cold production of heavy oil from horizontal wells in the Frog Lake field SPE Res.Eval.Engng.1998,1(6)P551-555.
    [46]J.E.King.T.R.Blevings.The Nationl Petroleum Council EOR Study Thermal Process SPE 13242,1984.
    [47]J.D.M.Belgrave,R.G.Moore,M.G.Ursenbach.Comprehensive kinetic models for the aquathermolysis of heavy oils﹒ The Journal of Canadian Petroleum Technic,1997,36(4):38~44.
    [48]Ronak A.Kapadia,Simant R.Upreti,Ali Lohi,et al.Determination of gas dispersion in vapor extraction of heavy oil and bitumen.Journal of Petroleum Science and Engineering,2006,51(5):214~222.
    [49]胡三清,李淑廉.井眼条件下钻井液对油层损害的室内试验研究[J].江汉石油学院学报,2000,22(3):35~36.
    [50]蒋官澄,鄢捷年.疏松砂岩油藏出砂机理研究[J].钻采工艺,1996,13(2):9~12.
    [51]蒋祖国,王义才,韩润静,等.注水中伊/蒙间层矿物对吐哈油田油层伤害的室内研究[J].新疆石油地质,2000,21(4):304~306.
    [52]范洪富,张翼,刘永建.蒸汽开采过程中金属盐对稠油粘度及平均分子量的影响[J].燃料化学学报,2003,31(5):429~433.
    [53]李爱国.稠油热采水岩反应数学模型的应用[J].西安地质学院学报,1997,19(3):54~60.
    [54]李红,王培荣,邓胜华,等.非烃化合物引起的润湿性的变化[J].石油勘探与开发,2000,27(5):69~75.
    [55]李素梅,张爱云,王铁冠.原油极性组分的吸附与储层润湿性及研究意义[J].地质科技情报,1998,17(4):65~70.
    [56]李云峰,钱会.蒸汽吞吐稠油储层矿物溶蚀量和沉淀量的计算[J].油田化学,1997,14(2):143~147
    [57]李向良,郭平,庞雪君,等.高温高压蒸汽凝析液对超稠油油藏储层的伤害研究[J].特种油气藏,2003,10(2):88~89.
    [58]刘其成,郭彦臣,刘志惠.辽河油区稠油热采中储层变化实验研究[J].特种油气藏,1999.
    [59]马玉霞.稠油油藏注蒸汽后沥青沉积引起的储层变化[J].河南石油,2004,10(2):56~57.
    [60]妙兴,韩怀,闫少武,等.稠油油藏注汽前后物性变化规律研究[J].西部探矿工程,2004,98(7):68~71.
    [61]唐洪明,赵敬松,陈忠,等.蒸汽驱对储层孔隙结构和矿物组成的影响[J].西南石油学院学报,2000,22(2):11~14.
    [62]王敬玉,罗治形.注汽热采中粘土矿物成分及含量的变化规律[J].新疆石油地质,1995,16(1):57~72.
    [63]于兰兄,杨延东,汪宝华.辽河油区砂岩稠油油藏蒸汽吞吐开采中储层变化的实验研究[J].特种油气藏,1999,6(1):52~57.
    [64]张人雄,向阳,李晓梅.超稠油油藏热采过程中沥青质损害室内模拟[J].石油勘探与开发,2001,28(1):85~86.
    [65]J.J.Taber and F.D.Martin.Technical Screening guides for the Enhanced Recovery of Oil [J].SPE 12069,1983.
    [66]John Ivory,Mario De Rocco,Norman Paradis.Investigation of the mechanisms involved in thesteam-air injection process.JCPT,1992,31(2):41~47.
    [67]K.C.Hong.Steamflood Strategies For a Steeply Dipping Reservoir.SPE Reservoir Engineering,May 1988.
    [68] Kenneth A.Gould.Influence of thermal processing on the properties of cold lake asphaltene.Fuel,1983,62(2):370~372.
    [69]Tayfun Babadagli,Ali Al-Bemani.Investigations on matrix recovery during steaminjection intoheavy-oil containing carbonate rocks.Journal of Petroleum Science and Engineering,2007,58(2):259~274.
    [70]Kewen Li,Roland N.Horne.Systematic study of steam–water capillary pressure.Geothermics,2007,36(1):558~574.
    [71]M.Marafi,A.Stanislaus.Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts.Catalysis Today,2008,130(3):421~428.
    [72]M.T.Tweheyo,T.Holt,O.Torster.An experimental study of the relationship between wettability and oil production characteristics.Journal of Petroleum Science and Engineering,1999,24(5):179~188.
    [73]Malcolm Greaves,Abdul el-saghr,Tian Xiangxia.Capri horizontal well reactor for catalytic upgrading of heavy oil.Preprints,2000,45(4):595~598.
    [74]Maria C.Bravo,Mariela Araujo.Analysis of the unconventional behavior of oil relative permeability during depletion tests of gas-saturated heavy oils.International Journal of Multiphase Flow,2008,34(2):447~460.
    [75]程绍志,魏淋生,白理明等.稠油化学降粘注排技术应用[C].北京:第三届中加稠油技术座谈会,1995.
    [76]曹嫣镔,宋丹,刘冬青,等.石油磺酸盐复配体系在胜利油田稠油热采中的应用研究[J].石油天然气学报(江汉石油学院学报),2006,28(1):68~72.
    [77]廖泽文,耿安松.稠油和油砂中沥青质等重质组分的轻度氧化降解[J].石油勘探与开发,2002,29(4):55~59.
    [78]刘永建,钟立国,范洪富,等.稠油的水热裂解反应及其降粘机理[J].大庆石油学院学报,2002,26(3):95~98.
    [79]钱会,李云峰.辽河曙光油田蒸汽吞吐开采过程中水岩作用的研究[J].西安工程学院学报,2001,23(1):33~37.
    [80]施成耀,梁磊,薛如清.重质原油采油工艺的设想—原油改质热注采[J].石油勘探与开发,1997,24(1):77~79.
    [81]吴高安.反应速率常数方差最小法确定动力学方程参数.武汉化工学院学报[J],2002,24(2):19~22.
    [82]张引沁,刘伟.一级反应速率常数测定数据处理方法选择[J].平原大学学报,2001,18(2):81~82.
    [83]张枝焕,常象春,曾溅辉.水-岩相互作用研究及其在石油地质中的应用[J].地质科技情报,1998,17(3):69~74.
    [84]凌建军,黄鹏.稠油热采试井三区数学模型及典型曲线分析.特种油气藏[J],1997,3(18):9~15.
    [85]吴淑红.一种用于处理宾汉非牛顿稠油渗流的热采模型[J].石油大学学报(自然科学版),1998,22(6):53~55.
    [86]杨照,林维森,马吕蜂,等.沥青质沉淀点的测定与模型化计算[J].石油学报,1999,20(3):92~95.
    [87]刘铁岭,沈和平.稠油油藏热采井出砂机理模拟实验研究[J].江汉石油学报,2004,21(3):83~84.
    [88]刘文章.抽油井采油经验[M]中国石油工业出版社,1959.
    [89]刘应学,凌建军.稠油井新型高温固砂技术实验研究[J].特种油气藏,2001,8(2):86~89.
    [90]王艳辉,刘希圣.油井出砂预测技术的发展与应用综述[J].石油钻采工艺,1994,16(5):79~85.
    [91]王玉纯,顾宏伟.油井出砂机理与防砂方法综述[J].特种油气藏,1998,5(4):63~66.
    [92]严锦根,王兆水.SN胶结剂用于蒸汽吞吐油井防砂[J].油田化学,2000,17(3):201~203.
    [93]剧世锋、左权林、邹祥骏.曙1—7—5特稠油边底水油藏注蒸汽开发[J].辽河油田开发实例,北京:石油工业出版社,1994.
    [94]杜立东、常守清、邹祥骏、左向军.杜66断块薄互层状稠油油藏蒸汽吞吐开发[C].北京:第三届中加稠油技术座谈会,1995.
    [95]罗全营、张彦福.辽河油田锦45块稠油油藏蒸汽吞吐后期提高开发效果的技术[J]中加第三届稠油技术讨论会,北京:1995.
    [96]许心伟,张锐,何中.稠油蒸汽驱开采特征及转驱程序研究[J].特种油气藏,1998,5(2):24~25.
    [97]阳鑫军.稠油开采技术[J].海洋石油,2003,23(2):55~60.
    [98]张力军、吴成林.辽河油田开发实例[M].北京:石油工业出版社,1994.
    [99]周英杰.胜利油区水驱普通稠油油藏注蒸汽提高采收率研究与实践[J].石油勘探与开发,2006,33(4):479~483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700