用户名: 密码: 验证码:
高效产氢菌株筛选及厌氧发酵条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能由于其高效、清洁和还原性等特点,被广泛运用于化工合成、航空航天及金属冶金、电子等领域。目前,氢气的开发和利用技术备受世人关注,已成为生物科学和工程科学研究的热点领域。厌氧发酵制氢技术在当前所有制氢技术中由于其相对简单、原料可再生、低耗能等优点得到了广泛的探索与研究,目前已有一些工艺进入了工程化阶段,但由于产氢效率低等原因仍然制约这些工艺的工业化进程。解决的主要办法是通过获得更高效的产氢菌、优化产氢条件和进行代谢调控等技术手段进一步提高产氢效率。本研究从高效产氢菌株筛选、产氢条件优化和厌氧发酵途径等方面进行了有益探索,主要研究工作如下。
     (1)从华中科技大学内的伏羲河中采集河底污泥样品,经平板粗筛、摇瓶复筛,获得两株高效产氢菌。通过16Sr DNA序列分析和系统发育分析,鉴定为克雷伯式菌属(Klebsiella sp.)和沙雷式菌属(Serratia sp),分别将克雷伯式菌属产氢菌命名为克雷伯氏菌HQ-3(Klebsiella sp. HQ-3)、沙雷式菌属产氢菌命名为沙雷式菌B-3(Serratia sp.B-3)。
     (2)对克雷伯氏菌HQ-3进行了单因素厌氧发酵试验,确定产氢的最佳碳和氮源分别为葡萄糖和蛋白胨,最适pH为8.0,最适葡萄糖、蛋白胨、KH_2PO_4质量配比分别为24.0 g/L、27.0 g/L和8.0 g/L。运用Plackett-Burrman对产氢培养基的Na_2HPO_4·12H_20,KH_2PO_4,MgSO_4·7H_2O,葡萄糖,蛋白胨,酵母膏,pH八个因素进行主效因子筛选,确定pH、葡萄糖、蛋白胨、KH_2PO_4为产氢的主效因子。进一步利用爬坡实验确定主效因子的试验中心值,利用中心值结合MATLAB建模进行响应面法优化厌氧发酵产氢培养基,确定pH、KH_2PO_4、蛋白胨、葡萄糖的最优化值,对预测值进行了验证,得到实际产氢量为826.3 mL/L,与最佳预测值806.0 mL/L基本符合。然后,对其发酵条件:温度(℃)、接种量(%)、转速(r/min)进行了单因素实验确定最佳发酵温度、接种量、转速。经上述试验,确定最佳培养条件为:酵母膏8.0 g/L、Na_2HPO_415.0 g/L、MgSO_43.0 g/L、初始pH 8.3、KH_2PO_4 7.7 g/L、蛋白胨18.1 g/L、葡萄糖21.4 g/L,温度32℃,接种量3%,转速60 rpm,在此培养条件下产氢量为865.0 mL/L比初始产氢量(621.0 mL/L)提高了39%。
     (3)确定了产氢厌氧发酵代谢类型。在最优发酵条件下,对发酵液相产物:乙醇、甲酸、乙酸、丙酸、正丁酸、异丁酸进行测定,发现乙醇、甲酸、乙酸含量占总液相产物的93%,确定其发酵类型为混合酸途径。
Owing to its high efficiency, cleanness and renewability, hydrogen is widely used in many fields, such as chemical synthesis, aerospace, metal metallurgy, electronics, etc. At present, production of hydrogen has attracted more and more attention in the world, and is becoming one of the hot spots in biological science and engineering. Hydrogen production from anaerobic fermentation technology, being relatively simple, renewable raw materials, and power saving, has been extensively explored. So far, a number of technologies have been put into pilot trial, but the low efficiency of hydrogen production and high cost still obstructs their industrialization.The main approaches to further improve the production efficiency are to sieve more efficient hydrogen-producing bacteria, to optimize fermen tation conditions, and to innovate techniques, such as employing metabolic regulation. In this study, we have screened two efficient hydrogen-producing strains, optimized hydrog en-producing fermentation conditions, and further identified the metabolic pathways. The main work is listed below:
     (1) The riverbed sludge samples were collected from sewage channel in Huazhong University of Science and Technology. By primary plate screening and secondary flask assay, two strains with highly efficient hydrogen production were obtained. They were identified using 16Sr DNA sequence and phylogency analysis, and termed as Klebsiella sp. and Serratia sp., and named the strain of Klebsiella sp. as Klebsiella sp. HQ-3 and the other one Serratia sp. B-3.
     (2) Through monofactorial anaerobic fermentation experiments, it was found that the best carbon and nitrogen sources for hydrogen production were glucose, peptone; the opti mum pH was 8.0, and the optimal glucose, peptone, KH_2PO_4 were 24.0 g/L, 27.0 g/L and 8.0 g/L, respectively. In order to optimize the liquid hydrogen-producing culture medium, Plackett-Burrman design was applied to screen the principal factors from Na_2HPO_4·12H_2O, KH_2PO_4, MgSO_4·7H_2O, glucose, peptone, yeast extract, pH in hydrogen production medium. PH, glucose, peptone, KH_2PO_4 were determined as the principal factors. Then, the path of steepest ascent experiments design was adopted to determine the experimental center factor value of the principal factors. The anaerobic fermentation liquid medium was further optimized with Response Surface Methodology by Modeling tools MATLAB. The optimal fermentation conditions and predicted maximal hydrogen-producing value were determined. In order to verify the pedicted value, the experimental was measured under the optimal fermentation medium, the obtained value of hydrogen production was 826.3 mL/L, coinciding perfectly with the predictive value of 806.0 mL/L. Subsequently, we employed monofactorial experiments to determine the optimum fermentation temperature, inoculum size, and shaking speed. Thus, the optimum culture conditions were: yeast extract 8.0g/L, Na_2HPO_4 15.0 g/L, MgSO_4 3.0 g/L, initial pH 8.3, KH_2PO_4 7.7 g/L, peptone 18.1 g/L, glucose 21.4 g/L, temperature 32℃, inoculum loading 3%, shaking speed 60 rpm. In the optimum culture conditions, the hydrogen production volume measured was up to 865.0 mL/L, 39% more than the initial volume of 621.0 mL/L.
     (3) In order to determine the type of anaerobic fermentation, under optimum fermentation condition, we measured the liquid phase of the fermentation products ethanol, formic acid, acetic acid, propionic acid. The results showed that ethanol, formic acid, acetic acid occupied ca 93% of the total liquid product, suggesting the fermentation type belong to a mixed acid pathway.
引文
[1] Valdez V., Poggi V. H.. Hydrogen production by fermentative consortia[J]. Renewable and Sustainable Energy Reviews, 2009, 3 : 1000–1013
    [2]柯水洲,马晶伟.生物制氢研究进展[J].化工进展, 2006, 25(9): 1001
    [3]王艳辉,吴迪镛,迟建.氢能及制氢的应用技术现状及发展趋势[J].化工进展, 2001, 1(2): 6-8
    [4]屈冉,孙振钧,金亚波.有机废水制取氢气的研究现状与展望[J].中国农学通报, 2005, 21(7): 377
    [5]郑耀宗.能源季刊[J].台湾, 1991, 21(3): 99-102
    [6]张松林.世界经济科技[J]. 1991, 36(1): 35-39
    [7]刘文鹏,王新林.电站系统工程[J]. 1995, 20(9): 3-5
    [8]孙祥,徐流美,吴清. Matlab7.0基础教程[M].第一版.北京:清华大学出版社, 2005
    [9]梁建光,吴永强.生物产氢研究[J].微生物学通报, 2002, 29(6): 81-85
    [10] Weissman J C, Benemann J R. Hydrogen productionby. Nitrogen-starved cultures of Anabaena cylindrical[J]. Applied and Environmental Microbiology, 1977, 33(4): 123-131
    [11] Lambert G R, Smith G D. Hydrogen formation by marine blue- greenalgae[J]. FEMS Microbiology Letters, 1977, 83: 159-162
    [12]喻国策,王建龙.蓝细菌制氢研究进展[J].中国生物工程杂志, 2005, 25(12): 86-91
    [13] You K. O., Yu J. L., Eun H. C., Mi S. K. Bioelectrocatalytic hydrogen production using Thiocapsa roseopersicina hydrogenase in two-compartment fuel cells[J]. International journal of Hydrogen energy, 2008, 33(110): 5218-5223
    [14]龙敏南,苏文金等.光合细菌可溶性氢酶的Chromatium vinosum某些理化性质[J].厦门大学学报(自然科学版), 2001, 11(40): 1283-1288
    [15]孙琦,徐向阳,焦杨文.光合细菌的产氢条件的研究[J].微生物学报, 1995, 35(1): 65-73
    [16]刘双江,杨惠芳,周培瑾.产氢紫色非硫光合细菌的分离与筛选[J].微生物学通报, 1993, 20(5): 259-262
    [17]汤桂兰,孙振钧,李玉英.微生物发酵法制氢与产氢微生物的研究进展[J].农业工程学报, 2007, 12(23): 285-290
    [18]薛晓梅,史延茂,李宏等.丁酸梭菌及巴氏梭菌产氢的应用研究[J].河北省科学院学报, 1993, 1(3): 43-46
    [19] Talabardon M, Schwitzguebel J P, peringer P, et al. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor[J]. Biotechnology Progress, 2000: 16(6): 1008-17
    [20] Taguchi F, Mizukami N, Hasegawa K, et al. Microbial conversion of arabinose and xylose to hydrogen by a new isolated Clostridium sp. No.2[J]. Jourmal of Microbiology, 1994, 40(6): 228-233
    [21]林赛珍,徐敏,章宗铭等.丙酮丁醇梭菌发酵产氢工艺研究[J].药物生物技术, 2006, 13(2): 136-139
    [22] Zehnder A J, Huser B A, Brock T D. et al. Archives of Microbiology, 1980, 1, 24: 26
    [23] Rousset M, Montet Y, Guigliarelli B, et al. 3 Fe-4S to 4Fe-4S luster conversionin Desulfovibrio fructosovorans NiFe hydrogenase by site-directed mutagenesis[J]. PNAS, 1998, 95(20): 11625-11630
    [24] Higuchi Y, Yasuoka N, Kakudo M et al. Single crystals of hydrogenase from Desulfo vibrio vulgaris[J]. Journal of Biochemistry, 1987, 262(1):1135-1137
    [25] Matias P M, Soares C M, Saraiva L. M, et al. NiFe hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing three-dimensional structure determination and refinement at 1.8nm and modeling studies of itsinteraction with the tetrahaem cytochrome C3[J]. Journal of Biology Inorg Chemistry, 2001, 6(1): 63-81
    [26] Garcin E, Vernede X, Hatchikian E C, et al. The crystalstructure of a reduced NiFeSe hydrogenase provide sanimage of the activated atalytic center[J]. Structure, 1999, 7(6): 557-566
    [27] Innotti E L, Kafkawitz D, Wolin M J, et al. Journal of Bacteriology, 1973, 114(67): 1231-1237
    [28]黄锦丽,龙敏南,傅雅婕等.产酸克雷伯氏菌的吸附固定及其产氢研究[J].厦门大学学报(自然科学版), 2005, 9(44): 710-713
    [29] Tanisho S, Wakao N, Kosako Y J. ChemEng (Japan), 1983, 16(3): 529-530
    [30] Narendra K , Debabrata D . Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices[J]. Enzyme and Microbial Technology, 2001, 29(10): 280–287
    [31] Kalia V C, Jain S R, Kumar A, et al. World J. Microbiol Biotechnology, 1994, 10: 224
    [32]朱核光,史家粱.生物产氢技术研究进展[J]. 2002, 8(1): 98-104
    [33] Bagai R,Madamwar D. Long-term photo-evolution of hydrogen inapacked bed react or containing a combination of Phormidium valderianum, Halobacterium halobium and Escherichia coli immobilized in polyvinyl alcohol[J]. International Journal Hydrogen Energy, 1999, 24(11): 311–317
    [34]张明,史家梁.光合细菌光合产氢机理研究进展[J].应用与环境生物学报, 1999, 5(Suppl): 25-29
    [35] Ueno Y, Sato S, Morimoto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostate culture [J]. Journal of Fermentation and Bioengineering, 1996, 82(2): 194–197
    [36] Lay J J, Lee Y J, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste [J]. Water Research, 1999, 33(14): 2579–2586
    [37]柯水洲,马晶伟.生物制氢研究进展[J].化工进展, 2006, 25(12): 1001-1006
    [38]左宜,左剑恶,张薇.利用有机物厌氧发酵生物制氢的研究进展[J]. 2004, 27(1): 97-100
    [39]郑耀通,闵航.共固定光合和发酵性细菌处理有机废水生物制氢技术[J].污染防治技术, 1998, 9(11): 183-189
    [40] Liang T M, Cheng S S, Wu K L. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane[J]. International Journal of Hydrogen Energy, 2002, 27(11): 157-1 65
    [41] Kumar N, Das D. Production and purification of alpha-amylase from hydrogen producing EnterobacterIIT-BT08[J]. Bioprocess Engineering, 2000, 23(8): 205-208
    [42] Kumar N, Das D. Enhancement of hydrogen production by Enterobacter IIT-BT08[J]. Bioprocess Engineering, 2000, 35(4): 589-593
    [43]张志民.固定化扁藻两步法产氢研究[D].大连:中国科学院研究生院(大连化学物理研究所),2004:10-28
    [44] Gregory V A,Sven S, Alexey S , et al. Optimized over-expression of FeFe hydrogenases with high specific activity in Clostridium acetobutylicum[J]. International journal of hydrogen energy, 2008, 33(11): 6076-6081
    [45] Kenji M, Tetsuya K , Kazuo S , Kunio O . Overexpression of a hydrogenase gene in Clostridium paraputricum to enhance hydrogen gas production[J]. Microbiology Letters, 2005, 246(7): 229-234
    [46] Yasuo A , Yoji K , Jorg S , Masato M , eaki U , Jun M . Heterologous expression of clostridial hydrogenase in the Cyanobacterium synechococcus PCC7942[J]. Biochemistry and Biophysical, 2000, 1490(13): 259-278
    [47] Lee K S, Wu J F, Lo Y S, et aL. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor[J]. Biotechnology and Bioengineering, 2004, 87(6): 648-657
    [48]赵玉山,腾晓峰,张鹏,谭天伟.混合厌氧微生物产氢研究[J].北京化工大学学报, 2005, 32(4): 1-4
    [49]戴玲芬,林惠民.蓝细菌红萍鱼腥藻的两种固氮酶系统的放氢特点[J].水生生物学报, 1994, 18(4): 383-385
    [50]徐云玲,龙传南,徐惠娟,邬小兵,张凤章.产酸克雷伯氏菌氢酶分离提纯与特性的初步研究[J].厦门大学学报(自然科学版), 2006, 45(5): 609-712
    [51]刘晶晶,龙敏南.氢酶结构及催化机理研究进展,生物工程学报[J]. 2005, 5(21): 348-353
    [52]陈兆平.固氮鱼腥藻氢酶的催化性质[J].华南师范大学学报(自然科学版), 1996, 4(6): 12-16
    [53] Serebryakova L T., Zorin N A, Karyakin A A. Improvement of hydrogenase enzyme activity by water-miscible organic solvents[J]. Process Biochemistry, 2009, 44(5): 329-333
    [54] Marr A C, Spencer D E, Schroder M. Structural mimics for the active site of NiFehydrogenase[J]. Coord Chemistry Reviews, 2001, 219 (221): 1055-1074
    [55] Rainer R, Richard C. Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway4)[J]. Biochemistry, 1984, 45(3): 637-643
    [56]冯剑,舒新前.生物质废弃物制氢技术研究[J].环境与可持续发展, 2007, 4(6): 24-26
    [57]张雪松,朱建良.影响纤维素类物质厌氧发酵产氢因素的研究[J].生物技术通报, 2005(2): 47-50
    [58]李冬敏,陈洪章.变温调控对汽爆秸秆发酵产氢的影响[J].生物质化学工程, 2007(5): 11-14
    [59]郭颖.生物制氢展望[J].新能源产业, 2007, 1(1): 28-31
    [60]谭伟,丘泰球,阳元娥.响应面优化超声强化近临界CO2萃取葵花籽油工艺[J].油脂加工, 2008, 33(6): 9-11
    [61]王沫然. MATLAB与科学计算[M].第二版.北京:电子工业出版社, 2003
    [62] Bukanlan R E, Jebens N E, et al.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社, 1984, 446-450
    [63] Jones P R. Improving fermentative biomass-derived H2-production by engineering microbial metabolism[J]. International Journal of Hydrogen Energy, 2008, 33(19): 5122-5130
    [64] Davila-Vazqueza G, Alatriste-Mondragóna F, de León-Rodríguezb A, et al. Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH[J]. International Journal of Hydrogen Energy, 2008, 33(19): 4989-4997
    [65] Kotay S M, Das D. Microbial hydrogen production with Bacillus coagulans IIT-BTS1 isolated from anaerobic sewage sludge[J]. Bioresource technology, 2007, 98(6): 1183-1 190
    [66]牛莉莉,刘晓黎,陈双雅.一个新的高温产氢菌及产氢特性的研究[J].微生物学报, 2006, 46(2): 280-284
    [67]林明,任南琪,马汐平等.产氢发酵细菌培养基的选择和改进[J].哈尔滨工业
    [68]宁正祥.食品成分分析手册[M].北京:中国轻工业出版社, 1998: 9-10
    [69]程度,黄翔宇,李宝健.药用真菌高质量总DNA的制备及基因组文库的构建[J].菌物系统, 2002, 21(1): 137-139
    [70]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001
    [71]沈萍,微生物学[M].北京:高等教育出版社, 2001
    [72] Kuo S L, Ji F W, Yung S L, et al. Hydrogen production with an efficient carrier-induced granular sludge bed bioreactor[J]. Biotechnology and Bioengineering, 2004, 87(4): 648-657
    [73]潘春梅,樊耀亭,赵攀.发酵法产氢培养基的响应面分析优化[J].中国农业通报, 2008, 24(1): 38-44
    [74]欧志敏,杨根生,王鸿,林德君.响应面法优化高选择性羰基还原酶产生菌Saccharomyces cerevisiae B5的培养基组成[J].浙江大学工业学报. 2008, 36(4): 394-398
    [75]王勇,任南琪,孙寓姣,李建政,孙选文.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报, 2006, 6(23): 366-373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700