用户名: 密码: 验证码:
汽爆秸秆中副产物对产乙醇过程影响及生物解毒效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用废弃的纤维素类物质生产燃料酒精是解决能源危机的有效途径之一。纤维素乙醇生产中,原料必须经过预处理,但是预处理后产生的某些副产物会抑制酶解或发酵。本文以目前应用最广泛的蒸汽爆破预处理法为研究对象,考查了玉米秸秆蒸汽爆破预处理后产生的几种有机物和无机物对发酵的影响。并且根据这一结果,研究了本实验室筛选的解毒菌株FLZ10对这些物质的去除作用,并以此对该菌株的生物解毒作用做进一步的研究。
     首先,利用AFM技术观察预处理前后玉米秸秆表面结构的变化,证明汽爆预处理和酸爆预处理技术可以起到打破纤维素原料紧密结构的作用。根据对汽爆秸秆原料的洗液及醪液分析结果,研究了预处理和发酵副产物对乙醇产量的影响。结果表明,无机离子Mg~(2+)和Fe~(2+)对乙醇产量有明显的抑制作用,乙醇产量分别降低34.43%和11.48%;乙醇产量会随着全盐量的增加而降低;有机物甲酸≤2g/L浓度范围内不表现明显的抑制作用而是有轻微的促进作用;乙酸在低浓度时表现对发酵的促进作用,浓度达15g/L时,抑制明显,乙醇产量降低91.69%,并随着乙酸浓度增加抑制增强;糠醛浓度≤1g/L时对乙醇产量有明显的促进作用;当5-HMF得浓度≥2.0g/L时,对乙醇产量产生抑制,乙醇产量降低54.03%。
     其次,以副产物的抑制作用为依据,研究FLZ10菌剂对这些物质的去除效果。结果表明,无机离子方面,FLZ10对Ca~(2+)、Mg~(2+)、Al~(3+)、Fe~(2+)均有明显的去除效果,培养48h去除率分别为70%、50%、90%、80%。有机物方面,35℃时以葡萄糖为碳源的培养基中,FLZ10对乙酸、丙酸、丁酸于96h的去除率可分别达24.20%、30.92%、27.73%。35℃时以葡萄糖为碳源的培养基中,FLZ10对糠醛和5-HMF的去除率分别为56.52%、69.21。在实际发酵中,FLZ10的生物解毒效果明显,可取得与水洗解毒相同的效果,并且可辅助水洗解毒,乙醇终产量可达50g/L。
     再次,为了降低生物解毒成本,对FLZ10菌剂培养基进行优化。根据测得几种菌剂的CB酶活和FPA酶活及其对秸秆洗液中抑制物的去除,表明50℃比40℃更利于酶的作用,而40℃比50℃更利于FLZ10对发酵抑制物的代谢。以原培养基做参照,菌剂优化试验培养基中全麸皮培养基的CB酶活和FPA酶活均最高;SBR和EGSB出水培养基对有机酸的去除效果最好;全麸皮培养基对甲酸、糠醛和5-HMF的去除效果均最佳。但是几种培养基在40℃时,对抑制物的去除效果差别并不是很大,经综合评价,确定可以用价格低廉的玉米秸秆粉代替结晶纤维素制作菌剂培养基。
     最后,讨论了几种微量元素营养物的添加对发酵的贡献。经过单因素分析和正交分析,得到实验结果表明,微量元素营养物可以促进发酵,营养物质中对乙醇产量的影响大小依次为泛酸>钴>VB1>锌>锰>镍>肌醇。七种物质应选的加入量分别为六水氯化镍50μm/L、四水氯化锰25mg/L、七水硫酸锌6mg/L、八水氯化钴30μm/L、肌醇150mg/L、泛酸10ml/L、VB1150mg/L。
Fuel ethanol production from lignocellulosic materials is an effective way to relief fossil energy crisis. The lignocellulosic materials must be pretreated before hydrolysis in cellulosic ethanol conversion. However, some byproducts released from pretreatment process may inhibit the enzymic hydrolysis or fermentation. The influences of the inhibitors liberated from steam explosion, which is the widely used pretreated method, was detected in this study. Based on the inhibition result, fungi FLZ10 was used for removing the inhibitors and biodetoxification was further studied.
     At first, the surface structures of corn-stovor were observed by AFM technology, to prove the results of breaking the compact lignocellulosic structures after pretreatment. According to the analysis of hydralysates, the effects of the byproducts to the fermentation were studied. It was showed that the ethanol yield were strongly inhibited by Mg~(2+)and Fe~(2+), the decrease of ethanol yield is 34% and 11%respectively. As the total salts decreased, the ethanol yield has reduced. It has no obvious influence on the ethanol yield when the concentration of formic acid≤2g/L and furfural≤1g/L.The ethanol yield has been inhibited when the concentration of acetic acid≥15g/L and 5-HMF≥2.0g/L, the decrease of ethanol yield is 92% and 54%respectively, but the low concentration have promotion to the fermentation.
     Secondly, according to the studies of inhibition, the removals of inhibitors with FLZ10 have been studied. The removal rate of inorganic ions, Ca~(2+)、Mg~(2+)、Al~(3+)、Fe~(2+)are 70%、50%、90%、80%.When T=35℃,t=96h,the removal rate of organics, acetic acid、propionic acid、butyric acid are 24%、31%、28% in the culture medium with glucose as carbon source.. In the actual fermentation, the effect of bio-detoxification and washing detoxification were equivalent. The ethanol yield using bio-detoxification based washing detoxification is 50g/L.
     Once more, the optimizations of culture medium of FLZ10 agent have been carried out. As standards for monitoring cellulase activity, CB and FPA activities were detected, and the concentrations of inhibitors in corn-stover washing water, including formic acid、acetic acid、furfural、5-HMF,were detected for the bio- detoxification ability. The results were performed that the CB and FP activities in 50℃were higher than they were in 40℃, and the removal rates of inhibitors in 40℃were higher than they were in 50℃. The culture medium which using SBR or EGSB effluent as nutrients abtained the best rate for removing acetic acids; The culture medium of entire wheat bran was turned out the most replacement of formic acid,furfural and 5-HMF. However, there were little differences in inhibitors removing rate among different culture medium. Based on the comprehensive analysis, cheap crystalline cellulose (Avicel ) can be replaced by cheap corn stover powder in thedetoxified bioagent medium.
     At last, contribution of growth factors was performed. According to orthogonal analysis ,it showed that the effects of growth factors rang from strong to weak were pantothenic acid > Co > VB1 > Zn > Mn > Ni > inositol, the optimized actual concentration were NiCl2·6H2O 50μm/L、MnCl2·4H2O 25mg/L、ZnSO4·7H2O 6mg/L、CoCl2·8H2O 30μm/L、inositol 150mg/L、pantothenic acid10ml/L、VB1150mg/L.
引文
1.戴林,李景明.中国生物质能转换技术发展与评价.北京:中国环境科学出版社,1998.
    2.张宙.中国能源供应战略的调整.中国能源,1999,3:1~14.
    3.王莉.生物能源的发展现状及发展前景[J].化工文摘. 2009, (2): 48~50.
    4.闫长乐.中国能源发展报告.北京:经济管理出版社,1994.
    5.高凤芹,孙启忠,刑启明.木质纤维素乙醇的研究进展[J].理论与研究.2009(4):54~56.
    6.余燕春.利用农林纤维废弃物生产酒精的社会效益.江西林业科技,1996,6
    7.余世袁.林产资源的生物转化与利用.南京林业人学学报,2000,24(2):l~5.
    8. Y lee Nonis. Thermal simultaneous saccharification and fermentation for direct conversion of lignocelulosic biomass to ethanol[J]. Applied Biochemistry and Biotechnology. 1998,(70): 479~492.
    9.张强,陆军,侯霖等.玉米秸秆制酒精秸秆预处理及水解方法的探讨[J].酿酒科技. 2004, (4): 43~44
    10.陈洪章.纤维素生物技术[M] .北京:化学工业出版社,2005.
    11. BERG C,LICHT FO.World fuel ethanol-analysis and outlook[R].Ministry of Economy Trade and Industry (METI)(Japan),2003.
    12. Fulton L,Howes T.Biofuels for Transport:An International Perspective[J].IEA, 2004, 74~ 77.
    13.张以祥,曹湘洪,史济春.燃料乙醇与车用乙醇汽油[M].北京:中国石化出版社,2004.
    14. IEA IEA Bioenergy Implementing Agreement,Task 27 Final Report,by(S&T)2 Consultants Inc 2000
    15. Macedo I C.Greenhouse Gas Emissions the Production and Use of Ethanol in Brazil:PresentSituation (2002),Prepared for the Secretariat of the Environment,2003,Sao Paulo.
    16. Sun Y,Cheng J Y.Bioresource Technology. 2002, 83:1~11.
    17.高寿清.燃料酒精发展的国际情况与分析[J],食品与发酵, 200l,l2:59~62。
    18.廖兴华,夏延斌.燃料酒精的发展现状和研究趋势[J].酿酒.2007(9):18~20.
    19.张绪霞,董海洲等.燃料酒精制备及其开发前景[J]粮食与油脂,2006,2:7~9
    20.罗菊香,梁一池等.纤维素原料生产燃料乙醇的技术现状和研究趋势[J].
    21. http://www.oilcn.com/article/2010/0604/article_15423.html中国食用油信息网
    22. http://www.chinaequip.gov.cn/2010-05/28/c_13320628.htm新华网
    23.张强,蒋磊,陆军,侯霖等.玉米秸秆发酵法生产燃料酒精的研究[J].食品工业科技. 2006, 10: 198~200.
    24.张新武.纤维素酶在饲料工业的应用现状和展望[J].饲料广角. 2000(10): 23~24.
    25. Martin C,Gonzalez Y,Fernandez T,Thomsen AB.Investigation of cellulose convertibility and ethanol fermentation of sugarcane bagasse pretreated by wet oxidation and steam explosion.J Chem Technol Biotechnol, 2006, 81(10): 1669~1667
    26. National Research Council.Committee on Biobased Industrial Products, Biobased Industrial Products-Priorities for Research and Commer cialization [M].National Academy Press,1999.
    27. Palmqvist,E.,Hahn-Hagerdal,B.Fermentation of lignocellulosic hydrolysatesII: inhibitors and mechanisms of inhibition[J].Bioresource Technology 74(1):25~33.
    28.刘新等,李静.木质纤维素预处理工艺的研究现状[J],黑龙江农业科学, 2010(2):112~114.
    29.朱振兴,聂俊华,颜涌捷.木质纤维素生物质制取燃料乙醇的化学预处理技术[J],化学与生物工程, 2009, 26 (9):11~14.
    30.杨长军,汪勤,张光岳.木质纤维素原料预处理技术研究进展[J].酿酒科技,2008,(3):85-89.
    31. Schmidt A S,Thomsen A B. Optimization of wet oxidation pretreatment of wheat straw[J]. Bioresource Technology, 1998,64(2):139~151.
    32. Varga E,Schmidt A S,Reczey K,et al.Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility[J].Applied biochemistry and Biotechnology,2003,104:37~50.
    33.王堃,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J],生物质化学工程,2006(11),40(6),37~42.
    34. MASONW H. A method of production ofmechnical pulp US1665. 618 [P]. 1928.
    35. Yong Q,Xu Y,Song XY,Yu SY.The pilot system of bioethanol production fromcorn stalks.J Cellulose Sci Technol,2006,14(3):37~70
    36. Saha B C.Hemicellulose bioconversion[J].J Ind Microbiol Biotechnol , 2003,30: 279~291.
    37. Cara C,Moya M,Ballesteros I,Negro MJ,Gonzalez A,Ruiz E.Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass.Proc Biochem,2007,42(6):1003~1009
    38. Emmel A,Mathias A L,Wypych F,et al.Fractionation of eucalyptus grandis chips by dilute acid-catalysed steam explosion[J]. Bioresource Technology, 2003, 86: 105~11
    39. TUCKERM P, KIM K H, NEWMANM M, et a.l Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility [J].Applied Biochemistry and Biotechnology. Part A: Enzyme Engineering and Biotechnology, 2003(105): 165~177.
    40. ENIKO VARGA, KATIRéCZEY, GUIDO ZACCHI. Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility [J]. Applied Biochemistry and Biotechnology, 2004(114): 509~524.
    41. BURA R, BOTHASTR J, MANSFIELD SD, eta.l Optimization of SO2-catalyzed steam pretreatment of corn fiber for ethanol production [J]. Applied Biochemistry and Biotechnology, Part A: Enzyme Engineering and Biotechnology, 2003(105): 319~335.
    42. A Azhar, et al. Factors affecting alcohol fermentation of wood acid hydrolysate [J]. Biotechnol Bioeng. 1981, 23(11): 293~300.
    43. J Zaldivar, A Martinez , L O Ingram, et al. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli[J]. Biotechnol Bioeng. 2000, 68 (5): 524 ~530.
    44. Eva Palmqvis, B?arbel Hahn-H?agerdal. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition [J]. Bioresource Technology , 74 (2000):25~33
    45. J Zaldivar, L Ingfram. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli[J]. Biotechnol Bioeng.1999, 6(4): 203~210.
    46. Dunlop, A.P., 1948. Furfural formation and behaviour. Ind. Eng.Chem. 40 (2), 204~209.
    47. Ulbricht, R.J., Sharon, J., Thomas, J.A review of 5-hydroxymethyl furfura HMF in parental solutions. Fundam. Appl. Toxicol.4, 843-853.
    48. Bardet, M., Robert, D.R., Lundqvist, K., 1985. On the reactions and degradation of the lignin during steam hydrolysis of aspen wood. Sven. Papperstidn. 6, 61~67.
    49. Lapierre, C., Rolando, C., Monties, B., 1983. Characterization of poplar lignins acidolysis products: capillary gas-liquid and liquid-liquid chromatography of monomeric compounds. Holzforschung37, 189~198.
    50. Sears, K.D., Be_elik, A., Casebier, R.L., Engen, R.J., Hamilton, J.K., Hergert, H.L., 1971. Southern pine prehydrolyzates: characterization of polysaccharides and lignin fragments. J. Polym. Sci. 36, 425~443
    51. E Palmqvist, H Grage. Main and interaction effects of acetic acid ,furfural and P-hydroxybenzoic acid on growth and ethanol prodctivity of yeasts[J]. Biotechnol Bioeng. 1999, 63(1): 46~55.
    52. Axe, D.D., Bailey, J.E., 1995. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherchia coli. Biotechnol. Bioeng. 47, 8~19.
    53. Boyer, L.J., Vega, K., Klasson,.1992. The effects of furfural on ethanol production by Saccharomyces cerevisiae. Biomass Bioeng. 3 (1), 41~48.
    54. Brown, M.H., Booth, I.R., 1991. Food Preservatives, third ed. Blackie and son, Glasgow/London.
    55. Stouthamer, A.H., 1979. The search for a correlation between theoretical and experimental growth yields. Int. Rev. Biochem. Microb. Biochem. 21, 28.
    56. Verduyn, C., Postma, E., Sche.ers, W.A., van Dijken, J.P., 1990. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136, 405~412.
    57. Verduyn, C., Postma, E., Sche.ers, W.A., Dijken, J.P., 1992. E.ect of benzoic acid on metabolic uxes in yeasts: a continous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501~517.
    58. Imai, T., Ohono, T., 1995. The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 61, 3604~3608.
    59. Taherzadeh, M.J., Gustafsson, L., Niklasson, C. Liden, G., 1998. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J. Biosci. Bioeng. 87,169~174.
    60. Taherzadeh, M.J., Gusta.son, L., Niklasson, C., Lid_en, G., 1999. Physiologicale.ects of 5-hydroxymethyl-furfural (HMF) on Saccharomy cescerevisiae, submitted.
    61. RanatungaTD, JervisJ, HelmRF.The effct of overliming on the toxicity of dilute acid pretreated lignocellulosics:the role of inorganics, uronicacid shan ether-soluble organics[J].Enzyme Microb.Technol,2000,27(3):240~247.
    62. Myers, H.M., Montgomery, D.C., 1991. Response surface methodology: process and product optimisation using designed experiments. Wiley-Interscience, New York.
    63. Larsson, S., Palmqvist, E., Hahn-H?agerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., Nilvebrant, N.O., 1998. The generation of fermentation inhibitors during dilutes acid hydrolysis of softwood. Enz. Microb. Technol. 24, 151~159.
    64. Olsson, L., Hahn-H?agerdal, B., 1993. Fermentative performance of bacteria and yeasts in lignocellulosic hydrolysates. Process Biochem.28, 249~257.
    65. Olsson, L., Hahn-H?agerdal, B., 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18, 312~331
    66. Lind_en, T., Peetre, J., Hahn-H?agerdal, B., 1992. Isolation and characterisation of acetic acid tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfte liquor plant. Appl. Environ. Microbiol. 58, 1661~1669.
    67. Converti A,Domínguez J M,Perego P,et al.Wood hydrolysis and hydrolyzate detoxification for subsequent xylitol production[J].Chem Eng Technol, 2000,23: 1013~1020.
    68. HendriksATWM, Zeeman G.Pretreatmentsto enhance the digestibility of lignocellulosic biomass[J].Bioresource Technology,2009,100:10~18.
    69. Silva C J, Roberto I C.Statistical screening method forselection of important variables on xylitol biosynthesis from rice straw hydrolysate by Candida guilliermondii FTI 20037[J].Biotechnol Tech,1999,13:743~747.
    70.何北海,林鹿,孙润仓,等.木质纤维素化学水解产生可发酵糖研究[J].化学进展,2007,19(4):1141~1146.
    71.庄军平,林鹿,庞春生等.木质纤维素稀水解液脱毒研究进展[J].现代化工,2009(2),19~23.
    72. Jo|¨nsson, L.J., Palmqvist, E., Nilvebrant, N.O., Hahn-H?agerdal, B.1998. Detoxifcation of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 49,691~697.
    73. Palmqvist, E., Hahn-H?agerdal, B., Szengyel.1997. Simultaneous detoxifcation and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enz. Microb. Technol. 20, 286~293.
    74. I S Chung,Y Y Lee·Ethanol fermentation of crude acid hydrolyzate of cellulose using high level yeast inocula[J]·Biotechnol.Bioeng,1985,27 (3):308~315.
    75. Navarro A R.Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae:mathematical models[J]·Curr·Microbiol,1994,29(2):87~90.
    76.张素平,颜涌捷.纤维素制取乙醇技术[J].化学进展,2007(8),19 (7/8):1129~1133.
    77. Hahn-Hagerdal B, GalbeM, Gorwa-GrauslundMF, et al. Trends in Biotechnology, 2006, 24: 549~556
    78. James F. [2007-03-29]. http://energy.seekingalpha.com/article/13493
    79. Xiang Q, Lee Y Y, Torget R W. Applied Biochemistry and Biotechnology, 2004, 113/116: 1127~1138
    80. Lee Y Y, Iyer P, Toget R W. Advanced Biochemistry and Biotechnology, 1999, 65: 93~115
    81. Converse A O. Bioresource Technology, 2002, 81: 109~116
    82. Hamelinck C N, van Hooijdonk G, Faaij A P C. Biomass and Bioenergy, 2005,
    28: 384~410.
    83. Choi C H, Mathews A P. Bioresource Technology, 1996, 58:101~106.
    84.王丹,林建强,张莆.直接生物转化纤维素资源生产燃料乙醇的研究进展[J].山东农业大学学报(自然科学版).2002,33(4):525~529
    85.窦克军,孙春宝.玉米秸秆发酵生产乙醇的研究进展[J].四川食品与发酵:30~34.
    86. Gauss W F,S.Suzuki,M.Takagi. Manufacture of alcohol from cellulosic materials using plural ferments[P].US: 990-994,1976.
    87. ZhangwenWu,Lee L L. Nonisothernal simultaneous saccharification and fermentation for direct conversion oflignocellosic biomass to ethanol[J]. Applied Biochemistry and Biotechnology,1998,(70-72):479~-492.
    88. Ho chen, Brainard. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose[J].Applied and Environmental Microbiology, 1998,64(5):1852~1859.
    89.吕欣,毛忠贵.高浓度酒精发酵研究进展[J].酿酒科技,2003(5)
    90. Casey. G.P.Magnus.C.A., Ingledew. W.M. High Cravity Brewing: Nutrient Enhanced Producion of High Concentrations of Ethanol by BrewingYeast [J]. Biotechnol. lett.1983.(5):429~434
    91. MccaigR.mckee,Pfister E.A.,IngledewW.M.,Very high gravity brewing-laboratory and pilot plant trials.,Am.Soc.Brew.Chem,1992(50):18~26
    92. Thomas K.C., Ingledew W.M., Fuel alcohol production:Effects of free aminonitrogen on fermentation If Very-High-Gravitywheat Mashes, Appl. Environ. Microbiol,1990 (56):2046~2050
    93.陈旭.同步糖化浓醪发酵影响因素的探析[J].酿酒, 2008(7),35(4):60~63.
    94. Lu, Y.F., Wang, Y.H., Xu, G.Q., Chu, J., Zhuang, Y.P., Zhang, S.L., 2010. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl. Biochem. Biotech.160, 360~369.
    95. Maria Cantarella, Laura Cantarella, Alberto Gallifuoco, Agata Spera, Francesco Alfani. Comparison of different detoxification methods for stream-exploded popar wood as a substrate for the bioproduction of ethanol in SHF and SSF[J]. Process Biochemistry. 2004, 39: 1533~1542.
    96. Miguel Jurado, Alicia Prieto. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol[J]. Bioresource Technology, 100 (2009) 6378~6384.
    97.马赞华.酒精高效清洁生产新工艺.化学工业出版社, 2003.
    98. LU Peng, CHEN Li-jun, Li Guo-xue. Influence of furfural concentration on growth and ethanol yield of Saccharomyces kluyveri[J]. Journal of Environmental Sciences.19(2007) 1528~1532
    99. Pampulha, M.E., Loureiro-Dias, M.C., 1989. Combined e.ect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl. Microbiol. Biotechnol. 31, 547~550.
    100. Barber A R, Hansson H, Pamment N B, et al. Acetaldehyde stimulation of the growth of saccharomyces cerevisiae in the presence of inhibitors found in lignocellulose to ethanol fermentation-furfural and acetate production[J]. J Ind Microbiol Biotechnol,2000,25(2):104-108. 15~159.
    101. Pampuhla, M.E., Loureiro-Dias, M.C., 1990. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl. Microbiol. Biotechnol. 34, 375~380.
    102. Diaz de Villegas, M.E., Villa, P., Guerra, M., Rodriguez, E., Redondo,D.,Martinez, A., 1992. Conversion of furfural into furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 12, 351~354.
    103. Palmqvist, E., Hahn-H?agerdal, B. 1999. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification. Bioresour. Technol.submitted.
    104. Taherzadeh M J, Niklasson C,Lidén G.On-line control of fed-batch fermentation of dilute-acid hydrolyzates[J]. Biotech Bioeng,2000,69:330~338.
    105. ModigT,Lidén G,TaherzadehMJ.Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase [J]. Biochem J, 2002,363(3):769~776.
    106. Banerjee N,Bhatnagar R,ViswanathanL.Inhibition of glycolysis by furfural in Saccharomyces cerevisiae[J].Eur J Appl Microbiol Biotechnol,1981,11(4):224-228.
    107.刘嘉.纤维素燃料乙醇菌酶共发酵条件优化及解毒机理
    108. Lawrence P Wackett. Biomass to fuels via microbial transformations. Current Opinion in Chemical Biology 2008, 12:187~193
    109.何灿芝.应用统计.湖南:湖南科学技术出版社,1997,303-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700