用户名: 密码: 验证码:
辽宁省近岸海域环境问题与承载力分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋,尤其是近岸海域是我国沿海地区经济社会实现可持续发展的重要载体和战略空间,沿海地区是我国人口最稠密、经济活动最为活跃的地区。随着沿海地区经济社会的快速发展,海洋生态系统正承受着巨大压力和影响。我国近岸海域资源、生态、环境承载能力十分有限,由人类活动引起的海域生态环境恶化问题日益突出,严重影响了沿海地区可持续发展。
     本文在对辽宁省近岸海域开发利用现状及环境影响问题综合分析的基础上,对辽宁省海岸带开发过程中涉及到的几个典型问题进行了研究,主要的研究内容及成果如下:
     (1)海水水质评价是海水水质环境要素优劣的综合概念,是一个多因素多水平耦合作用的复杂不确定系统,各评价指标含量具有中介过渡性,属于模糊概念。本文选取锦州湾附近海域作为近岸海域开发与环境影响问题研究的典型海域,首先开展了该海域水环境时空特征分析,并在此基础上提出了基于可变模糊集理论的海水水质评价模型方法,该模型通过可变模型参数变化(a,p),将线性模型与非线性模型相结合,以最稳定级别特征值作为海洋水质环境的最后评价结果,从而区分各水质采样点的水质优劣,确定水质评价等级,评价结果相对于BP神经网络模型、模糊综合评判模型、集对分析模型等方法具有更好的可靠性,更适合于多指标、多级别、非线性的海水环境质量综合评价。
     (2)利用数学模型评价方法进行水质评价十分必要,但其计算过程比较复杂,更需要利用GIS系统来实现评价过程的自动化、并借助图形展示评价结果,本文将可变模糊数学模型引入海水水质评价中,并结合GIS技术,采用ArcEngine集成开发技术,在Visual C#2008开发环境下,将可变模糊数学模型与GIS空间分析手段集成,建立基于ArcEngine的海水水质可变模糊评价系统。通过ArcSDE数据引擎和专用开发数据接口访问SQL Server中的海水水质评价空间数据库,实现海水水质空间分布状况的实时动态显示,并将该系统应用到锦州湾海水水质综合评价中,实现了锦州湾海域海水水质综合评价结果的直观、可视化显示,为控制环境污染、进行环境规划提供了科学依据。
     (3)针对锦州湾海域无机氮、活性磷酸盐、化学需氧量、铅、镉、锌等主要环境污染因子持续偏高的问题,本文通过两种方式建立了水环境容量的估算模型,一种是基于地理信息系统的水环境容量计算方法,通过GIS地统计分析对研究区域的污染物指标和水深数据离散插值,建立了基于GIS的水环境容量估算模型,这种方法在资料缺乏的情况下,作为水环境容量的一种初步计算方法,是十分简便、有效的。另一种是通过利用DHI MIKE模型建立锦州湾水动力-对流扩散模型,利用“干湿”边界条件模拟了潮起潮落时,海滩污染物浓度的变化,选用低潮时污染物混合影响范围最大情景作为环境容量计算工况,同时利用渤海的环境背景值作为锦州湾的污染物本底浓度,考虑了污染物的本底浓度对环境容量的影响,模拟了关键污染物的浓度响应系数场,然后利用分担率法耦合最优化线性规划法,计算得到海洋环境容量。两种不同的模型方法分别适用于不同的计算环境,为海洋环境监测、排污控制等环境管理信息系统中环境容量的计算提供了科学的参考依据。
     (4)根据海洋资源、生态环境的特点及与人类的社会关系,考虑沿海地区社会发展、海洋经济状况、海洋开发程度、海洋资源禀赋状态与海洋环境质量等等诸方面因素,构建了海洋资源生态和环境承载力评价指标体系,基于可变模糊集理论构建了辽宁省沿海城市海洋资源、生态和环境承载力计算方法,评估了辽宁省海域资源、生态、环境承载能力发展的总体状况,同时对未来海域承载能力发展趋势进行了系统动力模型预测,最后提出了辽宁省海域资源生态环境可持续发展的对策与建议。
The ocean, especially the nearshore areas, has become the key carrier and strategic space of sustainable development of economy and society for the coastal areas, which are the most densely populated and in which the economic activity is the most active. With the rapid development of economy and society of the coastal areas, ocean ecological system withstands the huge pressure. At the same time, the resources, ecology and environment carrying capacity of the nearshore areas in China are very limited, and thus human activities have seriously worsened the marine area ecological environment, which interfere the sustainable development of the coastal areas.
     This paper has performed related research on several typical issues involved in the process of exploiting the nearshore areas of Liaoning Province based on the comprehensive analysis of current situation and environmental influence of the exploitations and utilizations of the nearshore areas in Liaoning Province. The major contents and results of the research are as follows:
     (1)Seawater quality analysis, in fact, is a comprehensive concept of seawater quality condition, and is a complex and uncertain system where multifactor and multilevel couple,the index contents always show up as the obvious transition characteristic.This paper selects the nearshore areas of Jinzhou Bay as the typical marine area of the nearshore exploitation. Firstly, the paper introduced the spatial-temporal characteristics of water environment in Jinzhou Bay, and raised a new seawater quality evaluation model based on variable fuzzy set theory. With the changes of variable model parameters (a, p), this model combined the linear model with the non-linear one, and take the most stable level characteristic value as the final evaluation result of seawater environment which can accurately distinguish the differences of the seawater quality of the different sampling points, and then determined the water quality evaluation level, thus the seawater quality evaluation model based on variable fuzzy set theory is more accurate and reliable and is more appropriate for multi-index, multi-level and non-linear comprehensive evaluation of seawater environmental quality, compared with other similar models such as BP neural network, fuzzy comprehensive evaluation, set pair analysis, etc.
     (2)Although it is very necessary to utilize the mathematical method to evaluate the seawater quality environment, the process of evaluation the seawater quality environment models is relatively complex. Therefore, this paper urged to demand GIS technology to execute the automation evaluation process and the display of evaluation result. This paper introduced variable fuzzy mathematical model into seawater quality evaluation. Relying on a GIS secondary development tool ArcEngine and in Visual C#2008development environment, this paper build a variable fuzzy evaluation system of seawater quality. By visiting geodatabase of seawater evaluation in SQL Server with ArcSDE and special development data interface, spatial distribution status of seawater quality can be displayed in a real-time and dynamic manner. Such system is introduced to execute the comprehensive evaluation of seawater quality in Jinzhou Bay. Therefore it provided a scientific basis for controlling environmental pollution and executing environmental planning.
     (3)Considering such issue that the amount of major pollution factors such as DIN, reactive phosphate, COD, Pb, Cd, Zn, and so on are high continuously, this paper established the estimation models of seawater environmental capacity by using the following two methods:one is based on GIS, which is executed by discretely interpolating pollutants and depth within the research area with geostatistical analysis interpolation model and parameter optimization model,this method is very simple and effective in the absence of actual data; another is executed by creating hydrodynamic-convection diffusion model with DHI MIKE model, by simulating the changes of the coast pollutant concentration when the tide rises and falls, by selecting the situation where the mixture of pollutants impacts the most when there is low tide as calculation condition of environment capacity, at the same time by using environmental background value of Bohai Sea as background concentration of pollutants of Jinzhou Bay, by simulating concentration response factor field of key pollutants considering the impact on environmental capacity for background concentration, and then by calculating and acquiring marine environmental capacity coupling sharing coefficient method with the most optimized linear planning method. Both methods are suitable for different occasions, which provided the scientific reference basis for the calculation of environmental capacity in environmental management information system such as monitoring marine environment, controlling pollution, etc.
     (4)According to the characteristics of marine resources and ecological environment as well as social relationships among human beings, considering social development, marine economic status, marine exploitation extent, marine resource endowment state, marine environment quality, and other factors, this paper established an evaluation index system of carrying capacity of ecology and environment of marine sources, created the calculating methods of marine resources and carrying capacity of ecology and environment of the coastal zone in Liaoning Province based on variable fuzzy set theory, evaluated the overall state of marine resources, ecology and environmental carrying capacity development of marine area of Liaoning Province, at the same time predicted the development trend of the coastal zone carrying capacity with system dynamics model, and finally raised the strategies and suggestions of resource and ecology sustainable development of the coastal zone of Liaoning Province.
引文
[1]盖美,田成诗.大连市海岸带经济与环境协调发展分析[J].经济地理,2002,22(2):179-183.
    [2]王颖,季小梅.中国海陆过渡带——海岸海洋环境特征与变化研究[J].地理科学,2011,31(2):129-135.
    [3]王鹏.辽宁省海岸带开发活动的环境影响及可持续发展能力研究[D].中国海洋大学,2010.
    [4]范凯.渤海湾浮游动物群落结构及水质生物学评价[D].天津大学,2007.
    [5]王焕松.辽东湾海岸带生态环境压力评价与效应研究[D].中国环境科学研究院,2010.
    [6]徐祖信.我国河流单因子水质标识指数评价方法研究[J].同济大学学报(自然科学版),2005,33(3):321-325.
    [7]李志伟,崔力拓,林振景,等.河北省近岸海域环境质量评价[J].环境科学研究,2008,21(6):143-147.
    [8]柳娟,张宏科,覃秋荣.2006年夏季广西合浦海草示范区海水水质模糊综合评价[J].海洋环境科学,2008,27(4):335-337.
    [9]Dahiya S,Singh B, Gaur S, etc.Analysis of groundwater quality using fuzzy synthetic evaluation[J]. Journal of Hazardous Materials 2007,(147):938-946.
    [10]Zou Z, YUN Y, SUN J. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences,2006,18(5):1020-1023.
    [11]刘金英,杨天行,李明,等.一种加权绝对灰色关联度及其在密云水库水质评价中的应用[J].吉林大学学报(地球科学版),2005,35(1):54-58.
    [12]Tian X g, Ju M t, Shao C f, etc. Developing a new grey dynamic modeling system for evaluation of biology and pollution indicators of the marine environment in coastal areas [J]. Ocean & Coastal Management,2011, (54):750-759.
    [13]付会,孙英兰,孙磊,等.灰色关联分析法在海洋环境质量评价中的应用[J].海洋湖沼通报,2007,(3):127-131.
    [14]冯莉莉,吕小凡,高军省.水质评价的集对分析方法研究[J].人民黄河,2010,32(10):76-77,79.
    [15]Swapnil R, Kamble, Ritesh V. Assessment of water quality using cluster analysis[J]. Environ Monit Assess,2011, (178):321-332.
    [16]胡婕.沿岸海域生态环境质量综合评价方法研究[D].大连理工大学,2007.
    [17]庞振凌,常红军,李玉英,等.层次分析法对南水北调中线水源区的水质评价[J].生态学报,2008,28(4):1810-1819.
    [18]郭劲松.基于人工神经网络(ANN)的水质评价与水质模拟研究[D].重庆大学,2002.
    [19]李雪,刘长发,朱学慧,等.基于BP人工神经网络的海水水质综合评价[J].海洋通报,2010,29(2):225-230.
    [20]Rahman A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India[J]. Applied Geography,2008, (28):32-53.
    [21]Hyun J O, Yong S K, Jong K C, etc. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea[J]. Journal of Hydrology,2011, (399):158-172.
    [22]Ying 0 Y. Evaluation of river water quality monitoring stations by principal component analysis[J]. Water Research,2005, (39):2621-2635.
    [23]Russo R C. Development of marine water quality criteria for the USA[J]. Marine Pollution Bulletin,2002 (45):84-91.
    [24]王华东,夏青.环境容量研究进展[J].环境科学与技术,1983,32-36.
    [25]Michael K D, Hava H, Yuval C. Determination of the environmental capacity of Haifa Bay with respect to the input of mercury [J]. Marine Pollution Bulletin,1990,21(7):349-354.
    [26]周密,王华东.环境容量[M].长春:东北师范大学出版社,1987.
    [27]陈阳,施介宽,陈亮.水质管理容量的计算[J].环境导报,1991,(1):19-21.
    [28]中国环境科学学会.实施主要污染物总量控制的理论与实践[M].北京:中国环境科学出版社,1996.
    [29]国家环保局.环境背景值和环境容量研究[M].北京:科学出版社,1993.
    [30]蔡惠文,任永华,孙英兰,等.海水养殖环境容量研究进展[J].海洋通报,2009,28(02):109-115.
    [31]许士国.环境水利学[M].北京中央广播电视大学出版社,2005.
    [32]苏文俊.海岛型城镇的环境容量研究——以舟山市朱家尖岛为例[D].复旦大学,2009.
    [33]姚瑞珍.人工控制的半封闭河流水环境容量测算研究——以老府河为实例[D].华中科技大学2006.
    [34]牛志广.近岸海域水环境容量的研究[D].天津大学,2004.
    [35]彭泰.大连凌水湾海域环境容量研究[D].大连海事大学,2012.
    [36]于雷,吴舜泽,范丽丽,等.河流水环境容量一维计算方法[J].水资源保护,2008,1(24):39-41.
    [37]张战平,丁明磊,李永乐,等.大沙河焦作段水环境容量与容量总量控制研究[J].华北水利水电学院学报,2012,1(33):131-133.
    [38]邬彬,车秀珍,陈晓丹,等.深圳水环境容量及其承载力评价[J].环境科学研究2012,25(8):55-58.
    [39]王华,逢勇,丁玲.滨江水体水环境容量计算研究[J].环境科学学报,2007,27(12):34-37.
    [40]张静,柯东胜,方宏达,等.汕头港海域氮、磷营养盐环境容量及排放总量控制的研究[J].大连海洋大学学报,2012,27(3):31-39.
    [41]李适宇,李耀初,陈炳禄,等.分区达标控制法求解海域环境容量[J].环境科学,1999,(4):96-99.
    [42]谢蓉蓉,逢勇,屈健,等.江苏省沿海区域水环境容量计算研究[J].海洋通报,2012,31(2):214-222.
    [43]陈瑶泓伶.岸线变化对天津近岸海域环境容量的影响研究[D].长沙理工大学,2011.
    [44]栗苏文,李红艳,夏建新.基于Delft3D模型的大鹏湾水环境容量分析[J].环境科学研究,2005,18(5):91-95.
    [45]张燕,张越美,孙英兰,等.宁波—舟山海域环境容量研究Ⅰ.三维潮流数值模拟[J].海洋环境科学,2005,25(3):60-63.
    [46]沈永明,郑永红,吴修广.近岸海域污染物迁移转化的三维水质动力学模型[J].自然科学进展,2004,14(6):694-699.
    [47]黄震方,袁林旺,葛军连,等.海滨型旅游地环境承载力评价研究——以江苏海滨湿地生态旅游地为例[J].地理科学,2008,8(4):578-584.
    [48]韩增林,狄乾斌,刘锴.海域承载力的理论与评价方法[J].地域研究与开发2006,25(1):1-5.
    [49]张广海,刘佳.我国东部沿海地区旅游环境相对承载力研究[J].经济地理,2009,29(7):1222-1227.
    [50]谭波,傅瓦利.基于生态足迹的巫山县土地承载力研究[J].水土保持研究,2010,17(5):105-108,113.
    [51]张智全,于爱忠,罗珠珠,等.甘肃省庆阳市生态足迹和生态承载力动态研究[J].草业学报,2010,19(4):187-193.
    [52]Richard S M, Williams T D, Malcolm J B. How environmental stress affects density dependence and carrying capacity in a marine copepod[J]. Journal of Applied Ecology,2001,37(3): 388-397.
    [53]王俭,李雪亮,李法云,等.基于系统动力学的辽宁省水环境承载力模拟与预测[J].应用生态学报,2009,20(9):2233-2240.
    [54]童玉芬.北京市水资源人口承载力的动态模拟与分析[J].中国人口.资源与环境,2010,20(9):42-47.
    [55]王红莉,姜国强,陶建华.海岸带污染负荷预测模型及其在渤海湾的应用[J].环境科学学报,2005,25(3):55-60.
    [56]石纯,过仲阳,许世远.人工神经网络在沿海区域环境复杂系统预测中的应用[J].环境污染与防治,2002,25(5):94-99.
    [57]曾维华,杨月梅.环境承载力不确定性多目标优化模型及其应用——以北京市通州区区域战略环境影响评价为例[J].中国环境科学,2008,32(7):65-70.
    [58]国家海洋局.中国海洋统计年鉴[M].北京:海洋出版社,2011.
    [59]辽宁省海洋水产科学研究院.辽宁省近岸海域海洋化学和生物(生态)调查报告[R].2010.
    [60]国家海洋环境监测中心.辽宁省潜在滨海旅游区评价与选划报告[R].2010.
    [61]辽宁省人民政府.辽宁省沿海港口布局规划.2008
    [62]国家海洋局.中国海洋统计年鉴[M].北京:海洋出版社,2005-2010.
    [63]国家海洋局908专项办公室.海域使用现状调查技术规程[M].海洋出版社,2005.
    [64]葛成凤.铜、镉及磷在海洋沉积物上的吸附、解吸行为研究[D].中国海洋大学,2012.
    [65]辽宁省海洋与渔业厅.2005-2010辽宁省海洋经济公报[R].
    [66]辽宁省海洋与渔业厅.2005-2012年辽宁省海洋环境质量公报[R].
    [67]范文宏,张博,陈静生,等.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报,2006,26(6):1000-1005.
    [68]张玉凤,宋永刚,王立军,等.锦州湾沉积物重金属生态风险评价[J].水产科学,2011,30(3):156-159.
    [69]中国国家标准化管理委员会.海洋工程环境影响评价技术导则[M].海洋出版社,2004.
    [70]Beck M B. Water quality modeling:A review of the analysis of uncertainty[J]. Water Resources Reserch,1987,23(8):1393-1442.
    [71]Bernard P, Antoine L, Bernard L. Principal component analysis:an appropriate tool for water quality evaluation and management—application to a tropical lake system[J]. Ecological Modelling,2004, (178):295-311.
    [72]Razmkhah H, Ahmad A, Torkian A. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques:A case study on Jajrood River (Tehran, Iran) [J]. Journal of Environmental Management,2010, (91):852-860.
    [73]Zhao G J, Gao J F, Tian P, etc. Spatial-temporal characteristics of surface water quality in the Taihu Basin, China[J]. Environ Earth Sci,2011, (64):809-819.
    [74]Zhou F, Guo H C, Liu Y, etc. Identification and spatial patterns of coastal water pollution sources based on GIS and chemometric approach[J]. Journal of Environmental Sciences,2007, (19):805-810
    [75]Fulazzaky M A. Water Quality Evaluation System to Assess the Brantas River Water[J]. Water Resource Manage,2009, (23):3019-3033.
    [76]刘庆霞,黄小平,张霞,等.2010年夏季珠江口海域颗粒有机碳的分布特征及其来源[J].生态学报,2012,32(14):4403-4412.
    [77]王保栋,孙霞,韦钦胜,等.我国近岸海域富营养化评价新方法及应用[J].海洋学报,2012,34(4):61-66.
    [78]刘艳,纪灵,郭建国,等.烟台邻近海域水质与富营养化时空变化趋势分析[J].海洋通报,2009,28(2):18-22.
    [79]孙维萍,于培松,潘建明.灰色聚类法评价长江口、杭州湾海域表层海水中的重金属污染程度[J].海洋学报,2009,31(1):79-84.
    [80]王洪礼,王长江,李胜朋.基于支持向量机理论的海水水质富营养化评价研究[J].海洋技术,2005,24(1):48-51.
    [81]吴斌,宋金明,李学刚,等.沉积物质量评价“三元法”及其在近海中的应用[J].生态学报,2012,32(14):4566-4574.
    [82]郑琳,崔文林,贾永刚.青岛海洋倾倒区海水水质模糊综合评价[J].海洋环境科学,2007,26(1):38-41.
    [83]Kazem N M, Van D E. Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran[J].2012, (65):331-344.
    [84]Sarkar B C, Mahanta B N, Saikia K, etc. Geo-environmental quality assessment in Jharia coalfield, India, using multivariate statistics and geographic information system[J]. Environment Geology,2007, (51):1177-1179.
    [85]李凡修,陈武.海水水质富营养化评价的集对分析方法[J].海洋环境科学,2003,22(2):72-74.
    [86]Chang N B, Chen H W, Ning S K. Identification of river water quality using the Fuzzy Synthetic Evaluation approach[J]. Journal of Environmental Management,2001, (63):293-305.
    [87]Shiow M L, Shang L L, Ching Y H. Application of two-stage fuzzy set theory to river quality evaluation in Taiwan[J]. Water Research,2003, (37):1406-1416.
    [88]Wang D, Singh V P, Zhu Y. Hybrid fuzzy and optimal modeling for water quality evaluation [J]. Water Resource Research,2007, (43):W05415.
    [89]Yilmaz I. Fuzzy evaluation of water quality classification[J]. Ecological Indicators, 2007, (7):710-718.
    [90]陈守煜.工程可变模糊集理论与模型——模糊水文水资源学数学基础[J].大连理工大学学报,2005,45(2):308-312.
    [91]陈守煜.可变集——可变模糊集的发展及其在水资源系统中的应用[J].数学的实践与认识,2012,42(1):92-101.
    [92]Chen S Y.Theory and model of eng ineer ing var iable fuzzy set ——Mathematical basis for fuzzy hydrology and water resources [J]. Journal of Dalian University of Technology,2005, 45(2):308-312.
    [93]陈守煜,李亚伟.基于模糊人工神经网络识别的水质评价模型[J].水科学进展,2005,16(1):88-91.
    [94]王本德,于义彬,王旭华,等.考虑权重折衷系数的模糊识别方法及在水资源评价中的应用[J].水利学报,2004,(1):6-12.
    [95]周惠成,张改红,王国利.基于熵权的水库防洪调度多目标决策方法及应用[J].水利学报,2007,38(1):100-106.
    [96]靳玉峰.海洋水质监测与预报系统研究[D].大连海事大学,2009.
    [97]邓宗成,何新春,孙英兰,等.基于GIS的海域水污染控制规划框架探讨—以胶州湾东北部为例[J].海洋环境科学,2011,30(3):365-369.
    [98]张永良,刘培哲.水环境容量综合手册[M].北京清华大学出版社,1991.
    [99]牛志广,张宏伟.地统计学和GIS用于计算近海水环境容量的研究[J].天津工业大学学报,2006,1(25):74-79.
    [100]逢勇.水环境容量计算理论及应用[M].北京:科学出版社,2010.
    [101]何碧娟,陈波,邱绍芳,等.广西铁山港海域环境容量及排污口位置优选研究[J].广西科学,2001,(3):34-36.
    [102]方秦华,张珞平,王佩儿,等.象山港海域环境容量的二步分配法[J].2004,(S1):34-37.
    [103]蔡惠文,任永华,孙英兰,等.海水养殖环境容量研究进展[J].海洋通报,2009,(2):25-29.
    [104]龚艳君.威海湾污染物扩散数值模拟与环境容量研究[D].中国海洋大学,2008.
    [105]李晋昌,张红,石伟.汾河水库周边土壤重金属含量与空间分布[J].环境科学,2013,25(1):116-120.
    [106]郭芬,张远.水环境中PAHS源解析研究方法比较[J].环境监测管理与技术,2008,5(20):11-16.
    [107]卞娜娜.云南省土壤污染溯源查询及结果的GIS渲染[D].云南大学,2012.
    [108]谷照升.水库湖泊水质分析、模拟与预测的综合数学方法及其应用[D].吉林大学,2006.
    [109]王俊杰.MIke21在梁济运河长沟船闸防洪影响评价中的应用研究[D].山东大学,2009.
    [110]冯静.MIKE21FM数值模型在海洋工程环境影响评价中的应用研究[D].中国海洋大学,2011.
    [111]辽宁省人民政府.辽宁省海洋功能区划(2011—-2020年[R].
    [112]武倩倩.渤海近岸海域沉积物对Cu2+、Pb2+吸附及AVS的研究[D].中国海洋大学,2006.
    [113]钱轶超.浅水湖泊沉积物磷素迁移转化特征与生物作用影响机制研究[D].浙江大学,2011.
    [114]国家环境保护总局.污水海洋处置工程污染控制标准[M].2001.
    [115]关道明.我国近岸典型海域环境质量评价和环境容量研究[M].北京海洋出版社,2011.
    [116]狄乾斌,韩增林.海域承载力的定量化探讨——以辽宁海域为例[J].海洋通报,2005,24(1):47-55.
    [117]张林波,李文华,刘孝富,等.承载力理论的起源、发展与展望[J].生态学报,2009,29(2):878-888.
    [118]鲁丰先.河南省综合生态承载力研究[D].河南大学,2009.
    [119]方文青.德州市水资源承载力研究[D].山东大学,2009.
    [120]胡吉敏.沿海地区水资源承载力评价研究[D].大连理工大学,2006.
    [121]荣绍辉.基于SD仿真模型的区域水资源承载力研究[D].华中科技大学,2009.
    [122]狄乾斌.海域承载力的理论、方法与实证研究——以辽宁海域为例[D].辽宁师范大学,2004.
    [123]秦娟.沿海省市海洋环境承载力测评研究[D].中国海洋大学,2009.
    [124]谭映宇.海洋资源、生态和环境承载力研究及其在渤海湾的应用[D].中国海洋大学,2010.
    [125]陈守煜,王子茹.基于对立统一与质量互变定理的水资源系统可变模糊评价新方法[J].水利学报,2011,42(3):253-261,270.
    [126]邓宗成,孙英兰,周皓,等.沿海地区海洋生态环境承载力定量化研究——以青岛市为例[J].海洋环境科学,2009,28(4):438-441,459.
    [127]付会.海洋生态承载力研究——以青岛市为例[D].中国海洋大学,2009.
    [128]李彬.资源与环境视角下的我国区域海洋经济发展比较研究[D].中国海洋大学,2011.
    [129]刘宇.资源、环境双重约束下辽宁省产业结构优化研究[D].辽宁大学,2012.
    [130]傅湘,纪昌明.区域水资源承载能力综合评价:主成分分析法的应用[J].长江流域资源与环境,1999,(2):168-173.
    [131]王俭,李雪亮,李法云,等.基于系统动力学的辽宁省水环境承载力模拟与预测[J].应用生态学报,2009,20(9):2233-2240.
    [132]王建华,江东,顾定法,等.基于SD模型的干旱区城市水资源承载力预测研究[J].地理学与国土研究,1999,(02):54-59.
    [133]阿琼.基于SD模型的天津市水资源承载力研究[D].天津大学,2008.
    [134]辽宁省人民政府.辽宁省“十二五”规划纲要[R].
    [135]辽宁省人民政府.辽宁省海洋经济发展“十二五”规划[R].
    [136]辽宁省人民政府.辽宁省海洋环境保护规划.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700