用户名: 密码: 验证码:
低扬程泵装置水动力特性及多目标优化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低扬程泵站是重要的水利基础设施,在跨流域调水工程、农田和区域抗旱、城市防洪排涝、城镇供水、污水排放等方面均起着关键性作用。随着国民经济的发展和国家对能源消耗的重视,人们对低扬程泵装置水动力性能的要求也越来越高,为了满足社会的需要同时推动低扬程泵装置研究的进一步发展,采用理论分析、数值模拟和物理模型实验相结合的方法对低扬程泵装置的水动力特性和多目标优化相关关键技术进行了研究,主要研究内容和取得的创造性成果有:
     (1)归纳分析了低扬程泵装置的分类及各类型泵装置水动力性能的优缺点,并从叶轮、导叶体、进水流道、出水流道及泵装置整体5个方面归纳分析了低扬程泵装置的研究进展概况。采用Matlab软件编制了自动求解泵装置水动力特性的程序,基于Visual Fortran和AutoCAD软件编制了对泵装置试验数据结果文件处理的自动绘图程序,为后续研究分析提供了技术支撑。分析了4种湍流模型、网格数量及网格类型在低扬程泵装置中的适用性问题,并将数值计算的预测值与物理模型试验值进行了对比。研究了叶顶间隙大小对低扬程泵装置内流场数值计算的影响,探讨了不同叶顶间隙对泵装置流量、扬程、轴功率及效率的影响,并成功捕捉到叶顶间隙泄漏涡结构。叶顶间隙在0.3mm以内时,对泵装置的能量性能影响较小,随着叶顶间隙增大,扬程和效率迅速下降,当叶顶间隙增大至1.0mm时,扬程降幅为10%~27%,效率降幅约10%,叶顶间隙作为低扬程泵装置数值计算固有的物理边界条件之一,在数值计算中应给予考虑。
     (2)基于CFD技术详细地分析了低扬程泵装置的进水流道与叶轮、导叶体与出水流道间的水力相干机理,进水流道出口断面的轴向速度分布均匀度和平均环量受叶轮旋转的影响较明显,叶轮旋转引起环量增加使进水流道水力损失有所减小。导叶体出口环量对出水流道的流场影响较大,导致隔墩两侧流量分配不均,大流量时隔墩两侧水流流态比较平顺,而小流量时隔墩右侧流道内出现螺旋状水流,两侧水流严重不均衡。无环量时出水流道的水力损失与流量成二次方关系,有环量时出水流道的水力损失增大,出水流道的内外特性与泵装置的运行工况有关系。针对双向立式低扬程泵装置的水动力性能特点,系统分析了导水锥对泵装置自流及抽水工况时进水流道水力性能的影响;借鉴灯泡贯流泵装置中扩散导叶的设计思路,研究了扩散导叶体对双向立式泵装置水力性能的影响及其在立式轴流泵装置中的适用性问题,通过物理模型试验分析了变转速变工况时双向立式泵装置内部水流脉动。
     (3)对斜15°轴伸贯流泵装置内流机理进行了全流道的三维数值计算,分析了在叶轮旋转条件下斜150进水流道出口断面的水力性能及其对叶轮进口断面相对位置高度的影响,给出了斜15°轴伸贯流泵装置的叶轮名义安装高度取值范围,分析了斜置安放叶轮受水流作用力的分布规律,探讨了其水力矩的变化规律及翼型附近相对流速的分布规律。针对城市防洪排涝泵站的特点,研发了两套超低扬程的双向潜水贯流泵装置,获得了双向潜水贯流泵装置的内流场,分析了灯泡体段对正、反向运行时泵装置水力性能的影响,包括灯泡体段的水力损失、导叶体内部流态及“S”形叶轮所受轴向力、叶顶间隙及叶片表面压力等。引入了单工况泵装置综合特性指标(C.P.I),分析了两套不同泵装置间水力性能的差异性,给出了双向潜水贯流泵装置的参考结构尺寸。为研究系列竖井型线的演变规律及其对泵装置水力性能的影响,在归纳分析竖井型线的基础上,采用一维水力设计方法设计了4种不同竖井贯流泵装置,并基于ANSYS CFX对其进行三维湍流场数值计算。采用多元线性回归方法建立了泵装置效率与流量、进水流道三个性能指标的函数关系式,表明进水流道的水力损失、轴向速度分布均匀度及速度加权平均角共同影响着泵装置的水力性能。在最优工况时各进水流道出口断面的轴向速度分布整体趋势相同,将各断面的轴向速度拟合成多项式数学模型,为叶轮的设计提供一定的参考。在泵装置三维定常数值计算的基础上,引入了泵装置的无因次动量参数和泵装置多工况性能加权评价指标(M.P.I),为解决不同泵装置水力性能的比较提供了参考方法。基于ANSYS CFX软件对前、后置竖井贯流泵装置进行三维定常流动数值模拟。引入平均涡角的概念,分析了前、后置竖井贯流泵装置内部流动的差异性,重点对不同形体的进、出水流道的水力性能及前、后置竖井贯流泵装置的外特性进行了分析比较。
     (4)在对泵装置进、出水流道水力性能的理论分析基础上,建立了泵装置进、出水流道的多目标多约束自动优化数学模型,并基于iSIGHT-FD优化软件构建了泵装置进、出水流道的自动优化平台,为泵装置流道的优化设计提供了全新的多目标多约束优化技术手段。以轴伸式贯流泵装置的进、出水流道为优化目标,在流道的几何数学模型描述的基础上采用多目标优化平台对其进行自动优化,优化后的进水流道水力损失减小了12.61%,轴向速度分布均匀度提高了1.86%,速度加权平均角提高了3.10°;优化后的出水流道水力损失减小了24.91%,动能恢复系数提高了6.65%,当量扩散角变为9.98°,从流道水力性能参数的定量分析可知,基于iSIGHT优化软件建立的多目标自动优化平台是可行性。在泵装置流道多目标优化设计基础上,提出了泵装置多目标优化的数学模型,并给出了泵装置多目标多约束自动优化的流程图。
     (5)基于泵装置三维定常数值计算,定性地分析了各工况时新型高效S形泵装置的叶轮表面静压分布及摩擦力线和导叶体内静压分布、漩涡情况,并定量分析了叶片出口的轴向速度分布规律及导叶体的回收环量能力和水力损失情况;分析了进水流道及出水流道的内部流动细节,包括流速分布、静压分布等,进水流道的轴向速度分布均匀度与速度加权平均角随着流量系数KQ的增大而增大,在最优工况KQ=0.490时,速度加权平均角为88.8°,轴向速度分布均匀度为97.51%,水力损失为3.89cm。因叶轮与导叶体的相对运动,泵装置内部流动实际是非定常流动,采用“瞬态冻结转子”技术对新型高效S形轴伸贯流泵装置进行了非定常数值模拟,定量分析了各过流部件内部的水力脉动情况、叶轮受力及扭矩的非定常特性,叶轮叶片及导叶片的最大与最小压力值的水压力脉动情况。
     针对新型高效轴伸S轴伸贯流泵装置,制作了泵装置物理模型并在江苏省水利动力工程重点实验室的高精度水力机械试验台进行性能试验,测试并分析了五个叶片安放角时新型S形轴伸贯流泵装置的能量性能、汽蚀性能及飞逸特性。在叶片安放角-2°时,新型高效S形泵装置的最高效率为83.55%,表明研发的新型高效S形轴伸贯流泵装置具有高效节能的突出优点。通过对模型泵装置阻力矩的计算分析,得出了在不同反向水头工况下相同叶片安放角时单位飞逸转速不是定值的原因,实际工程采用模型泵装置单位飞逸转速进行原型泵站飞逸转速换算是偏安全的。
     采用物理模型试验方法研究新型S形轴伸贯流泵装置的运行稳定性,在导叶体外壁布置两支电动式加速度传感器,分别测量了横向(X方向)与铅垂方向(Y方向)的振动位移。在额定转速1350r/min时,采用EN900采集分析仪对叶片安放角为+4°与-4°时不同运行工况的泵装置模型进行振动测试和分析。
     (6)开展了有涡入流条件下箱涵式轴流泵装置内部流动机理的研究,阐述了喇叭管悬空高及流道高度相关联时对箱涵式进水流道内流场及水力性能的影响,重点分析了有涡入流条件时叶轮所受轴向力及径向力情况,以及对叶轮进口处水力脉动的影响,采用定量的方法阐述了涡带在流道内部产生及逐步耗散的过程,通过3D-PIV测试技术和高速摄影技术验证了数值计算模拟的可靠性及有效性。
     (7)通过速度三角形分析了前置导叶对泵装置水动力性能的影响。依据前置导叶的设计要求,设计了可调前置导叶,开展了前置导叶不同调节角时泵装置的三维定常数值计算,分析了其对泵装置内、外特性的影响,重点分析了不同调节角时前置导叶对叶轮水力性能的影响,通过自编程序获取了可调前置导叶对泵装置影响的综合特性曲线,并建立了不同前置导叶片调节角时泵装置外特性预测的多元非线性回归预测数学模型。全面系统地探讨了可调后置导叶片对泵装置水动力性能的影响,重点分析了不同调节角时泵装置的内、外特性,基于数值计算结果建立了不同调节角时后置导叶对泵装置外特性预测的BP-ANN数学模型,并通过联合方法验证了该方法的可行性。
Low-lift pump system is an important modern water infrastructure, which plays a key role in many fields, such as inter-basin water transfer project, drought resistance of farmland and region, urban flood control and drainage, urban water supply, wastewater discharge and so on. With the development of national economy and energy consumption is emphasized by government, people hope the hydraulic performance of pump system become better and better. The hydraulic performance and multi-objective optimization design of pump system with low-lift based on the methods of theoretical analysis, numerical simulation and physical experiments. The main research contents and creative achievements are as follows:
     (1) The structure classification and characteristics of low-lift pump system were briefly introduced. The present results, progress and methods in its research were analyzed and summarized from four aspects, such as impeller, guide vane, inlet outlet passage and pump system. In order to offer technology support for further study, automatic solving program of hydraulic performance of pump system was implemented using the Matlab software, and combining traditional Visual Fortran with AutoCAD graphics software, the Bezier curve drawing program was developed which is human-computer interaction interface, to achieve the purpose of computer automated drawing of experimental data. A lot of numerical experiments have been done with the choices of turbulence model, mesh number and mesh type for studying the suitability of numerical simulation for low-lift pump system. The predicted data of numerical simulation and model test were compared for providing a reliable performance prediction method. Focusing on the effects of blade tip clearance on the numerical simulation of inner flow field of pump system, the effect of blade tip clearance on the flow rate, head, torque and efficiency of pump system were analyzed, and the structure of leakage vortex was captured and analyzed. When the tip clearance is not larger than0.3mm, blade tip clearance has little influence on the external performance of pump system. With the increase of blade tip clearance, head and efficiency drop quickly. When the blade tip clearance reaches to1.0mm, the decrease range is10%-27%and the efficiency is decreased by about10%. Blade tip clearance is one of physical boundary conditions for numerical simulation of pump system, which should be considered.
     (2) The Mutual coupling effect of inlet passage and impeller, guide vane and outlet passage analyzed in detail based on CFD. Outlet circulation of guide vane has great influence on flow pattern in the outlet passage. The flow distribution for both sides of the dividing pier is not symmetric, especially for small flow rate condition, the helical flow occurs at the right side of dividing pier. The effect of the residual circulation of outlet section on the outlet passage with and without pier was analyzed firstly based on the whole pump system. Under the condition of zero velocity circulation, the hydraulic loss of outlet passage is in proportion to the square of flow, and the hydraulic loss is larger than that with velocity circulation. The effects of flow guide cone on the hydraulic performance of inlet passage and the effects of guide vane on the performance of pump system were analyzed for reversible vertical pump system. According to the design method of diffusion guide vane of bulb tubular pump, the effects of diffusion guide vane on the reversible vertical pump system and applicability problem about it were analyzed. A physical model test was adopted to study the characteristics of pressure fluctuation of reversible pump system by performance and cavitation test.
     (3) The relation between hydraulic performance of outlet cross sections with rotating impeller and the relative height of outlet cross sections and the stress distribution of impeller were analyzed, as well as the relative velocity distribution near the airfoil cross sections under the designed condition. The hydraulic moments were calculated based on the numerical results under different conditions, and the changing features of hydraulic moment on blades with flow rates were analyzed firstly. The reference nominal height of pump system was given. According to the characteristics of urban flood protection and drainage pump system, two sets of dividing tubular pump systems with symmetric aerofoil blade were developed. The effect of bulb section on the hydraulic performance was analyzed, which included the hydraulic loss of bulb section, the internal flow of guide vane and the hydraulic performance of "S" shape impeller vane. C.P.I (comprehensive performance index) is introduced firstly to analyze the difference between two sets of pump system. Structure size of pump system provided a reference for dividing tubular pump system. In order to study on the evolution law of shaft profile line and the influence relation between the hydraulic performance of pump system and shaft line,4different shaft inlet passages were designed with one-dimensional hydraulic design method based on the induction analysis of shaft profile lines. The CFD software ANSYS CFX was used to simulate the three-dimensional fluid flow of pump system. The expression of the functional relations between the efficiency of pump system, flow rate and three performance index of inlet passage were deduced based on the multiple linear regression analysis method. Due to the joint influence of the hydraulic loss, the axial velocity distribution uniformity and the velocity-weighted average swirl, the flow chart was put forward that is about multi-objective collaborative optimization of inlet passage. At the optimum operating condition, the distributions of axial velocity in different outlet section have same tendency, and polynomial mathematics model was used to fit out the distribution of axial velocity. Based on the three dimensional steady numerical simulation, dimensionless momentum parameter and the weighted performance of multiple operating conditions evaluation method (M.P.I) were solved to the hydraulic performance comparison of different pump systems. ANSYS CFX is applied to carry on the three-dimensional numerical simulation on the whole flow passage of the shaft tubular pump system of front-position, post-position. The hydraulic performance of different inlet and outlet passage and the external characteristic of two sets of pump system are compared and analyzed quantitatively in detail for introducing the average swirl angle.
     (4) Based on theoretical analysis of the hydraulic performance of inlet and outlet passage, Multi-objective optimization mathematical models of inlet and outlet passage were proposed firstly. In order to provide the new multi-objective and multi-constraint optimization techniques method for passage optimal design, automatic optimization platform of inlet and outlet passage were built firstly based on the optimization software iSIGHT-FD. In the paper, inlet and outlet passage of shaft extension tubular pump system were taken as optimization objects by using optimization platform, which were described by the geometric mathematical model. For optimized inlet passage, the hydraulic loss decreased by12.61%, the axial velocity distribution uniformity improved by1.86%, and the velocity-weighted average swirl angle increased by3.10°. For optimized outlet passage, the hydraulic loss reduced by24.91%, kinetic energy recovery coefficient improved by6.65%, and equivalent diffusion angle is9.98°. According to quantitative analysis of the optimization results, the automatic optimization platform is feasible. Based on the optimized design of passage, multi-objective optimized mathematic model of pump system was proposed firstly, and flow chart of automatic optimization was given.
     (5) For new S-shaped shaft extension tubular pump system, the distribution of static pressure, skin friction line of the blade surface, and the distribution of static pressure and vortex in the guide vane were analyzed qualitatively, based on the steady numerical simulation. The distribution law of axial velocity of impeller outlet, recovery circulation and hydraulic loss of guide vane outlet were analyzed quantitatively. The paper pay attention to the detail of the flow field in the inlet and outlet passage includes the distribution of velocity and static pressure. With the increase of flow coefficient, the axial velocity distribution uniformity and the velocity-weighted average angle increase gradually. The velocity-weighted average angle is88.8°, the axial velocity distribution uniformity is97.51%and the hydraulic loss is3.89cm at the optimum operating condition KQ=0.490. Because of the relative motions between impeller and guide vane, the technology of the transient rotor stator (TRS) was applied to simulate the pressure fluctuation of interior flow in the new high efficient S-shaped shaft extension tubular pump system and maximum and minimum static pressure on the blades of the impeller and guide vane.
     A physical model experimental research on energy performance, cavitation performance and runaway characteristics of the pump model system has been conducted on the high precision hydraulic machinery test stand of Jiangsu province. The highest efficiency of the new S-shaped extension pump system is83.55%at the blade angle-2°, which has significant advantages of high efficiency and energy-saving. The comprehensive hydraulic performance of the new S-shaped extension pump system reaches international leading level. Through the calculation of resistance torque, the variable factor of a unit runaway speed with same blade angle is analyzed under different working conditions of reverse-water-head. The unit runaway speed obtained from model pump system is applicable and safe for conversion to prototype pump system.
     Two electro acceleration sensors were set on the outer wall of guide vane for studying the operation stability of new S-shaped shaft extension pump system, and the vibration displacement of X direction and Y direction were analyzed at the rotation speed1350r/min. Signal collecting analyzer EN900is used to study the operation stability of model pump system at blade angle+4°and-4°.
     (6) The internal flow mechanism of cube-type axial-flow pump system was studied under vortex inflow for the first time. The influence of bottom clearance of flare tube is related with the passage height on the internal flow and hydraulic performance of cube-type inlet passage was analyzed. The axial force and radial force of the impeller were mainly analyzed under vortex inflow. The influence of submerged vortex on the pressure fluctuation of impeller inlet in different operating conditions was mainly analyzed. The evolution process of submerged vortex generation and the gradual dissipation was studied by the quantitative method. The3D-PIV measurement technique and high-speed camera were adopted in experiments. By compared testing data with computational results, it is found that the results of numerical simulation are in satisfactory agreements with experimental data, which validates the numerical results to be reasonable.
     (7) The effects of inlet guide vane on the hydraulic performance of pump system were analyzed by the method of velocity triangle. According to the design requirements of inlet guide vane, adjustable inlet guide vane was designed, and3D steady numerical simulation of pump system was simulated in different adjustable angle of inlet guide vane. This paper mainly studies on the effects of inlet guide vane on the external and internal characteristics of pump system and the hydraulic performance of impeller. Synthetic characteristic curve of pump system with inlet guide vane was obtained by self-compiling program. By establishing mathematical model of multivariate nonlinear regression model, the external characteristic data can be obtained in the different adjustable angle. The effects of adjustable outlet guide vane on the performance of pump system and the internal flow pattern of guide vane were analyzed based on CFD. BP-ANN mathematic model was established for predicting the external performance, and the combined method was used to verify the feasibility of adjustable outlet guide vane.
引文
[1]刘超.中国泵站工程创新研究和发展[C]∥中国水利学会2011年学会年会(三)节水节能促进农村水利现代化建设,2011年,北京.
    [2]陈坚,李琪,许建中等.中国泵站工程现状及“十一五”更新改造任务[J].水利水电科技进展,2008(2):84-88.
    [3]王福军.我国大型灌溉泵站的技术现状与发展趋势[J].中国水利,2009(23):19-21,38.
    [4]崭建市.浅谈我国城市防洪的特点与变化趋势[J].科技向导,2011(14):65,52.
    [5]何喜军.引水泵站有效改善城市的水环境[J].中国科技信息,2005(20):110.
    [6]刘超.南水北调工程高比转速水泵装置的有关问题研究[J].水力发电学报,2005,24(1):88-92,101.
    [7]Quangha Thai, Changjin Lee. The cavitation behavior with short length blades in centrifugal pump[J]. Journal of Mechnical Science and Technology,2010,24(10):2007-2016.
    [8]Wu Dazhuan, Wang Leqin, Hao Zongrui, et al. Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation [J]. Journal of Mechanical Science and Technology,2010,24(2):575-582.
    [9]Bart van Esch, Cheng Li. Unsteady operation of a mixed-flow pump and the influence of tip clearance[C]//Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011, Hamamatsu, Shizuoka, Japan.
    [10]Jorge Parrondo, Javier perez, Raul Barrio, Jose Gonzalez. A simple acoustic model to characterize the internal low frequency sound field in centrifugal pumps[J]. Applied Acoustics,2011(72):59-64.
    [11]杨敏,闵思明,王福军.双蜗壳泵压力脉动特性及叶轮径向力数值模拟[J].农业机械学报,2009,40(11):83-88.
    [12]Cheng Li, Van Esch.B.P.M. Blade interaction forces in a mixed-flow pump with vaned diffuser[C]//Proceedings of the ASME Fluids Engineering Division Summer Conference 2009.
    [13]Zhang Desheng, Shi Weidong, Chen Bin. Unsteady flow analysis and experimental investigation of axial-flow pump[J]. Journal of Hydraodynamics, Ser.B,2010,22(1):3543.
    [14]Feng Jianjun, Friedrich-Karl Benra, Hans Josef Dohmen. Investigation of periodically unsteady flow in a radial pump by CFD simulations and LDV measurements[J]. Journal of Turbomachinery, 2011(133):011004-1-011004-11.
    [15]Raul Barrio, Jorge Parrondo, Eduardo Blanco. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers & Fluid,2010,39(5):859-870.
    [16]Liu Demin, Liu Xiaobing. Vabration analysis of turbine based on fluid-structure coupling[J]. Chinese Journal of Mechanical Engineering,2008,21(4):4043.
    [17]李志峰,王乐勤,戴维平等.离心泵启动过程的涡动力学诊断[J].工程热物理学报,2010,31(1):48-51.
    [18]R. Spence, J. Amaral-Teixeira. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests[J]. Computers & fluids,2008(37):690-704.
    [19]张克危.流体机械原理(上)[M].北京:机械工业出版社,2001.
    [20]张勤昭,曹树良,陆力.高比转数混流泵导叶设计计算[J].农业机械学报,2008,39(2):73-76.
    [21]L.M.C Ferro, L.M.C Gato, A.F.O Falcao. Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine[J]. Renewable Energy,2010,35(9):1920-1928.
    [22]黄学军,陈斌,张克危等.可调导叶式潜水贯流泵的设计[J].水泵技术,2011(1):25-28,17.
    [23]黄经国.用可调进口导叶调节特性的大型混流泵[J].流体机械,2000,28(4):37-40.
    [24]孔繁余,王文廷,黄道见等.前置导叶调节混流泵性能的数值模拟[J].农业工程学报,2010,26(10):124-128.
    [25]曹树良,谭磊,桂绍波.离心泵前置导叶设计与试验[J].农业机械学报,2010,41(增刊):1-5.
    [26]Qian Zhongdong, Wang Yan, Huai Wenxin, et al. Numericl simulation of water flow in an axial flow pump with adjustable guide vanes[J]. Journal of Mechanical Science and Technology,2010,24(4): 971-976.
    [27]刘超.水泵及水泵站[M].北京:中国水利水电出版社,2009.
    [28]汤方平,袁家博,周济人.轴流泵进出水流道水力损失的试验研究[J].排灌机械,1995,13(3):13-14.
    [29]成立.泵站水流运动特性及水力性能数值模拟研究[D].南京:河海大学,2006.
    [30]仇宝云.大中型水泵装置理论与关键技术[M].北京:中国水利水电出版社,2005.
    [31]陆林广,吴开平,冷豫等.泵站出水流道模型水力损失的测试[J].排灌机械,2005,23(5):23-26.
    [32]杨帆,刘超,汤方平等.大型立式轴流泵装置流道内部流动特性分析[J].农业机械学报,2011,42(5):39-43,55.
    [33]张庆范,吴桐林,靳子清等.贯流泵装置模型的初步试验研究[J].排灌机械,1984(4):18-22.
    [34]张庆范,吴桐林,靳子清.贯流泵装置的试验研究[J].农业机械学报,1985(2):38-46.
    [35]冯汉民,王林锁,袁伟声等.贯流泵站(前池灯泡式)进口淹没深度的试验研究[J].江苏农学院学报,1986,7(3):35-41.
    [36]袁伟声,费平屏,吴镇国.前置灯泡贯流式泵站模型试验研究[J].水泵技术,1989(4):34-40.
    [37]由彩堂,何成连,闵京声等.定桨贯流泵模型装置水力特性测试[J].水利水电工程设计,1995(4):51-55.
    [38]施卫东.浙江盐官下河泵站轴流泵装置模型的研究[J].农业工程学报,1999,15(2):85-89.
    [39]刘超,周济人,汤方平等.低扬程双向流道泵装置研究[J].农业机械学报,2001,32(1):49-51.
    [40]Liu Chao, Jin Yan, Zhou Jiren, et al. Numerical simulation and experimental study of a two-floor structure pumping system[C]//Proceedings of Power2010, ASME Power 2010, July 13-15,2010, Chicago, IL, USA.
    [41]汤方平,刘超,谢伟东等.双向潜水贯流泵装置水力模型研究[J].农业机械学报,2004,35(5):74-77.
    [42]陈松山,葛强,周正富等.泵装置模型试验模拟方法分析[J].水力发电学报,2006,25(5):135-140.
    [43]陈松山,周正富,何钟宁等.30斜式进水流道数模分析与泵装置特性试验研究[J].水力发电学报,2012,31(3):204-208,216.
    [44]杨帆,杨德志,王忠伟等.泵装置飞逸特性试验研究与分析[J].水泵技术,2010(12):1-4.
    [45]杨帆,刘超,汤方平等.灌排双向立式泵装置内部水流压力脉动特性[J].排灌机械工程学报,2011,29(4):316-321.
    [46]施卫东,张德胜,关醒凡等.后置灯泡式贯流泵装置模型的优化与试验研究[J].水利学报, 2010,41(10):1248-1253.
    [47]杨敬江.排涝泵站立式轴流泵装置模型试验[J].排灌机械,2008,26(6):20-23.
    [48]张德胜,施卫东,关醒凡.南水北调东线江都四站装置模型的试验研究[J].水力发电学报,2011,30(1):170-174.
    [49]王玲花,刘大凯,陈德新.双向贯流式水泵水力特性的试验研究[J].华北水利水电学院学报,2000,21(4):29-33.
    [50]郑源,张飞,蒋小欣等.贯流泵装置模型试验转轮出水口压力脉动研究[J].流体机械,2007,35(1):1-3,7.
    [51]郑源,刘君,周大庆等.大型轴流泵装置模型试验的压力脉动[J].排灌机械工程学报,2010,28(1):51-55.
    [52]张德虎,戴正,廖锐等.贯流泵装置特性模型试验与节能[J].能源研究与利用,2003(3):22-24.
    [53]耿在明,郑源,陈创新等.双向贯流泵叶轮设计与装置模型试验[J].水泵技术,2005(4):3-5.
    [54]Wang Zhengwei, Peng Guangjie, Zhou Lingjiu, et al. Hydraulic performance of a large slanted axial-flow pump[J]. Engineerng Computations,2010,27(2):243-256.
    [55]Durmus Kaya. Experimental study on regaining the tangential velocity energy of axial flow pump[J]. Energy Conversion and Management,2003(44):1817-1829.
    [56]F. Bakir, S.Kouidri, R. Noguera, et al. Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime[J]. Journal of Fluids Engineering, 2003(125):293-301.
    [57]S. Duplaa, O. Coutier-Delgosha, A. Dazin, et al. Experimental study of a cavitating centrifugal pump during fast startups[J]. Journal of Fluids Engineering,2010(132):1-12.
    [58]Atia E. Khalifa, A mro M. AI-Qutub, Rached Ben-Mansour. Study of pressure fluctuations and induced vibration at blade-passing frequencies of a double volute pump[J]. Arabian Journal for science and engineering,2011(36):1333-1345.
    [59]K Kawakita, J Matsui, H Isoda. Experimental study on the similarity of flow in pump sump models[C]//26th IAHR Symposium on Hydraulic Machinery and System, August 19-23, Beijing, China,2012.
    [60]刘超,金燕.双向流道泵装置内三维流动数值模拟[J].农业机械学报,2011,42(9):74-78.
    [61]刘超,金燕,周济人等.箱型双向流道轴流泵装置内部流动的数值模拟和试验研究[J].水力发电学报,2011,30(5):192-198.
    [62]Cheng Li, Liu Chao, Zhou Jiren, et al. Three dimensional numerical simulation of flow field inside a reversible pumping station with symmetric aerofoil blade[C]//2008 Proceeding of the ASME Fluids Engineering Division Summer Conference, FEDSM2008.
    [63]成立,刘超,B.P.M.van Esch等.灯泡贯流泵装置内部流动及水力特性[J].排灌机械工程学报,2012,30(4):436441.
    [64]金燕.贯流泵内部流动的数值模拟与三维LDV测量研究[D].扬州:扬州大学,2010.
    [65]Yang Fan, Liu Chao, Tang fangping. Numerical simulation of three dimensional flow in large mixed-flow pump system[C]//2011 Proceeding of ASME-JSME-KSME Joint Fluids Engineering Conference 2011, AJK2011-06008, Hamamatsu, Shizuoka, Japan.
    [66]朱红耕.大中型水泵装置过流部件内流数值模拟号性能预测[D].镇江:江苏大学,2006.
    [67]陈松山.低扬程大型泵站装置特性研究[D].镇江:江苏大学,2006.
    [68]王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8): 1003-1009.
    [69]Li Yaojun, Wang Fujun. Numerical simulation investigation of performance of an axial-flow pump with inducer[J]. Journal of Hydrodynamics, Ser.B,2007,19(6):705-711.
    [70]Tang Xuelin, Wang Fujun, Li Yaojun, et al. Numerical investigations of vortex flows and vortex suppression schemes in a large pumping station sump[J]. Proceedings of the institution of Mechanical Engineers Part C-Joumal of Mechanical Engineering Science,2011,225(C6):1459-1480.
    [71]郑源,刘君,陈阳等.基于Fluent的贯流泵数值模拟[J].排灌机械工程学报,2010,28(3):233-237.
    [72]李龙,王泽.轴伸式贯流泵装置全流场三维湍流数值模拟[J].机械工程学报,2007,43(10):62-66.
    [73]周大庆,钟淋涓,郑源等.轴流泵装置模型断电飞逸过程三维湍流数值模拟[J].排灌机械工程学报,2012,30(4):401-406.
    [74]冯卫民,宋立,左磊等.轴流泵装置三维非定常湍流流场的数值模拟[J].排灌机械工程学报,2010,28(6):531-536.
    [75]李江云,胡少华,周龙才等.新滩口泵站改造方案全流道仿真分析[J].工程热物理学报,2008,29(7):1136-1140.
    [76]施法佳,陈红勋,张计光.双向竖井贯流式水泵装置内部湍流流动分析[J].工程热物理学报,2006,27(4):598-600.
    [77]Zhang Rui, Chen Hongxun. Numerical simulation and flow diagnosis of axial-flow pump at part-load condition[J]. International Journal of Turbo & Jet-Engineering,2012,29(1):1-7.
    [78]王新,李同春,赵兰浩.大型灯泡贯流泵站全流道非定常湍流数值模拟[J].水电能源科学,2010,28(4):119-121,132.
    [79]朱荣生,燕浩,付强等.贯流泵内部压力脉动特性的数值计算[J].水力发电学报,2012,31(1):220-225.
    [80]KIM Jin-Hyuk, AHN Hyung-Jin, KIM Kwang-Yong. High-efficiency design of a mixed-flow pump[J]. Science China Technological Sciences,2010,53 (1):24-27.
    [81]Kyung-Nam Chung, Yang-LK Kim, Hwan-Sik Gong. Performance improvement of vertical pumps using CFD[C]//ASME-JSME 2007 5th Joint Fluids Engineering Conference, FEDSM2007, July30-August 2,2007, San Diego, California, USA.
    [82]M Sedlai, P Zima, M Bajorek, et al. CFD analysis of unsteady cavitation phenomena in multistage pump with inducer[C]//26th IAHR Symposium on Hydraulic Machinery and System, Beijing, China, 2012.
    [83]刘超.大型泵站钟形进水流道流速场的试验研究[J].江苏农学院学报,1985,6(2):41-47.
    [84]刘超.双向钟形进水流道的试验研究[J].江苏农学院学报,1985,6(4):9-12.
    [85]Sitaram N, Lakshminarayana B, Ravindranath A. Conventional probes for the relative flow measurement in a rotor blade passage[J]. Journal of Engineering for Power,1981,103(2):406-414.
    [86]Cugal M, Fopalakrishnan S, Ferman R S. Experimental and numerical flow field analysis of a mixed-flow pump impeller[C]//The 1996 ASME Fluids Engineering Division Summer Meeting, July 7-11, San Diego, USA.
    [87]仇宝云.大中型水泵装置理论与关键技术[M].北京:中国水利水电出版社,2005.
    [88]汤方平.喷水推进轴流泵设计及紊流数值分析[D].上海:上海交通大学,2006.
    [89]李忠.轴流泵内部数值模拟及实验研究[D].镇江:江苏大学,2007.
    [90]张德胜,李通通,施卫东等.轴流泵叶轮出口轴面速度和环量的试验研究[J].农业工程学报,2012,28(7):73-77.
    [91]杨华.离心泵内部流场PIV实验研究[D].扬州:扬州大学,2001.
    [92]Liu Chao, Tang Fangping, Sun Sun, et al. The PIV measurements on the flow fields in an unshrouded centrifugal pump[C]//Proceedings of the 7th Biennial Conference on Engineering System Design and Analysis 2004, July 19-July 24, Manchester, United Kingdom.
    [93]Tang Fangping, Liu Chao. PIV for propeller pumps applications[C]//The 2th international symposium of Fluid Machinery and Fluid Engineering,2000, Beijing, China
    [94]赵阳.轴流泵叶轮与导叶轴向间隙内流场的3D-PIV测量[D].扬州:扬州大学,2006.
    [95]Yang Hua, Gu Chuanggang, Wang Tong. Two-dimensional particle image velocimetry(PIV). Chinese Journal of Mechanical Engineering,2005,18(1):98-102.
    [96]杨德志.钟形进水流道出口断面的三维PIV测量与数值模拟[D].扬州:扬州大学,2011.
    [97]N Paone, M.L Riethmuller, R. A Van den Braembussche. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry[J]. Experiments in Fluids,1989(7):371-378.
    [98]Kreuter. P, Heuser. P, Schebitz. M. Strategies to improve SI-Engine performance by means of variable intake lift, timing and duration[C]//The international congress & Exposition, February,1992.
    [99]Akin. O, Rockwell. D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry[J]. Journal of Fluids Engineering,1994,116(3):538-544.
    [100]袁建平.离心泵多设计方案下内流PIV测试及其非定常全流场数值模拟[D].镇江:江苏大学,2008.
    [101]Wu Yulin, Liu Shuhong, Yuan Huijing, et al. PIV measurement on internal instantaneous flows of a centrifugal pump[J]. Science China Technological Sciences,2011,54(2):270-276.
    [102]G. Wuibaut, G. Bois, P. Dupont, et al. PIV Measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operating conditions[J]. Journal of Fluids Engineering, 2002(124):791-797.
    [103]Liu Houlin, Wang Kai, Yuan Shouqi, et al.3D Particle image velocimetry test of inner flow in a double blade pump impeller[J]. Chinese Journal of Mechanical Engineering,2012,25(3):491-497.
    [104]席光,卢金铃,祁大同.混流泵叶轮内部流动的PIV试验[J].农业机械学报,2006,37(10):53-56,26.
    [105]Y Inoue, T Nagahara Application of PIV for the flow field measurement in a mixed-flow pump[C]// 26th IAHR Symposium on Hydraulic Machinery and System, August 19-23, Beijing, China,2012.
    [106]A. Predin, I. Bilus. Pre-rotation flow measurement[J]. Flow Measurement and Instrumentation, 2003(14):243-247.
    [107]Tian Qing. Near wall behavior of vertical flow around the tip of an axial pump rotor blade[D]. Virginia: Virginia Polytechnic institute and state university,2006.
    [108]Friedrich. Karl Benra, Hans Josef Dohmen. Numerical and experimental investigation of the flow in a centrifugal pump stage[C]//5th WSEAS International conference on fluid mechanics Acapulco, January 25-27, Mexico,2008.
    [109]王福军.计算流体动力学分析——CFD软件原理与应用[M].清华大学出版社,2004.
    [110]吴玉林,刘树红,钱忠东.水力机械计算流体动力学[M].中国水利水电出版社,2007.
    [111]V. Yakhot, S.A. Orzag. Renormalization Group analysis of turbulence:basic theory[J]. Scient Comput, 1986(1):3-11.
    [112]Menter F R. Two-equation eddy-viscosity turbulence model for engineering application[J]. AIAA Journal,1994,32(8):1598-1605.
    [113]Hydraulic Institute Standards:Pump Intake Design(ANSI/HI9.8-1998)[S]. USA:American National Standards Institute, Inc.1998:27.
    [114]许凯,赵新明.基于拐点分割的Bezier曲线降阶[J].上海交通大学学报,2007,41(8):1223-1226.
    [115]孙家广,杨长贵.计算机图形学(第二版)[M].北京:清华大学出版社,1995.
    [116]杨帆,汤方平.基于Visual Fortran和AutoCAD的Bezier曲线的自动绘制及应用[J].微型机与应用,2010,29(18):15-17.
    [117]王国玉,霍毅,张博等.湍流模型在轴流泵性能预测中的应用与评价[J].北京理工大学学报,2009,29(4):309-313.
    [118]张德胜,施卫东,张华等.不同湍流模型在轴流泵性能预测中的应用[J].农业工程学报,2012,28(1):66-71.
    [119]Liu Houlin, Liu Mingming, Dong liang, et al. Effects of computational grids and turbulence models on numerical simulation of centrifugal pump with CFD[C]//26 IAHR Symposium on Hydraulic Machinery and System, August 19-23, Beijing, China,2012.
    [120]钱晓,徐天茂,张赛珍等.叶片尖端间隙对混流泵效率特性的影响[J].水力发电学报,1997(4):61-69.
    [121]R. J. Adrian, K. T. Christensen, Z.-C. Liu. Analysis and interpretation of instantaneous turbulent velocity fields[J]. Experiments in Fluids,2000(29):275-290.
    [122]陆林广,伍杰,陈阿萍等.立式轴流泵装置的三维湍流流动数值模拟[J].排灌机械,2007,25(1):29-32.
    [123]陆林广,陈坚,梁金栋等.灯泡贯流泵装置的优化水力设计[J].水利学报,2008,39(3):355-360.
    [124]Cheng Li, Liu Chao, Zhou Jiren, et al. Three dimensional numerical simulation of flow field inside a reversible pumping station with symmetric aerofoil blade[C]//ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conference(FEDSM2008), August 10-14,2008, Jacksonville, Florida, USA.
    [125]关醒凡.轴流泵和斜流泵[M].北京:中国宇航出版社,2009.
    [126]肖玉平,郑源,黄昱.基于CFD的大型竖井式贯流泵装置的流动研究[J].水泵技术,2009(6):24-27,23.
    [127]徐磊,陆林广,陈伟等.竖井贯流泵装置水力设计方案比较研究[J].水力发电学报,2011,30(5):207-215.
    [128]朱红耕,张仁田,刘军等.水泵转速变化对进出水流道水力损失的影响[J].农业机械学报,2009,40(6):76-80.
    [129]陆伟刚.泵站拍门断流的力学特性研究[D].上海:上海大学,2008.
    [130]陆林广,张仁田.泵站进水流道优化水力设计[M].北京:中国水利水电出版社,1997.
    [131]朱劲木,何忠人,刘德祥等.大型轴流泵站双向出水流道设计及模型试验验证[J].武汉大学学报(工学版),2005,38(4):13-16
    [132]朱俊华.合理选择轴流泵的导叶数[J].水泵技术,1996(6):4-7.
    [133]Shi F, Tsukamoto. H. Numerical studies of pressure fluctuations caused by impeller-diffuse interaction in a diffuser pump stage[J]. ASME Journal of Fluid Engineering,2001 (123):446-474.
    [134]Pavesi G, Gavazzini G, Arsizzon G Time-frequency characterization of the unsteady phenomena in a centrifugal pump[J]. International Journal of Heat and Fluid Flow,2008,29(5):1527-1540.
    [135]R. Spence,J.Amaral-Teixeira. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump[J]. Computers & Fluids,2009(38): 1243-1257.
    [136]邓东升,马志华,朱红耕.轴流泵叶片水力矩三维紊流数值计算[J].排灌机械,2006,24(5):8-11.
    [137]倪福生,刘大凯.轴流泵桨叶水力矩特性的实验与计算[J].河海大学学报,1988,16(2):62-69.
    [138]周济人,成立,刘超等.后置灯泡贯流泵装置灯泡体形式的数值模拟[J].排灌机械工程学报,2011,29(1):72-76.
    [139]Zhu Honggeng, Zhang Rentian, Zhou Jiren. Optimal hydraulic design of new-type shaft tubular pumping system[C]//26th IAHR Symposium on Hydraulic Machinery and System, August 19-23, Beijing, China,2012.
    [140]华绍曾,杨学宁.实用流体阻力手册[rM].北京:国防工业出版社,1985.
    [141]林锉云,董加礼.多目标优化的方法与理论[M].长春:吉林教育出版社,1992.
    [142]Gebreslassie.BH, Groll. EA, Garimella.SV. Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle[J]. Renewable Energy,2012(46):100-110.
    [143]成棣,王成国,刘金朝.铁路车轮型面的多目标优化设计模型研究[J].中国铁道科学,2011,32(4):77-84.
    [144]Kuo.CFJ, Vu. HQ, Gunawaa D, et al. Multi-objective optimization of laser-scribed micro grooves on AZO conductive thin film using data envelopment analysis[J]. Optics and Laser Technology,2012, 44(6):1959-1970.
    [145]Pettersson.F, Chakraborti.N, Saxen.H. A genetic algorithms based multi-objective neural net applied to noisy blast furnace data[J]. Applied soft computing,2008,7(1):387-397.
    [146]Carlos A. An updated survey of GA-based multi-objective optimization techniques[J]. ACM Computing Surveys,2000,32(2):109-143.
    [147]宋保维,李楠iSIGHT在多目标优化问题中的应用研究[J].火力与指挥控制,2008,33(S):133-135,157.
    [148]Kalyanmoy D, Amrit.P, Sameer.A, et al. A fast and elitist multiobjective genetic algorithm NSGA-Ⅱ [J]. Evolutionary Computation,2002,6(2):182-197.
    [149]SOYOTEC Technologies Co., Ltd.多学科/多目标设计优化技术IsightTM[EB/OL]. http://www.soyotec.com/2281023398311852281030446266312024821270-isight.html,2012.
    [150]耿建光.工程系统过程集成和设计优化——iSIGHT中的过程集成与设计自动化[J].军民两用技术与产品,2002(11):46-78.
    [151]J. Nikuradse. Untersuchung uber dle Stromungen des Wassers in konvergenten und divergenten Kanalen[M]. Berlin:Verein Deutscher Ingeniueure,1929.
    [152]A.J.斯捷潘诺夫.离心泵和轴流泵(译)[M].北京:机械工程出版社,1980.
    [153]王忠伟.轴流泵叶轮环形进口断面流速LDV测试研究[D].扬州大学硕士学位论文,2011.
    [154]王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8):1003-1009.
    [155]施卫东,冷洪飞,张德胜等.轴流泵内部流场压力脉动性能预测与试验[J].农业机械学报,2012,42(5):44-48.
    [156]Strasberg. M, Breslin. J.P. Frequencies of the Alternating Forces due to Interactions of contrarotating Propellers[J]. Journal of Hydronautics,1976,10(2):62-64.
    [157]N.R. Sakthivel, V. Sugumaran, S. Babudevasenapati. Vibration based fault diagnosis of monoblock centrifugal pump using decision tree[J]. Expert Systems with Applications,2010(37):4040-4049.
    [158]殷祥超.振动理论与测试技术[M].中国矿业大学出版社,2007.
    [159]刘宁,汪易森等.南水北调工程水泵模型同台测试[M].北京:中国水利水电出版社,2006.
    [160]中水北方勘测设计研究院有限公司工程技术研究院,扬州大学贯流泵装置模型试验报告[R].2010.
    [161]关醒凡,赵艳,商明华.邳州泵站贯流泵装置模型试验研究[J].水泵技术,2011(4):9-13.
    [162]回转动力泵-水力性能验收试验-1级和2级(GB/T3216-2005)[S].北京:中国标准出版社,2006.
    [163]徐磊,陆林广,王刚等.泵段、水泵模型测试段与泵段效率修正[J].水力发电学报,2012,31(3):209-216.
    [164]A.A.洛马金.离心泵与轴流泵(译)[M].北京:机械工业出版社,1978.
    [165]Li Haifeng, Chen Hongxun. Formation and influencing factors of free surface vortex in a barrel with a central orifice at bottom[J]. Journal of Hydrodynamics, Ser.B,2009,21(2):238-244.
    [166]V.P. Ranjcndran, VC.Patel. Measurement of vortices in model pump-intake bay by PIV[J]. Journal of hydraulic Engineering,2000(5):322-334.
    [167]GEchavez, E.McCann. An experimental study on the free surface vertical vortex[J]. Experiments in Fluids,2002(33):414-421.
    [168]T.E.Tokyay, S.G Constantinesscu. Validation of large-eddy simulation model to simulate flow in pump intakes of realistic geometry[J]. Journal of Hydraulic Engineering,2006,132(12):1303-1315.
    [169]Jong-Woong Choi, Young-Do Choi, Chang-Goo Kim, et al. Flow uniformity in a multi-intake pump sump model[J]. Journal of Mechanical Science and Technology,2010,24(7):1389-1400.
    [170]何耕.水泵进水池旋涡研究的主要进展[J].水力发电学报,2004,23(5):92-96.
    [171]泵进水流道PIV测试研究报告[R].中国扬州:扬州大学江苏省水利动力工程重点实验室,2013.
    [172]刘超,汤方平,周济人等.防涡消涡栅[P].中华人民共和国:ZL.96232008.0,1997-04-02.
    [173]大中型泵站节能改造综合技术与推广应用技术报告[M].中国扬州:扬州大学农学院,1997.
    [174]闵家万.前置导叶调节水泵性能的影响及使用控制[C]//第四届全国给水排水青年学术年会论文集,中国海口,2000.
    [175]Douglas M B, Donald G W. Non-hner regression analysis and application[M]. Beijing:China Statistics Press,1996.
    [176]史峰,王辉等编著.Matlab智能算法[M].北京:北京航空航天大学出版社,2011.
    [177]Rajakarunakaran S, Venkumar P, Devaraj D, et al. Artificial neural network approach for fault detection in rotary system[J]. Applied Soft Computing,2008,8(1):740-748.
    [178]张文纲,黄刘琪编著.水泵的节能技术[M].上海:上海交通大学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700