用户名: 密码: 验证码:
棉秆粉/PVC复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料是以天然植物秸秆为原料,加入一些加工助剂与PVC树脂复合而成的一种环境友好型新材料,近年来得到了较快的发展,其中以木粉与PVC制备的复合材料居多。本文是利用棉花秸秆粉末为主要原料制备复合材料,研究过程包括加工工艺、提高相容性、实际应用性等几个方面,旨在获得可应用于工业化生产的棉秆粉/PVC复合材料,为农业废弃棉花秸秆的综合利用开辟新途径。经大量实验后,得到的结论如下:
     1.采用响应面正交设计优化了制片工艺条件,确定最佳工艺为:温度166℃,压力25MPa,时间127s,同时得到了关于温度(X1),压力(X2),时间(X3)的三元二次回归方程:Y=42.53+1.63X1+4X2+0.45X3-5.63X12-6.46X22-1.62X32-0.62X1X2-1.1X1X3-0.82X2X3。
     2.将不同含量(20/100、30/100、40/100、50/100;棉秆粉用量相对PVC用量100份时的比例)和不同粒径(60目、100目、120目、150目)的棉秆粉作为填料分别制备复合材料,对板材进行拉伸强度、断裂伸长率、弯曲强度等相关力学性能的测试,结果表明,棉秆粉的最佳用量为40份,粒径为100目。
     3.采用偶联剂处理、碱处理及共聚接枝三种不同的表面处理方法对棉秆粉改性,结果表明,三种处理方法都能从不同程度上提高棉秆粉与PVC的相容性,改善了复合材料的力学性能,其中以共聚接枝法改善效果最为明显,偶联剂次之。硅烷偶联剂的最佳用量为2%,碱溶液的最佳浓度为15%,共聚接枝反应中,引发剂浓度为0.004mol/L时,表现出高的接枝率和接枝效率。
     探讨了三种不同的偶联剂(铝酸酯、钛酸酯及硅烷)的表面改性效果,并进行了弯曲强度和弯曲模量的测定,结果表明,硅烷对比其他两种偶联剂有更好的改性效果,棉秆粉与PVC的相容性明显提高。
     通过扫描电镜对复合材料的断面形貌和表面形貌进行观察,证实了改性处理的良好作用,通过红外微观表征,特征峰的出现同样证实了棉秆粉已被成功改性。
     4.设计了四因素三水平正交实验,对主要助剂的用量进行了探讨,结果得到,影响弯曲强度的因素主次为:硬脂酸(SA)>ACR>CaSt2>CaCO3,最终确定助剂的最佳用量为:硬脂酸0.3phr, ACR8phr, CaCO3 10phr, CaSt20.5phr。
     5.制备了低发泡棉秆粉/PVC复合材料,通过对密度、力学性能、流变性能的测试与分析得到:AC:ZB-530为1:5(AC 1phr), CPE含量在6%,DOP、硬脂酸及石蜡的用量分别为2phr、0.3phr和0.4phr时,复合材料表现出优良的综合性能。
     6.对棉秆粉/PVC复合材料进行了应用研究(耐候),吸水性能测试、力学性能测试、维卡软化点测试及耐热性能分析,结果表明,棉秆粉/PVC复合材料有很大实际应用价值,可以应用于工业化生产,是一条农业废弃秸秆资源综合利用的新途径。
Wood-plastic composites is an environment-friendly new materials, which is processed by natural plant stalks and PVC as raw materials with some processing aids, has been rapid development in recent years, and the wood-flour/PVC composites is the most widely used in those composites. This article is the use of cotton stalks flour as raw materials preparation of composite. The research process, including processing technology, improve compatibility and the practical application, with the purpose of get a cotton stalks-flour/PVC composites, which is a new way for the comprehensive utilization of agricultural waste cotton stalks. With the large number of experiments, the conclusion is as follows:
     1. The process of production was optimized by response surface methodology (RSM) to obtain the optimum conditions. It was indicated that the optimum condition was as follows: Temperature,166℃; Pressure,25MPa; Time,127s. The regression equation describing process of production was obtained by response surface methodology:Y= 42.53+1.63X1+ 4X2+0.45X3-5.63X12-6.46X22-1.62X32-0.62X1X2-1.1X1X3-0.82X2X3.
     2. Different content(20/10、30/100、40/100、50/100; cotton stalks-flour/PVC) and different particle size(60 mesh,100 mesh,120 mesh,150 mesh) as filler, which were prepared for preparation of composites, and tensile strength, elongation at break, flexural strength of composites were tested. The results show that the optimum amount of cotton stalks-flour was 40phr, and particle size was 100m.
     3. Coupling agent treatment, alkali treatment and graft copolymerization of three different surface treatments were used in cotton stalks-flour; the results showed that the three processing methods can improve compatibility and mechanical properties of composites, Improvement of graft copolymer of which the most obvious effect, coupling the second. The best dosage of silane coupling agent is 2%, the best concentration of alkali solution is 15%, in the graft copolymerization reaction, the initiator concentration of 0.004mol/L, show a high grafting percentage and grafting efficiency.
     Explored three different coupling agent (Al ester, titanate and silane) surface modification effect, which were used to preparation of composites, flexural strength and elastic modulus of cotton stalks-flour/PVC composites were tested. The results show that the silane coupling agent compared with the other two had the better modification effect, the compatibility of cotton stalks-flour and PVC has improved significantly.
     Fracture surface and surface morphology of cotton stalks-flour/PVC composites were observed by SEM, which confirmed the positive role of modification, the emergence of characteristic peaks of cotton stalks-flour by FTIR also confirmed that has been successfully modified.
     4. With orthogonal experiments, the amounts of the main additives were discussed; the results show primary and secondary factors that affect the flexural strength was as follows: SA>ACR> CaSt2> CaCO3, ultimately determine the optimum dosage of additives as:stearic acid 0.3phr, ACR 8phr, CaCO3 10phr, CaSt2 0.5phr.
     5. Low foaming cotton stalks-flour/PVC composites was prepared, through testing and analysis the density, mechanical properties and rheological properties of that, It was indicated that AC:ZB-530 is 1:5 (AC lphr), CPE content of 6%, DOP, the amount of stearic acid and paraffin were 2phr,0.3phr and 0.4phr, the composite material exhibits excellent overall performance.
     6. With the research on Applications of cotton stalks-flour/PVC composites (weather resistance), through water absorption test, mechanical property test, vicat softening point test and heat resistance test, the results show that the cotton stalks-flour/PVC composite have great practical value, which can be applied to industrial production and that is a new way for comprehensive utilization of resources on agricultural waste straw.
引文
1.揣成智,李树等.聚丙烯/接枝木纤维复合材料相容性及性能的研究[J].中国塑料,2000,14(5):23
    2.揣成智,李树等.软木纤维增强PP复合材料的研究.塑料科技[J],2001,1:11
    3.陈家楠.纤维素结构研究的进展[J].纤维素科学与技术,1993,(01)4:1-9
    4.陈志俭,刘廷华.PVC颗粒形态及其对制品力学性能的影响[J].中国塑料,2003,17(10):33-35
    5.董炎明,张海良.高分子科学教程[M].北京科学出版社,2004,165-170
    6.付文,王丽.木塑复合材料改性研究进展[J].高分子通报,2010,(03):61-65
    7.韩振,房轶群.高填充PVC基木塑复合材料的燃烧性能[J].东北林业大学学报,2010,(10):64-66
    8.江国栋,张.添加剂对硬质PVC流变性能的影响[J].材料开发与应用,2005,20(4):18-22
    9.金镇镐,李.硬质低发泡PVC流变性能分析[J].哈尔滨理工大学学报,2006,11(4):92-94
    10.寇俊莉,林彦军,王明明.无毒PVC热稳定剂的研究现状与发展趋势[J].中国氯碱,2006,2:1-5
    11.雷文,余旺旺.几种木塑复合材料的性能对比[J].塑料科技,2008,(03):40-45
    12.李大纲,周吓星.环境因素对木塑复合材料耐候性的影响[J].中国建材科技,2009,(03):23-27
    13.李坚.木塑复合材料[J].现代化工,1983,(06):63-23
    14.李健,高曙光,付中玉等.共混纤维相形态的扫描电镜观察[J].电子显微学报,2002,21(1):86-89
    15.林建国,黄旭东.稻壳粉在木塑产品中的应用[J].塑料制造,2006,(Z1):39-41
    16.李思良,刘易凡等.植物纤维/热塑性树脂复合材料的研究.塑料工业,1999,27(1):14
    17.李思远,杨伟.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业,2003,31(11):22-24
    18.刘英俊,刘伯元编.塑料填充改性[M].中国轻工业出版社,1998,1
    19.马灵飞,杨云芳,许英超.木塑复合材性能的研究[J].浙江林学院学报,1996,(01):1-2
    20.欧荣贤,王清文.马来松香对木粉/HDPE复合材料流变性质的影响[J].林业科学,2009,(05):126-131
    21.任重远,李邦.聚丙烯酸酯木塑复合材料[J].复合材料学报,1994,(03):3-5
    22.沈凡成,贾润礼.可用于木塑复合材料的木粉、植物秸秆、果壳[J].塑料制造,2009,(12):60-63
    23.沈惠玲,辛华,董向红等.塑料填充体系界面粘结微观形态的SEM研究[J].电子显微学报,2001,21(1):20-25
    24.孙艳妮,张润鑫,冯莺等.氯化聚乙烯/碳纳米管复合材料的制备及其性能研究.材料工程,2006,(S1):124-127
    25.孙占英,李大纲.木塑复合材料吸水膨胀率的研究[J].福州大学学报(自然科学版),2005,(03):322-325
    26.温变英,张学东,王佳梅.用扫描电镜研究高聚物的微观形态结构[J].电子显微学报,2000,19(2):166-170
    27.王桂荣.国外木塑复合材料的发展及其应用[J].林业机械与木工设备,2010,(07):43-44
    28.王建民.脆性塑料改性PVC体系中相界面的作用[J].高分子材料科学与工程,1999,15(2):94
    29.王林娜,蔡建臣.木塑复合材料加速老化性能的研究[J].工程塑料应用,2010,(02):63-66
    30.王清文,王伟宏.木塑复合材料与制品[M].化学工业出版社,2007
    31.王玉海,沈浩,麦堪成.纳米CaCO3/PP复合材料光氧老化行为的红外光谱研究[J].中山大学学报(自然科学版),2008,47(3):62-66
    32.邬义明,植物纤维化学[M].中国轻工业出版社,1991,(2)
    33.王正,郭文静,王建军.木塑复合材料板制造工艺的因子研究[J].林产工业,1996,(02)
    34.杨红旗.我国棉花生产现状与发展前景分析[J].种子科技,2010,(2):5-6
    35.杨庆贤.从木/塑复合材料的微观形貌探索增强机理[J].福建林学院学报,1992,(04):412-416
    36.杨庆贤.木/塑复合材料及其增强机理的研究[J].复合材料学报,1992,(04):77-82
    37.杨文斌,李坚.木塑复合材料表面润湿性研究[J].福建师范大学学报(自然科学版),2005,(03):19-21
    38.杨占红.稀土稳定剂对聚氯乙烯热稳定性能的影响[J].稀土,1999,(2):61-63
    39.杨之礼,王庆瑞编.粘胶纤维工艺学[M].北京纺织工业出版社,1991
    40.应伟斌,袁新华.两种不同基体木塑复合材料的制备及性能研究[J].塑料,2006(04):12-16
    41.赵津,高振镛.用辐射法制备木塑复合材料的研究[J].化学工业与工程,1992,(04):37-41
    42.赵娟,崔怡.木质填料种类及含量对木塑复合材料性能的影响[J].塑料科技,2007,(09):46-52
    43.赵劲松,付志敏,王栋.稀土复合稳定剂在PVC加工中的应用及稳定机理探讨[J].聚氯乙烯,2002,(3):30-34
    44.周兴平,解孝林等.剑麻纤维的表面改性及其复合材料的研究进展[J].工程塑料应用,2000,28(8):44
    45. Andrzej K, Bledzki. Omar F. Microcellular wood fibre reinforced Poly-Propylene composites in an injection moulding proeess. Cellular Polymers,2002,21(6):417-430
    46. Andrzej K bledzki, Wenyang Zhang, Omar Faruk. Microfoaming of flax and wood fiber reinforced polyproylene composites[J]. Holz als Rohund werkstoff,2005,63(1):30-37
    47. Bengtsson, M. and K. Oksman. Silane crosslinked wood plastic composites:Processing and properties. Composites Science and Technology,2006,66(13):2177-2186
    48. Bledzki A. K.etal.J.APPI. Polym. Sei.,1996,59:1329
    49. Bledzki, A. K., M. Letman-Sakiewicz, et al. Influence of static and cyclic climate condition on bending properties of wood plastic composites (WPC). Express Polymer Letters,2010,4(6):364-372
    50. B. L. Shah, L. M. Maturant. Online measurement of rhologican properties of PVC/wood flour composites[J]. Journal of vinyl & additive technology,2004,10(3):121-128
    51. Brandt, C. W. and K. J. Fridley. Effect of load rate on flexural properties of wood-plastic composites. Wood and Fiber Science,2003,35(1):135-147
    52. Fatih Mengeloglu, Laurent M. Matuana. Mechanical properties of extrusion-foamed rigid PVC/wood-flour composites[J]. Journal of Vinyl and Additive Technology,2003,9(1): 26-31
    53. F. Mengeloglu, L. M. Matuana, A. K. Juliu. Effect of impact modifiers on the properties of Rigid PVC/wood-fiber composites [J]. Journal of Vinyl and Additive Technology,2000, 6(3):153-157
    54. H. Lin, S. Minda, Z. Chinoen. Mechanical characterization of microcellular foaming PVC/wood-flour composites[J]. Polym Research,2001,8:241
    55. Hristov, V. and J. Vlachopoulos. Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polymer Composites,2008,29(8): 831-839
    56. Islam, M. N., M. A. Khan, et al. Study of water absorption behavior in wood plastic composites by using neutron radiography techniques. Polymer-Plastics Technology and Engineering,2003,42(5):925-934
    57. J. M. Felix, et al. J. APPI. Polym. Sei.,1991,42:609
    58. L. M. Matuana, C. B. Park, J. J. Balatinecz. Characterization of microcellular foaming PVC/cellulosic-fibre composites [J]. Cell. Pladt,1996,32:449-452
    59. L. M. Matuana, C. B. Park, J. J. Balatinecz. Cell morphology and property relationshops of microcellular foaming PVC/wood-fiber composites [J]. Polymer engineering and science,1998,38(11):1862-1872
    60. Laurent M, Matuana. Donatien P, etal. Accelerated ultraviolet weathering of PVC/wood-flour composites. Polymer Engineering&Seienee,2002,42(8):1657-1666
    61. Matuana, Laurent M, Balatinecz, etal. Effect of surface properties on the adhesion between PVC and wood'veneer laminates. Polymer Engineering and Science,1998,38(5): 765-773
    62. Mishra, S. and J. B. Naik. Mechanical properties of wood polymer composites prepared from agro-waste and HDPE. Polymer-Plastics Technology and Engineering,2005,44(3): 511-522
    63. M. M. Sain, B. V. Kokta. Polym. Plast. Techn. Eng.,1994,33(1):89
    64. Nevell T. P. etal. Cellulose Chemistry and its APPlieations. NewYOrk:wiley.1985
    65. P. Rachtanapun, S. E. M. Selke, L. M. Matuana. Microcellular fosm of polymer blends of HDPE/PP and their composites with wood Fiber[J]. Journal of Applied Polymer Science, 2003,88:2843-2850
    66. R. Rangaprasad. wood Plastic composites:An overview. Chemical Weekly,2003,48(49): 139-143
    67. Schneider, M. H., S. Vasic, et al. Static bending and toughness of wood polymer composites (yellow birch and basswood). Wood Science and Technology,2003,37(3-4): 165-176
    68. Shao Y X, Moras S. Wood fibre-cement composites by extrusion. Canadian Journal of Civil Engineering,2000,27(3):543-552

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700