用户名: 密码: 验证码:
马铃薯为原料发酵制备L-乳酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-乳酸及其衍生物广泛应用于食品、医药、农业、日用品、环保、化工等领域。尤其是近年来,人们利用乳酸聚合生产生物可降解塑料、绿色包装材料及农用薄膜等,来解决日益严重的资源短缺和环境污染问题,引起了的人们极大的关注,展示了其广阔的应用前景。
     本论文以鼠李糖乳杆菌CICC6003作为出发菌株,对其进行紫外诱变,并通过高糖高酸平板和琥珀酸平板筛选突变菌株,得到一株耐高糖高酸,EMP途径强化TCA途径减弱的突变菌株。突变菌株LR-9-3-6乳酸产量达到84.6g/L,比出发菌株提高了25.9%,而且稳定性好。
     通过单因素实验确定了马铃薯糖化液为最适碳源,酵母膏为最适氮源,考察培养基组成中马铃薯糖化液、酵母膏、柠檬酸二铵、乙酸钠、K2HPO4、Mg2+、Mn2+、Fe2+8个因素对乳酸产量的影响。采用统计学方法优化鼠李糖乳杆菌突变株LR-9-3-6发酵制备乳酸的发酵培养基。利用Plackett-Burman实验设计法考察培养基组分中的8个因素对乳酸生产的影响,筛选出马铃薯糖化液、酵母膏、硫酸锰三个因素对乳酸产量具有显著影响,选择这三个因素作为主要研究对象进行进一步的优化工作。最陡爬坡实验确定了响应面实验因素水平的中心点为马铃薯糖化液浓度100g/L、酵母膏浓度14g/L、硫酸锰浓度0.015g/L。采用中心复合实验进行响应面实验,用Minitab15软件对中心复合实验设计的实验数据进行二次多项式回归拟合,并建立回归方程,对回归方程求解,对应为马铃薯糖化液浓度110.7g/L,酵母膏浓度14.98g/L,硫酸锰浓度0.016g/L,最大乳酸产量达94.09g/L。在最优条件下进行验证实验,三次实验平均值为93.2g/L,与预测值之间的误差为0.9%。与优化前相比,乳酸产量提高了11.2%,L-乳酸的纯度达到94.8%。通过单因素实验确定了最佳乳酸发酵条件为种龄16h、接种量8%、装液量100mL、温度37℃、CaCO3发酵前一次性加入。
     以马铃薯淀粉为原料采用同步糖化发酵工艺进行发酵制备乳酸,对其工艺条件进行优化。研究表明,淀粉先经过液化后再进行同步糖化发酵的工艺乳酸产量最高,通过单因素实验确定了最适淀粉浓度为300g/L、糖化酶用量为250u/g、发酵温度为37℃、最适发酵时间72h。通过Plackett-Burman实验筛选出淀粉浓度、糖化酶用量和发酵温度三个因素对乳酸产量具有显著影响,选择这三个因素作为主要研究对象进行进一步的优化工作。最陡爬坡实验确定了响应面实验因素水平的中心点为淀粉浓度260g/L糖化酶用量260 U/g淀粉、发酵温度38℃。采用中心复合实验进行响应面实验,用Minitab15软件对实验数据进行二次多项式回归拟合,、并建立回归方程,对回归方程求解,对应为淀粉浓度271.89g/L,糖化酶用量265.09 U/g淀粉,发酵温度39.05℃,最大乳酸产量达到196.99 g/L。在最优条件下进行验证实验,三次实验平均值为193.6g/L,误差1.7%,与优化前相比,乳酸产量提高了13.9%,L-乳酸的纯度达到95.2%。
     本论文还研究了变温策略在同步糖化发酵中的应用,变温发酵的最佳条件是发酵开始8h后升温至42℃,高温维持2h后再降至37℃,与37℃和39℃恒温发酵相比乳酸产量分别提高了3.5%和1.6%。
Lactic acid and its ramification are widely applyed in many domains,such as food, medicine, agriculture, commodities, environmental protection, chemical industry. Especially in recent years, use lactic acid producing biodegradable plastic polymer, green packaging materials and agricultural film to solve the growing shortage of resources and environmental pollution problems,demonstrating its broad application prospects.
     In this paper, Lactobacillus rhamnosus CICC6003 was treated with ultraviolet radiation,after the mutation,a mutated strain was selected with high glucose, high acid and succinic acid flat plate,the production of lactic acid reached 84.6 g/L, increased 25.9% than the original strain, and have good stability.
     Determined by single factor experiments for the best potato saccharification liquid carbon source, yeast extract as the most suitable nitrogen source, study the composition of potato saccharification liquid medium, yeast extract, diammonium citrate, sodium acetate, K2HPO4, Mg2+, Mn2+, Fe2+ eight factors on lactic acid yield. Using Plackett-Burman experimental design study of 8 factors in the medium fractions, the liquid of potato saccharification, yeast extract and manganese sulfate selected three significant factors, choose these three factors as the main subjects for further optimization work. Steepest ascent experiment factors determined the center of response surface experimental,the liquid of potato saccharification 100 g/L,yeast extract 14 g/L,manganese sulfate 0.015 g/L.Useing Minitab15 create and regression the equations, the liquid of potato saccharification 110.7 g/L,yeast extract 14.98 g/L,manganese sulfate 0.016 g/L, the maximum lactic acid yield was 94.09 g/L.To verify the optimal experimental conditions, an average of three experiments 93.2 g/L, and the error value was 0.9% between the predicted. Compared with the former, lactic acid production increased 11.2%, L-lactic acid purity was 94.8%. Single factor experiments to determine the best conditions,seed age 16h, inoculum 8%, volume 100mL, temperature 37℃, CaCO3 added before fermentation.
     The process of simultaneous saccharification and fermentation were optimized. Research shows that first liquefaction of starch and take the simultaneous saccharification and fermentation was the best way.single factor experiments confirmed the optimum starch concentration 300 g/L, glucoamylase dosage 250u/g starch, fermentation temperature 37℃, fermentation time 72h. By Plackett-Burman screening experiment starch concentration, glucoamylase, and fermentation temperature had significant effects,these three factors as the main research object for further optimization. Steepest ascent experiment factors determined the center of response surface experimental,starch concentration 260 g/L, glucoamylase dosage 260 U/g starch, fermentation temperature 38℃. Experiments carried out using central composite response surface experiment, Useing Minitab15 create and regression the equations,starch concentration 271.89 g/L, glucoamylase dosage 265.09 U/g starch, fermentation temperature 39.05℃, the maximum lactic acid production reached 196.99 g/L. In the verification experiments under optimal conditions, an average of three experiments 193.6 g/L, error value was 1.7%, compared with before optimization, the production of lactic acid increased 13.9%, L-lactic acid purity was 95.2%.
     This paper also studied the altering temperature strategy in simultaneous saccharification and fermentation, the best conditions was after fermentation began 8h warming up temperature to 42℃, maintain 2h and then t dropped to 37℃, the production of lactic acid increased 3.5% and 1.6% with constant temperature fermentation on37℃and 39℃
引文
[1]张梁,石孔泉,石贵阳.利用废弃物原料生产L-乳酸的研究进展[J].食品与机械,2007,23(5):138-145
    [2]吕九琢,徐亚贤.乳酸应用、生产及需求的现状与预测[J].北京石油化工学院学报,2004,12(2):32-38
    [3]Vijayakumar J, Aravindan R, Viruthagiri T. Recent trends in the production, purification and application of lactic Acid[J]. Biochem,2008,22(2):245-264
    [4]Aamer A, Fariha H, Abdul H, et al. Biological degradation of plastics:A comprehensive review[J]. Biotechnology Advances 2008,26:246-265
    [5]王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社,2000
    [6]王立梅,齐斌.L-乳酸应用及生产技术研究进展[J].食品科学,2007,28(10):608-612
    [7]Rathin D. Hydroxycarboxy acids[J].Encyclopedia of Chemical Technology,1995(13): 1042-1062.
    [8]闫智慧,高静,周丽亚,等.乳酸的应用与发酵生产工艺[J].河北工业大学学报,2004,33:15-19
    [9]穆守元.国内外乳酸及其衍生物的应用和市场前景[J].化工技术经济,2001,3:10-14
    [10]徐忠,江群慧,姜兆华.L-乳酸的制备及其应用的研究进展[J].化学与粘合,2004,4:214-218.
    [11]佟明友,方向晨,刘树臣,等.L-乳酸和聚乳酸的研究进展[J].石油化工,2003,32(8):724-728
    [12]欧提库尔,穆斯塔怕,张志东,等.L-乳酸的研究进展及其应用前景[J].新疆化工2005,3:5-12
    [13]李孝红,袁明龙,熊成东等.聚乳酸及其共聚物的合成和在生物医学上的应用[J].高分子通报,1999,1:24-32
    [14]王竹林,金立国.环保型聚乳酸纤维的开发和应用[J].针织工业,2003,10(5):62-64
    [15]蒋志君.环保材料聚乳酸(PLA)的开发应用及发展前景[J].河北纺织,2004,4:8-13
    [16]Kricheldorf H.R. Syntheses and application of polylactides [J]. Chemosphere, 2001,4:43-49.
    [17]Niju N,Roychoudhury P.K,Srivastava A.L-lactic acid fermentation and its product polymerization[J].Electronic Journal of Biotechnology.2004,7:167-179.
    [18]金其荣,唐是雯.有机酸发酵工艺学[M].北京:中国轻工业出版社,1989
    [19]曾炜,陈丰秋,詹晓力.乳酸的生产技术及其研究进展[J].化工进展,2006,25(7):744-749
    [20]Darta R,Henry M.Lactic acid:recent advances in products,process and technologies-review[J].Chem Technol Biotechnol,2006,81:1119-1129
    [21]曹本昌,徐建林.L-乳酸研究综述[J].食品与发酵工业,1993,3:56-61.
    [22]董涛,黄丽萍,陈景文,等.有机废弃物发酵生产乳酸的研究进展[J].中国资源综合利用,2006,24(8):11-14
    [23]Karin H, Barbel H H. Factors affecting the fermentative lactic acid production from renewable resources[J].Enzyme and Microbial Technology,2000,(26):87-107
    [24]王宏伟,郭绍华,冯靓.L-乳酸发酵的研究进展[J].辽宁农业科学,2004,4:28-30
    [25]Rojan P,John K,Nampoothiri M, et al. Fermentative production of lactic acid from biomass:an overview on process developments and future perspectives[J].Appl Microbiol Biotechnol,2007,74:524-534
    [26]Tsai S P,Coleman R D. Strain screening and development for industrial lachtic acid fermentation[J].Appl.Biochem.Biotechnol.1993,(39/40):323-335.
    [27]Payot T. Lactic acid Production by Bacillus coagulans-kinetic studies and Optimication of culture medium for batch and continuous fermentations, Enyzme Microb Technol, 1999(24):191-199.
    [28]Morlon G J,Guyot J P,Pot B,et al. Lactobacillus manihotivorans sp. nov., a new starch hydrolyzing lactic acid bacterium isolated from cassava sour starch fermentation[J].Int J Syst Bacteriol,1998,48:1101-1109
    [29]Narita J, Nakahara S, Fukuda H,et al. Efficient production of L-(+)-lactic acid from raw starch by Streptococcus bovis 148 [J]. Journal of Bioscience and Bioengineering, 2004,97(6):423-425
    [30]仇俊鹏,徐岩,阮文权,等.L-乳酸发酵的代谢调控育种及发酵影响因素的研究[J].微生物通报,2007,34(5):929-933
    [31]郑艳,薛景珍,刘长江.L-乳酸发酵菌株的选育[J].微生物学杂志,2004,24(3): 26-28
    [32]刘勇军,王昌禄,曹伟锋.细菌L-乳酸发酵的研究-耐高糖高酸菌株的选育[J].广州食品工业科技,2003,19(2):62-64
    [33]Kyla N K, HujanenM, Leisola M, et al. Metabolic Engineering of Lactobacillus helveticus CNRZ32 for Production of Pure L-Lactic Acid[J]. Appl Environ Microbio,2000, 66(9):3435-3481.
    [34]Zhou S, Shanmugam KT, Ingram LO.Functional Replacement of the Escherichia coli D-Lactate Dehydrogenase Gene(1dhA)with theL-Lactate Dehydrogenase Gene(ldhL) from Pediococco acidiltici[J].Appl Environ Microbiol,2003,69(4):2237-2244.
    [35]Okano K, Kimura S, Narita J, et al. Improvement in lactic acid production from starch usinga-amylase-secreting Lactococcus lactis cells adapted to maltose or starch[J].Appl Microbiol Biotechnol,2007,75:1007-1013
    [36]Gao M T, Hirata M, Toorisaka E, et al. Acid hydrolysis of fish waste for lactic acid fermentation [J]. Bioresource Technology,2006,97 (18):2414-2420.
    [37]Ohkouchi Y, Inoue Y D irect p roduction of L(+)-lactic acid from starch and food waste using Lactobacillus manihovorans LMG18011[J].Bioresource Technology,2006, 97(13):1554-1562.
    [38]Nakasaki K, Akakura N, Adachi T. et al. Use of wastewater sludge as a raw material for production of L-lactic acid[J].Environ Sci Technol,1999,33 (1):198-200
    [39]赵鹏,黄霞.利用可再生资源及有机废物发酵生产乳酸的研究进展[J].食品与发酵工业,2001,27(4):60-65
    [40]Wang Q, Yamabe K, Narita J, et al. Suppression Of growth of putre factive and food poiso, bacteria by lactic acid fermentation Of kitchen waste[J].Process Biochem,2001,37(4): 351-357
    [41]Naveena B J,Vishnu C,Altaf M, et al.Wheat bran an inexpensive substrate for production of lactic acid in solid state fermentation by Lactobacillus amylophilus GV6 optimization of fermentation conditions [J]. J Sci Ind Res,2003,62:453-456
    [42]Naveena B J, Altaf M,Bhadriah K,et al.Production of L-lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran[J]. Food Technol Biotechnol,2004,42:147-152
    [43]Bustos G.,Moldes A.Optimization of d-lactic acid production by Lactobacillus coryniformis using response surface[J].Methodology Food Microbiology,2004,21:143-148
    [44]Nakamura LK,Crowell CD.Lactobacillus amylolyticus-a new starch hydrolyzing species from swine waste corn fermentation[J].Dev Ind Microbiol.,1995,20:531-540
    [45]丁绍峰,谭天伟.豆粕水解液为氮源细菌厌氧流加发酵生产L-乳酸(J].过程工程学报,2006,6(1):77-81
    [46]Altaf M D, Naveena B J, ReddyG. Use of inexpensivenitrogen sourees and starch for L(+)lactic acid production in anaerobic submerged fermentation [J]. Bioresource technology,2007,98:498-503
    [47]Kwon S, Lee P C, Lee E G, et al. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate[J]. Enzyme and Microbial Technology, 2000,26(2):209-215
    [48]胡运权.试验设计方法[M].哈尔滨:哈尔滨工业大学出版社,1997
    [49]Miller A.,Sitter R.R.Using the folded-over12-run Plachett-burman design to consider interactions[J].Technometrics,2001,(43):44-54.
    [50]Krishnan S,Prapulla SQRajalakshmi D,et al.Screening and selection of media components for lactic acid production using Plackett-Burman design[J].Bioprocess Engg,1998,19:61-65
    [51]Naveena B J, Altaf M,Bhadriah K,Reddy G.Selection of medium components by Plackett-Burman design for production of L-lactic acid by Lactobacillus anylophilus GV6 in SSF using wheat bran[J].Biores Technol,2005,96:485-490
    [52]徐子钧,李剑,梁凤来.利用SAS软件优化L-乳酸发酵培养基[J].微生物学通报,2004,31(3):85-87
    [53]Naveena BJ,Altaf M,Bhadrayya K,et al.Direct fermentation of starch to L(+)lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM[J]. Process Biochemistry,2005,40:681-690
    [54]Hideno A,Aoyagi H,Isobe S, et al.Utilization of spent sawdust matrix after cultivation of Grifola frondosa as substrate for ethanol production by simultaneous saccharification and fermentation[J]. Food Science and Technology Research,2007,13(2),111-117
    [55]Vasquez M P, Silva N C, Souza M B, et al.Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation[J]. Applied Biochemistry and Biotechnology,2007,137:141-153
    [56]Shin D,Yoo A,Kim S W, et al.Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded woodwith Brettanomyces custersii[J] Journal of Microbiology and Biotechnology,2006,16(9),1355-1361
    [57]LinkoYY, Javanainen P. Simultaneous liguefaction, sacehariification, and lactic acid fermentationon barley stareh[J].Enzyme and MicrobialTechnology,1996,19:118-123
    [58]Hassan K S, Ana B M, Richard G K, et al.Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber[J] Journal of Bioscience and Bioengineering,2001,92(6):518-523
    [59]崔建涛,李建新,王育红,等.细胞固定化技术的研究进展[J].农产品加工(学刊),2007,88(1):24-26
    [60]渠文霞,岳宣峰.细胞固定化技术及其研究进展[J].陕西农业科学,2007,6:121-123
    [61]吕线红,林建强.固定化细胞生产乳酸的研究[J].中国酿造,2008,188(11):52-55
    [62]陈晔,韩玉洁.海藻酸钙法固定化乳酸菌发酵制备L-乳酸的研究[J].食品工业科技,2008,29(1):98-101
    [63]Shen X L, X ia L M. Lactic acid production from cellulosic waste by immobilized cells of Lactobacillus delbrueckii[J]. World J Microbiol Biotechnol,2006,22 (11): 1109-1141
    [64]杨丽,张晶,熊强,等.聚乙烯醇-海藻酸钙作为德氏乳酸杆菌包埋剂的研究[J].南京工业大学学报,2007,29(1):65-69
    [65]曾晓力.发酵法生产乳酸的研究进展[J].医药化工,2007,9:23-27
    [66]钱志良,劳含章,王健,等.工业乳酸发酵的近期进展[J].生物加工过程,2003,1(1):23-27
    [67]Yi S S, Lu Y C, Luo G S. Separation and concentration of lactic acid by electro-electrodialysis[J].Separation and Purification Technology,2008,60:308-314
    [68]刘凯,张琦琦,石瑛,等.不同生态条件下马铃薯品种的淀粉含量分析[J].中国马铃薯,2008,22(2):85-87.
    [69]马莺,顾瑞霞.马铃薯深加工技术[M].北京:中国轻工业出版社,2003
    [70]于天峰,夏平.马铃薯淀粉特性及其利用研究[J].中国农学通报,2005,21(1):55-58
    [71]宋国安.马铃薯的营养价值及开发利用前景[J].河北工业科技,2004,21(4):55-58
    [72]马晓东,钟浩.马铃薯淀粉的研究及在工业中的应用[J].农产品加工,2008,132(2):59-67
    [73]赵萍,李春雷,张轶,等.马铃薯生产加工现状及发展前景[J].甘肃工业大学学报,2003,29(1):86-90.
    [74]朱懿德,梁国庆,包守懿.工业发酵分析[M].北京:中国轻工业出版社.1991
    [75]栾雨时,包永明.生物工程实验技术手册[M].北京:化学工业出版社,2005
    [76]郑志,姜绍通,潘丽军,等EDTA钙法测定发酵液中乳酸含量的探讨[J].食品科学,2003,26(3):102-105
    [77]柳畅先,庹浔,吴士筠.酶法测定乳酸[J].分析试验室,2005,24(9):75-77
    [78]杜连祥.微生物实验技术中国[M].北京:中国轻工业出版社,2005
    [79]周德庆.微生物学教程[M].北京:高等教育出版社,1999
    [80]Hujanen M,Linko S,Linko YY,et al.Optimisation of media and cultivation conditions for L-lactic acid production by Lactobacillus casei NRRLB-441[J].Applied Microbiology and Biotechnology.2001,56(1):126-130.
    [81]Kadam S R,Patil SS,Bastawde KB, et al.Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production[J].Process Biochem,2006,41:120-126
    [82]Aeschlimann A, Stochar V.The eeffct of yeast extract supplementation on the porduction of lactic acid from whey permeate by lacotbacillus heveltcius[J].Appl Micorbiol Biotechnol,1990,32:398-402.
    [83]Tellez S J,Moldes A B,Vazquez M,et al.Alternative media for lactic acid production by Lactobacillus delbrueckii NRRL b-445[J].Food Bioprod process.2003,81(3):250-256
    [84]张克旭,陈宁,张蓓,等.代谢控制发酵[M].北京:中国轻工业出版社,1996
    [85]Rao Y K,Lu S C,Liu B L,et al.Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes[J].Biochemical Engineering Journal,2006,28:57-66
    [86]Anuradha R, Suresh A K, Venkatesh K V. Simultaneous saccharification and fermentation of starch to lactic acid[J].Process Biochemistry,1999,35:367-375
    [87]John R P, Sukumaran R K, Nampoothiri M, et al. Statistical optimization of simultaneous saccharification and L(+)-lactic acid fermentation from cassava bagasse using mixed culture of Lactobacilli by response surface methodology[J].Biochemical Engineering Journal,2007,36 262-267
    [88]Roy S, Gudi R D, Venkatesh K V. Optimal control strategies for simultaneous saccharification and fermentation of starch[J]. Process Biochemistry,2001,36 713-722
    [89]李冬敏,陈洪章.变温调控对汽爆秸秆发酵产氢的影响[J].生物质化学工程,2007,41(3):11-14
    [90]胡雅琴.恒温发酵与变温发酵柠檬酸过程及其比较[J].科技情报开发与经济,2003,13(9):203-204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700