用户名: 密码: 验证码:
沉积盆地的物源综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于沉积岩的复杂性,一直以来,沉积盆地的物源研究发展缓慢,研究方法单一且主要集中在碎屑岩类分析法、重矿物法、沉积法等传统方法上,而元素地球化学和同位素地球化学方法等现代分析手段在物源研究中的应用较少;前人对苏北盆地沉积岩方面的研究主要集中在古生物、层序地层、沉积相以及对油气成藏的控制等方面,而物源研究程度较低;且苏北盆地所在的下扬子地区的构造演化一直是研究热点,但其新生代以来的构造演化研究相对缺乏。随着苏北盆地高邮凹陷古近系戴南组(E2d)勘探和研究程度的提高,展示其具备较好的构造-岩性油气藏的勘探前景,而物源供给量的变化决定了与油气藏有密切关系的沉积体的发育能力,因此,本文将传统方法和现代分析手段相结合,以苏北盆地高邮凹陷E2d地层为研究对象进行物源综合研究。此研究一方面可对弄清高邮凹陷E2d的有利沉积相带、恢复沉积盆地与源区之间的耦合关系、深化该区的油气勘探具有实际意义;另一方面,为沉积盆地的物源研究提供新的思路并起到示范作用;同时丰富了古近系沉积盆地的源岩信息,为下扬子地区的构造演化过程提供沉积物源、原生建造等地球化学方面的证据,对沉积盆地常规和非常规油气勘探和物源研究的发展具有重要意义。
     本文在综合、借鉴前人研究成果的基础上,以亚段为基本单位,对大量样品进行碎屑组分分析、石英阴极发光观察、锆石U-Pb测年和元素地球化学测试,并对数据进行筛选、统计、分析,对研究区在E2d沉积时期的物源方向、蚀源区位置、母岩性质(岩石类型、发育年龄和形成期次)、不同蚀源区对沉积盆地的贡献、古湖泊环境的恢复(风化作用、古地理特征和古气候特征)及构造背景等进行了较为系统和深入的探讨。
     碎屑组分分析显示,高邮凹陷E2d碎屑岩以岩屑长石砂岩和长石岩屑砂岩为主,母岩主要来自再旋回造山带物源区,并混合较多来自其他源区的物质。高邮凹陷各地区E2d时期的母岩类型略有差异,凹陷南部和西北部的沉积物主要来自变质岩源区;凹陷东部和西部的沉积物主要来自火成岩源区;凹陷西南部的沉积物则同时受到变质岩源区和火成岩源区的影响。该时期物源主要来自柘垛低凸起、吴堡低凸起、通扬隆起和菱塘桥低凸起这4个方向。高邮凹陷东部的周庄地区主要受到来自吴堡低凸起方向的物源影响;凹陷西部的沙埝、永安和富民北部地区的沉积物主要来自柘垛低凸起方向;凹陷南部的富民南部、曹庄、真武、邵伯、黄珏以及马家嘴南部地区的沉积物主要来自通扬隆起方向,而马家嘴北部地区的沉积物主要来自菱塘桥低凸起方向,以上地区的物源方向较为稳定。相比而言,花庄和联盟庄地区的物源方向较为复杂,主要表现为:在E2d13沉积时期,花庄地区东部沉积物主要来自吴堡低凸起方向,西部沉积物则来自柘垛低凸起方向;联盟庄地区主要受到来自柘垛低凸起方向的物源影响。至E2d12沉积时期,物源方向开始发生变化,来自柘垛低凸起方向的物源对花庄地区的影响逐渐占主导,而联盟庄南部地区开始接受来自菱塘桥低凸起方向的物源,北部地区则仍然接受来自柘垛低凸起方向的物源,这种变化一直持续至E2d11沉积时期。稀土元素(REE)的物源方向分析结果与碎屑组分分析较为一致,且在分析过程中发现,轻重稀土元素分馏值[(La/Yb) N]与矿物成熟度指数(MMI)可形成较好的吻合,(La/Yb)N值结合稀土元素总量(ΣREE),δEu值等REE参数以及沉积相分析,可对物源方向起到较好的指示作用。(Gd/Yb) N平均值也可较好的反映沉积相特征,即近岸水下扇、扇三角洲和三角洲相随其碎屑岩的平均成熟度逐渐升高,(Gd/Y>b) N平均值呈逐渐增高的趋势,这一趋势同样表现在各沉积相中的沉积亚相之间。
     微量和主量元素分析结果表明,高邮凹陷E2d碎屑岩的矿物成分成熟度较高,源区岩石主要为受再旋回沉积物质的影响,其次为长英质物质,受中基性物质的影响较小。随着E2d的沉积演化,再旋回沉积物源对研究区的影响一直持续,但长英质物源和基性物源对研究区的影响逐渐减弱。源区所经历的风化作用以物理风化为主,化学风化作用较弱。高邮凹陷南部陡坡带的大部分地区(黄珏、邵伯除外)所经历风化作用一般,且风化作用较为稳定,受构造运动的影响较小;北部缓坡带以及黄珏、邵伯地区所经历的风化作用差异较大,沉积物部分来自经历了较强的风化作用或较远距离搬运的源岩,部分来自近处由于强烈的构造运动抬升剥蚀后迅速再沉积的源岩。虽然苏北盆地在E2d沉积时期已演变为内陆湖泊环境,但在阜宁组四段(E1f4)沉积时期发生海侵形成的海相特征仍残留在不整合于其上的戴南组一段(E2d1)地层中,且该海相特征主要残留在高邮凹陷南部陡坡带富民南部-肖刘庄-真武-马家嘴一线的海陆交界线上。构造背景研究表明,由于地史及动力学机制的差异,位于下扬子地块西南缘的苏北盆地在E2d1时期所具有的安第斯型活动大陆边缘构造背景可反映我国东部地区由较多地体拼贴的特殊构造特征,这有别于东太平洋典型的安第斯型活动大陆边缘。
     锆石U-Pb测年证实扬子克拉通确实存在非常古老的早太古代地壳物质。研究区晚白垩纪-古近纪时期的沉积物物源主要形成于4个时期:①晚古生代-中生代(100~300Ma),指示物源为张八岭隆起区南段的多期岩浆活动形成的火成岩(100~200Ma)、大别-苏鲁造山带的超高压变质岩(200~250Ma);②新元古代(700~850Ma),大别-苏鲁造山带的新元古代片麻状变质花岗岩和对Rodinia超大陆裂解事件的响应;③古元古代(1700~1900Ma),研究区对Columbia超大陆裂解作用的响应,指示扬子地块在约1850Ma发生了与Columbia超大陆由碰撞挤压向伸展作用的构造转换作用;④新太古代—古元古代(2450~2600Ma),指示扬子地块结晶基底。另外,研究区在阜宁组(E1f和泰州组(K2t)发现的400-500Ma的锆石U-Pb年龄峰是对加里东运动时期华夏地块与扬子地块碰撞所发生构造-热事件的响应,研究区对该构造热事件的响应最晚发生在白垩纪晚期,至E2d时期,该响应逐渐消失。结合REE的物源对比分析结果认为,研究区内晚白垩纪-古近纪时期的碎屑物源主要来自沉积盆地内部(结晶基底)及盆地周边再旋回造山带,沉积物主要来自扬子地块的新太古代-古元古代结晶基底和大别-苏鲁造山带广泛分布的新元古代的浅变质岩基底,具体母岩可能为高钾Ⅰ型花岗片麻岩,研究区同时还受到张八岭隆起区南段的中生代侵入岩的物源影响,源岩曾经历多期全球性构造-热事件。锆石U-Pb年龄体现了研究区的物源具有较好的继承性和再旋回沉积的特征,大别-苏鲁造山带和张八岭隆起区对研究区的物源影响最晚至白垩纪晚期便已在持续进行。E1f沉积时期发生的大规模湖盆扩张,导致研究区内不同地区所受到的物源影响存在差异。
Because of the complexity of sedimentary rocks, provenance researches on sedimentary basin developed slowly. The traditional mothods including mineral composition analysis, heavy mineral analysis, sedimentary method, etc., were often used, while the geochemical method utilized was scarce. Previous researches on the North Jiangsu Basin were focused on paleontology, sequence stratigraphy, hydrocarbon reservoir, sedimentary facies, and so on, with low t degree of research.
     Constructive evolvement in the lower Yangtze region, where the North Jiangsu Basin located in, was research focus all along. However, the research of constructive evolvement since Cenozoic was scarce. At present, the Gaoyou Depression in the North Jiangsu Basin has been shown good exploration prospect, in which the Paleogene Dainan Formation (E2d) is the target of hydrocarbon exploration and research. The amount of the supplying source rocks can decide the size of sediment body. This paper will combine the traditional methods with modern means and select the E2d of the Gaoyou Depression in the north Jiangsu Basin as an example for provenance study. On one hand, making clear the provenance system of the E2d deposits would provide theoretical supports to further gas and oil exploration in this region, and reconstruct relationship between the sedimentary basin and provenance, on the orther hand, would provide new thought and act as an example for provenance research of sedimentary basin. This research would also enrich the information of source rock and offer geochemical evidence for constructive evolvement in the lower Yangtze region, which is also helpful to the oil and gas exploration in sedimentary basin or the development of provenance study.
     In this thesis, based on the previous fruits and sub-member is selected as basic unit, a systematic study with mineral composition, quartz observation in Cathodoluminescence (CL), isotope geochemistry and element geochemistry are carried out with abundant samples. Based on the results, we studied the provenance directions, the location of source, the type of mother rocks and the tectonic setting of the E2d Gaoyou Depression. After dealing with the data, we made a systemetic and embedded research on the source direction, location of source region, characteristics of mother rocks (type, age, and forming stage), contribution of different source region to sedimentary basin, reconstruction of the paleo-environment (weathering degree, characteristics of paleogeography and paleoclimate), and the tectonic background. Analysis on mineral composition displays the main composition of debris-feldspar rocks and feldspar-debris rocks in clastic rocks from the E2d Gaoyou Depression and the characteristics of source form recycled orogenic region. In the E2d Gaoyou Depression, there exists diverse source rocks in different area, for example, sediments in the southern and west-northern depression are from source of metamorphic rocks; deposits in the eastern and western depression are from source of igneous rocks; while the west-southern depression are effected by sources of both metamorphic rocks and igneous rocks. Source rocks in this period are mainly from four source directions:the northwestern Zheduo Salient, the eastern Wubao Salient, the southern Tongyang Uplift and the southwestern Lingtangqiao Salient. Weathering deposits in the eastern Gaoyou Depression such as Zhouzhuang area were mainly from direction of the Wubao Salient; sediments in Yong'an and the northern Fumin in the western depression were mostly from direction of the Zheduo Salient; deposits in the southern Fumin, Caozhuang, Zhenwu, Shaobo, Huangjue and the southern Majiazui came from direction of the Tongyang Uplift; And the sediments in the northern Majiazui are mainly from direction of the Lingtangqiao Salient. Not being like the stable source direction in the above areas, source directions in areas of Huazhang and Lianmengzhuang were relatively complex. In the E2d13, sediments in the eastern and the western Huazhuang area are respectively from direction of the Wubao Salient and the Zheduo Salient, while Lianmengzhuang area was influenced by provenance from direction of the Zheduo Salient. In the E2d12, the source direction changed and persisted to the E2d11, with influence of sediments from direction of the Zheduo Salient becoming greater in Huazhuang area, and the southern Lianmengzhuang area begining to receive sediments from direction of the Lingtangqiao Salient. The result of source direction in REE analysis is concord with that of mineral composition analysis. We found that the degree of fractionation between light REE and heavy REE [(La/Yb)N] can correspond well with the mineralogical maturity index (MMI). Combing with the REE gross (∑REE) and δEu values,(La/Yb)N values can well instruct the source direction. Correlative analysis show that, from delta facie to fan delta facie and to nearshore subaqueous fan facie, the average (Gd/Yb)N values present increasing trend with the decreasing average maturity of facies. This trend is also revealed in different sub-facies of the same facies.
     Trace and major elements data display the mature mineral composition in studied area, and show that the source rocks are mainly recycled metasediments and felsic materials, with being effected little by the basic rocks. The source area had experienced strong physical weathering and weak chemical weathering. Except for the areas of Shaobo and Huangjue, the majority of the southern step-fault zone underwent persistent weathering, because the deposits in these areas came from distant sources and underwent weak tectonic impact. On the contrast, in the northern slope zone, weathering diversified place to place and time to time, the provenance underwent strong weathering or severe tectonic movement for having caused rapid denudation and fast sedimentation in the depression. Although the E2d North Jiangsu Basin had become the inland lake, the marine characteristics in the E2d1inherit from the older E1f4, because of marine ingression, with these characteristics distributing in the paralic line (the southern Fumin-Xiaoliuzhuang-Zhenwu-Majiazui). Because of the divergence in geological history and dynamics mechamism, tectonic setting in the North Jiangsu Basin reflects the special tectonics of the eastern China, which is different from the typical Andean active continental margin of the eastern Pacific Ocean and needs deeper research. We deem that this is worth further investigating and deeper research for better understanding the tectonic evolvement of these Cenozoic rift basins in eastern China.
     Zircon U-Pb ages approve that there exist the Early Archean materials in Yangtze Craton and show that there are fore episodes of detrital zircons from the Late Creataceous-Paleogene studied area:1) Late Paleozoic-Mesozoic (100-300Ma):igneous rocks from the Southern Zhangbaling uplift (100-200Ma), uhp-metamorphic rocks in Dabie-Sulu orogenic belt (200-250Ma);2) Late Proterozoic (700-850Ma):the Late Proterozoic low-grade metamorphic granite widely distributed in the Dabie-Sulu orogenic belt;3) Early Proterozoic (1700-1900Ma):respond to the tectonic events in the cracking of the Yangtze platform and supercontinent;4) Late Archean-Early Proterozoic (2450-2600Ma): crystalline basement of the Yangtze platform. In addition, the zircon U-Pb ages of400-500Ma that found in E1f and K2t can respond to the tectonic events in the collision of of the Huaxia platform and Yangtze platform. Combined with the result of REE analysis, we deem that the sediments of the Late Archean-Early Proterozoic Gaoyou Depression mainly come from the internal part of studied basin and the recycled orogen around it, with the provenances mainly composed of the crystalline basement of the Yangtze platform, the shallow metamorphic basement of the Dabie-Sulu orogen, and some Mesozoic igneous rock from the southern part of Zhangbaling uplift. The source rocks had ever underwent multiple-episode global magma tectonic events. The zircon U-Pb ages in studied area reflect a well successive characteristics and recycled orogenic region. The large-scale expanding of ancient lake in E1f leads to the divergence among different areas in Gaoyou Depression.
引文
Asiedu D K, Suzuki S, Shibata T.2000. Provenance of sandstones from the Lower Cretaceous Sasayama Group, Inner Zone of Southwest Japan. Sedimentary Geology,131,9-24.
    Basu A, Young S, Suttner L, et al.1975. Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology,45,873-882.
    Bhatia M R.1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:Province and tectonic control. Sedimentary Geology,45:97-113.
    Bhatia M R, Crook K A W.1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology,92:181-193.
    Blatt H, Middleton G, Murray R.1980. Origin of Sedimentary Rocks,2nd ed. Prentice-Hall, Englewood Cliffs, NJ.49:
    Brandan.1992. Decomposition of fission-track grain age distributions. American Journal of Science,292:535-564.
    Bryant D L, Ayers J C, Gao S, et al.2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geol Soc Am Bull,116:698-717.
    Cawood P A and Nemchin A A.2000. Provenance record of ariftbasin:U/Pb ages of detrital zircons from the Perth basin, Western Australia.SedimentaryGeology,134:209-234.
    Compston W, Williams 1 S, Kirschvink J L, et al.1992. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc. London,149:171-184.
    Connelly J N.2000. Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. Chem. Geol,172:25-39.
    Crook K A W.1974. Lithogenesis and geotectonics:the significance ofcompositional variations in flysch arenites (graywackes). In:Dott, R.H., Shaver, R.H. (Eds.), Modern and Ancient Geosynclinal Sedimentation:304-310.
    Cullers R L, Barrett T R, Carlson B R.1987. Rare earth element and mineralogical changes in Holocene soil and stream sediment:a case study in the Wet Mountains, Colorado, USA:Chemical Geology,63:275-297.
    Cullers R L.2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos,51:181-203.
    Dickinson W R.1970. Interpreting detrital modes of graywacke and arkose. J. Sediment. Petrol.40,695-707.
    Dickinson W R, Suczek C A.1979. Plate tectonics and sandstonecompositions. The American Association of Petroleum Geologist Bulletin,63(12):2164-2182.
    Dickinson W R, Beard L S, Brakenridge G R, et al.1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of American Bulletin,94,222-235.
    Dickinson W R.1985. Interpreting provenance relations from detrital modes of sandstones. In:Zuffa, G.G. (Ed.), Provenance of arenites. NATO ASI Series C.
    Dodson M H, Compston W, Williams I S, et al.1988. A search for ancient detrital zircons. J. Geol. Soc. London,145: 977-983.
    Dunkili G A, Kuhlemann J.2001. Combination of single grain fission-track chronology and morphological analysis of detrital zircon crystals in provenance studies-sources of the Macigno Formation (Apennines,Italy). Journal of Sedimentary Rearch,71(4):516-525.
    Fedo C M, Nesbitt H W, Young G M.1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology,23:921-924.
    Folk R.1974. Petrology of Sedimentary Rocks,2nd ed. Hemphill Press, Austin, Texas.
    Galbraith R F.1997. The radio plot:Graphical assessment of spread in ages. Nucl. Tracks Radiat. Meas,17:197-206.
    Gao L K, Lin C M.2012. A Facies Analysis and Sedimentary Architecture of the Paleogene Dainan Formation in the Gaoyou Depression, North Jiangsu Basin, Eastern China. PetroleumScience and Technology,30(14):1486-1497.
    Gu X X.1994. Geochemical characteristics of the Tethys-turbidites in northwestern Sichuan, China:Implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta,58 (21):4615-4631.
    Gu X X, Liu J M, Zheng M H.2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence. Journal of Sedimentary Research,72 (3):393-407.
    Haughton D W, Morton A C, Todd S P, et al.1991. Development s in S edimentary Provenance Studies. London:Ox ford University Press.
    Haskin M A, Haskin LA.1986. REE in European shales:Aredetermina-tion. Science,154,507-509.
    Hubert J F.1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Petrology,32:440-450.
    Howell D G, Gromet L P, Haskin L A, Korotev R L.1984. The "North American shale composite":Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta,48(12):2469-2482.
    Horton B K, Schmitt J G. 1996. Sedimentology of a lacustrine fan-delta system, Miocene Horse Camp Formation, Nevada, USA. Sedimentology,43,133-155.
    Huang J, Zheng Y F, Zhao Z F, et al.2006. Melting of subducted continent:element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chem Geol,229:227-256.
    Huang F, Li S, Dong F, et al.2008. High-Mg adakitic rocks in the Dabie orogen, central China:implications for foundering mechanism of lower continental crust. Chem Geol,255:1-13.
    Ingersoll R V, Fullard T F, Ford R L, et al.1984. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson pointcounting method. Sediment Petrol.,54:103-116.
    Jackson S, Pearson N, Griffin W, et al.2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology. Chem. Geol.,211:47-69.
    Kong P, Granger D E, Wu F Y, et al.2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake-Implications for evolution of the Middle Yangtze River. Earth Planet. Sci. Lett.,278:131-141.
    Lacassie J P, Roser B, Ruiz Del Solar J, et al.2004. Discovering geochemical patterns using self-organizing neural networks:A new perspective for sedimentary provenance analysis. Sedimentary Geology,165:175-191.
    Liu F L, Gerdes A, Liu P H, et al.2012. U-Pb, trace element and Lu-Hf properties of unique dissolution-reprecipitation zircon from UHP eclogite in SW Sulu terrane, eastern China [J]. Gondwana Research,22:169-183.
    McLennan S M.1989. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes. Reviews in Mineralogy,21:169-200.
    Mclennan S M, Hemming S, McDanial D K, et al.1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geo-logicalSociety of American SpecialPaper,284:21-40.
    Morton A C, Hallsworth C R.1999. Processes controlling the compositionof heavy mineral assemblages in sandstones. Sedimentary Geology,124:3-29.
    Morton A, Hurst A.1995. Correlation of sandstones using heavy minerals:an example from the Statfjord Formation of the SnorreField northern NorthSea. Geologic Society Special Publication,89:3-22.
    Nesbitt H W, Markovics G, Price R C.1980. Hemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta,44:1659-1666.
    Nesbitt H W, Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299:715-717.
    Pramod S.2009. Major, trace and REE geochemistry of the Ganga River sediments:Influence of provenance and sedimentary processes. Chemical Geology,266:242-255.
    Pearce J A.1983. The role of sub-continental lithosphere in magmagenesis at destructive plate margins. In Continental Basalts and Mantle Xenoliths (Hawkesworth et al. eds.). Nantich Shiva,230-249.
    Ramamohanarao T, Sairam K, Venkateswararao Y, et al.2003. Sediment logical characteristics and depositional environment of Upper Gondwana rocks in the Chintalapudi sub-basin of the Godavari valley, Andhra Pradesh.India. Journal of Asian Earth Sciences,21(6):691-703.
    Roser B P, Korsch R J.1986. Determination of tectonic setting of sandstonemudstone suites using SiO2 content and K,O/Na2O ratio. J. Geol.,94:635-650.
    Roser B P, Korsch R J.1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data. Chemical Geology,67,119-139.
    Sun W H, Zhou M F, Yan D P, et al.2008. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China). Precambrian Research,167:213-236.
    Taylor S R, McLennan S M.1985. The Continental Crust:Its Composition and Evolution. Oxford:Blackwell,1-312.
    Tortosa A, Palomares M, Arribas J.1991. Quartz grain types in Holocene deposits from the Spanish central system:some problems in provenance analysis, Geol Mag,52:139-184.
    Vermeesch P.2004, How many grains are needed fora provenance study?. Earth Planet. Sci. Lett.,224:441-451.
    Wang T, Wang X, Tian W, et al.2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Sci. China Ser. D-Earth Sci.,52:1359-1384.
    Weislogel A L,Graham S A, Chang E Z, et al.2006. Detrital zircon provenance of the Late Triassic Songpan-Ganze complexes:Sedimentary record of collision of the North and South China blocks. Geology,34:97-100.
    Wu Y B and Zheng Y F.2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Sci. Bull.49: 1554-1569.
    Wu R, Zheng Y, Wu Y, et al.2006. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambr. Res.,146:179-212.
    Wysoczanski R J, Gibson G M, Ireland TR.1997. Detritalzircon age patterns and provenance in late Paleozoic-early Mesozoic New Zealand terranes and developmentof the Pa-leo-Pacific Gondwana margin.Geology,25(10):939
    Yang J, Gao S, Yuan H L, et al.2007. Detrital Zircon Ages of Hanjiang River Constraints on Evolution of Northern Yangtze Craton, South China. J. China Univ. Geosci.,18:210-222.
    Shang Y J, Yue Z Q, Xia B D, et al.2002. A tectonic escape model for the formation of sedimentary basins in th Yangzhou block of the Lower Yangtze Region, Eastern China. Journal of Asian Earth Sciences,20:105-117.
    Zheng Y F, Zhao Z F, Wu Y B, et al.2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in Dabie orogen. Chem Geol.,231:135-158.
    Zhou M F, Arndt N T, Malpas J, et al.2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos,103:352-368.
    Zhao Z F, Zheng Y F, Wei C S, et al.2008. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chem Geol,253:222-242.
    薄永德,梁兵,周彬.2007.苏北盆地高邮凹陷隐蔽油气藏勘探方法.天然气工业,27(增刊A):424-427.
    蔡乾忠.2003.黄海与周边地质构造及盆地含油气性的区域对比.见:黄海海域油气地质.北京:海洋出版社,14-27.
    蔡小李.1988.苏北盆地介形类的演化与构造运动.石油勘探与开发,6(2):41-45.
    蔡雄飞,黄思骥,肖劲东,等.1990.人工重矿物组分的研究法在岩相古地理研究中的应用——以厂坝王家山组浅变质岩系为例.岩相古地理,10(1):12-17.
    曹洋,牛漫兰,谢成龙,等.2010.郯庐断裂带张八岭隆起北段晚中生代岩体的成因.合肥工业大学学报(自然科学版),33(3):415-420.
    陈安定.2001.苏北箕状断陷形成的动力学机制.高校地质学报,7(4):408-418.
    陈安定.2010.苏北盆地构造特征及箕状断陷形成机理.石油与天然气地质,31(2):140-150.
    陈道公,倪涛,谢烈文.2007.大别地体超高压变质岩石锆石Lu-Hf同位素研究.岩石学报,23(2):331-342.
    陈沪生,张永鸿,徐师文.1999.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社:192-195.
    陈泽润,吴建耀.2006.高邮凹陷西部戴南组早期沉积特征与油气关系.小型油气藏,11(2):11-15.
    陈衍景,杨忠芳,赵太平.1996.微量元素示踪物源区和地壳成分的方法和现状.地质地球化学,15(3):7-11.
    陈友飞,严钦尚,许世远.1993.苏北盆地沉积环境演变及其构造背景.28(2):151-160.
    程裕淇,沈永和,张良臣.1995.中国大陆的地质构造演化.中国区域地质,14(4):289-294.
    邓丽娟,夏连军,张列平,等.2009.苏北盆地隐蔽油气藏勘探方法探讨——以高邮凹陷为例.复杂油气藏,2(1):14-19.
    董荣鑫.1999.高邮凹陷戴南-三垛组古生物与沉积环境演变.同济大学学报,27(3):366-370.
    傅强,李益,张国栋,等.2007.苏北盆地晚白垩世-古新世海侵湖泊的证据及其地质意义.沉积学报,25(3):380-385.
    冯增昭.1993.沉积岩石学.北京:石油工业出版社.
    邵磊,李献华,韦刚健,等.2001.南海陆坡高速堆积体的物质来源.中国科学(D辑)31(10),828-833.
    高剑锋,陆建军,赖明远,等.2003.岩石样品中微量元素的高分辨率等离子质谱分析.南京大学学报《自然科学版》,39(6):844-850.
    高丽坤,林春明,姚玉来,等.2010.苏北盆地高邮凹陷古近系戴南组沉积相及沉积演化.沉积学报,28(4):706-716.
    郭敬辉,陈福坤,张晓曼,等.2005.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学.岩石学报,21(3):1281-1301.
    郭坤一,汪迎平.1995.张八岭变质地体细碧石英角斑岩系岩石学和岩石化学.火山地质与矿产,16(4):25-35.
    郭令智,施央申,马瑞士.1984.论地体构造-板块构造理论研究的最新问题.中国地质科学院院报,(10):27-34.
    郭令智,舒良树,卢华复,等.2000.中国地体构造研究进展综述.南京大学学报(自然科学).36(1):1-17.
    郭旭升,梅廉夫,汤济广.2006.扬子地块中、新生代构造演化对海相油气成藏的制约.石油与天然气地质,27(3):295-304.
    何幼斌,王文广.2008.沉积岩与沉积相.北京:石油工业出版社,276-280.
    侯伟,刘招君,何玉平,等.2010.漠河盆地上侏罗统物源分析及其地质意义.地质论评,56(1):71-81.
    胡宗全,朱筱敏,彭勇民.2001.准噶尔盆地西北缘车排子地区侏罗系物源及古水流分析.古地理学报,3(3):49-54.
    胡建,邱检生,王汝呈,等.2007.新元古代Rodinia超大陆裂解事件在扬子北东缘的最初响应:东海片麻状碱性花岗岩的锆石U-Pb年代学及Nd同位素制约.岩石学报,23(6):1321-1333.
    胡建,邱检生,徐夕生,等.2010.大别山东缘片麻状变质花岗岩的锆石U-Pb年代学与地球化学:对扬子板块北东缘新元古构造-岩浆作用的启示.中国科学:地球科学,40(2):138-155.
    Hugh R R(杨学民等译).2000.岩石地球化学.合肥:中国科学技术大学出版社.
    纪友亮,张世奇.1996.陆相断陷湖盆层序地层学.北京:石油工业出版社.
    贾军涛,郑洪波,黄湘通,等.2010.长江三角洲晚新生代沉积物碎屑锆屑锆石U-Pb年龄及其对长江贯通的指示.科学通报,55(5):350-358.
    焦养泉.1998.沉积盆地物质来源综合研究——以南堡老第三纪亚断陷盆地为例.岩相古地理,18(5):16-20.
    焦文放,吴元保,彭敏,等.2009.扬子板块最古老岩石的锆石U-Pb年龄和Hf同位素组成.中国科学D辑:地球科学,39(7):972-978.
    梁细荣,李献华.2000.激光探针等离子体质谱法(LAM-ICP-MS)用于年轻锆石U-Pb定年.地球化学,29(1):1-51.
    李储华,刘启东,陈平原,等.2007.高邮凹陷瓦庄东地区断层封闭性多方法对比研究.中国西部油气地质,3(1):65-68.
    李任伟,林大兴,黄宛平,等,1986.苏北盆地有机地球化学环境分析.中国科学(B辑),6:647-655.
    李卫,谭凯旋.1998.单矿物分选方法及其在构造地质研究中的意义-以磷灰石和锆石为例.大地构造与成矿学,22(增刊):83-86.
    李双应,李任伟,孟庆任,等.2005.大别山东南麓中新生代碎屑岩地球化学特征及其对物源的制约.岩石学报,21(4):1157-1166.
    李献华.1999.广西北部新元古代花岗岩锆石U-Pb年代化学及其构造意义.地球化学,28(1):1-91.
    李玉城.2008.苏北盆地高邮凹陷戴南组隐蔽油气藏研究.石油地质,1:21-27.
    李珍,焦养泉,刘春华,等.1998.黄骅坳陷高柳地球重矿物物源分析.石油勘探与开发,25(6):5-7.
    李忠,李仁伟,孙枢,等.1999.合肥盆地南部侏罗系砂岩碎屑组分特征及其物源构造属性.岩石学报,15(3):438-445.
    李忠,孙枢,李任伟,等.2000.合肥盆地中生代充填序列及其对大别山造山作用的指示.中国科学(D),30(3):256-263.
    林春明,凌洪飞,王淑君,等.2002.苏皖地区石炭纪海相碳酸盐岩碳、氧同位素演化规律.地球化学,31 (5):415-423.
    林春明,宋宁,牟荣,等.2003.江苏盐阜坳陷晚白垩世浦口组沉积相与沉积演化.沉积学报,19(4):553-559.
    柳小明,高山,等.2007.单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定.科学通报,52(2):228-235.
    刘立,胡春燕.1991.砂岩中主要碎屑成分的物源区意义.岩相古地理,11(6):48-53.
    刘锐娥,卫孝峰,王亚丽,等.2005.泥质岩稀土元素地球化学特征在物源分析中的意义——以鄂尔多斯盆地上古生界为例.天然气地球科学,16(6):788-791.
    刘福来,许志琴,宋彪.2003.苏鲁超高压变质带中非超高压花岗质片麻岩的准确识别:来自锆石微区矿物包体及SHRIMP U-Pb定年的证据.地质学报,(04):61-75.
    刘玉瑞,刘启东,杨小兰.2004.苏北盆地走滑断层特征与油气聚集关系.石油与天然气地质,25(3):279-293.
    刘玉瑞.2010.苏北后生断陷层序地层格架与沉积体系.复杂油气藏,3(1):10-14.
    楼法生,沈渭洲,王德滋,等.2005.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究.地质学报,79(5):636-644.
    陆红梅.2000.苏北盆地高邮凹陷陆相层序地层研究.断块油气田,7(1):18-22.
    陆松年,李怀坤,陈志宏,等.2004.新元古时期中国古大陆与罗迪尼亚超大陆的关系.地学前缘,11(2):515-523.
    毛凤鸣,张金亮,等.2002.高邮凹陷油气成藏地球化学.北京:石油工业出版社.
    毛凤鸣,戴靖.2005.复杂小断块石油勘探开发技术.北京:中国石化出版社,10-24.
    牛漫兰,朱光,谢成龙,等.2008.郯庐断裂带张八岭隆起南段花岗岩LA-ICPMS锆石U-Pb年龄及其构造意义.岩石学报,24(8):1837-1847.
    牛漫兰.2006.张八岭隆起南缘早白垩世火山岩REE对比研究.中国稀土学报,24(6):739-743.
    庞金梅,曹冰.2005.高邮凹陷戴南组隐蔽油气藏的成因及勘探实践.海洋石油,25(3):7-13.
    彭敏,吴元保,汪晶,等.2009.扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义.科学通报.54(5):641-647.
    钱基.2000.苏北盆地油气田的形成与分布特征.石油大学学报(自然科学版),24(4):21-26.
    邱海峻,许志琴,张建新,等.2003.苏北连云港地区蓝闪绿片岩相岩块的发现.岩石矿物学杂志,22(1):34-40.
    邱海峻,许志琴,乔德武.2006.苏北盆地构造演化研究进展.地质通报,25(9-10):1117-1120.
    邱旭明.2002.扭动作用在苏北盆地构造体系中的表现及其意义.江汉石油学院学报,24(2):5-7.
    邱旭明,刘玉瑞,傅强.2006.苏北盆地上白垩统一第三系层序地层与沉积演化.北京:地质出版社:1-154.
    邱贻博,查明,陈刚.2006.高邮凹陷陈堡地区断裂对油气运聚的控制作用.石油天然气学报(江汉石油学院学报),28(3):206-208.
    申延平,吴朝东,岳来群,等.2005.库车坳陷侏罗系砂岩碎屑组分及物源分析.地球学报,26(3):235-240.
    邵磊,李文厚,袁明生.1999.吐鲁番哈密盆地陆源碎屑沉积环境及物源分析.沉积学报,17(3):435-442.
    佘振兵.2007.中上扬子上元古界-中生界碎屑锆石年代学研究.中国地质大学博士学位论文:107.
    石永红,朱光,王道轩,等.2007.皖中张八岭群“蓝片岩”中钠质角闪石及其变质P-T条件分析.矿物学报,27(2):179-188.
    宋彪,张玉海,万渝生.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    宋凯,吕剑文,杜金良,等.2002.鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系.古地理学报,4(3):59-66.
    舒良树,陈莉琼,何光玉.2001.苏北盆地下第三系(含泰州组)天然气分布特征与成藏模式江苏油田科技项目研究报告,1-96.
    舒良树,王博,王良书,等.2005.苏北盆地晚白垩世—新近纪原型盆地分析.高校地质学报,11(4):534-543.
    涂光炽.1998.低温地球化学.北京:科学出版社:107-121.
    王德滋,沈渭洲.2003.中国东南部花岗岩成因与地壳演化.地学前缘,10(3):209-219.
    王明磊,张廷山,王兵,等.2009.重矿物分析在古地理研究中的应用——以准噶尔盆地南缘中段古近系紫泥泉子组紫三段为例.中国地质,36(2):456-464.
    王洪伟,杨建国,林东成.2007.汤原断陷古近纪砂岩重矿物组合与物源分析.大庆石油地质与开发,26(3):39-41.
    王巍,陈高,王家林,等.1999.苏北-南黄海盆地区域构造特征分析.地震学刊,(1):47-55.
    王英华,张绍平,潘荣胜.1990.阴极发光技术在地质学中的应用.北京:地质出版社.
    汪正江,陈洪德,张锦泉.2000.物源分析的研究与展望.沉积与特提斯地质,20(4):104-110.
    蔚远江.2007.地球学报.准格尔盆地西北缘扇体形成演化与扇体油气藏勘探,28(1):62-71.
    吴富江,张芳荣.2003.华南板块北缘东段武功山加里东期花岗岩特征及成因探讨.中国地质,30(2):166-172.
    武法东,陆永潮,阮小燕,等.1996.重矿物聚类分析在物源分析及地层对比中的应用——以东海陆架盆地西湖凹陷平湖地区为例.现代地质,10(3):397-403.
    吴向阳,牟荣,石胜群,等.1999.苏北盆地火成岩发育与构造演化的关系.勘探家,4(1):44-48.
    吴维平,徐树桐,江来利,等.1998.大别山东部超高太变质带北侧的花岗片麻岩及其构造背景.安徽地质,8(1):19-26.
    夏连军,吴向阳,毛树礼,等.2008.高邮凹陷邵伯地区近岸水下扇的地震预测.勘探地球物理进展,31(3):212-218.
    邢凤鸣.1998.扬子岩浆岩带东段基性岩地球化学.地球化学,27(3):258-268.
    修群业,殷艳杰,李惠民.2001.单锆石定年样品的采集及矿物分选.前寒武纪研究进展,24(2):107-110.
    徐方建,李安春,徐兆凯,等.2009.东海内陆架沉积物稀土元素地球化学特征及物源意义.中国稀土学报,27(4):574-582.
    徐田武,王英民,曾溅辉,等.2007.苏北盆地高邮—海安地区晚白垩世泰州组沉积相及物源分析.地球学报,28(6):627-634.
    徐田武,宋海强,况昊,等.2009.物源分析方法的综合运用——以苏北盆地高邮凹陷泰一段地层为例.地球学报,30(1):111-118.
    许文良,王冬艳,王清,等.2004.华北地块中东部中生代侵入杂岩中角闪石和黑云母的40Ar-39Ar定年:对岩石圈减薄时间的制约.地球科学,33(3):221-231.
    许志琴,刘福来,戚学祥,等.2006.南苏鲁超高压变质地体中罗迪尼亚超大陆裂解事件的记录.岩石学报,22(7):1745-1760.
    薛怀民,刘福来,孟繁聪.2006.苏鲁造山带胶东区段花岗片麻岩类的常量与微量元素地球化学:扬子克拉通北缘新元古代活动大陆边缘的证据.岩石学报,22(7):1779-1790.
    薛良清和徐怀大.1988.苏北盆地高邮凹陷戴南组沉积体系.石油与天然气地质,9(3):297-305.
    闫吉柱,俞凯,赵曙白,等.1999.下扬子中生代前陆盆地.石油试验地质,21(2):95-99.
    闫义,林舸,王岳军,等.2002.盆地陆源碎屑沉积物对源区构造背景的指示意义.地球科学进展,17(1):85-90.
    鄢琦,周总英.2009.中国东部断陷盆地石油资源丰度统计模型的建立.石油实验地质,31(3):292-295.
    杨守业,李从先.1999a.REE示踪沉积物物源研究进展.地球科学进展,14(2):164-167.
    杨守业,李从先.1999b.长江与黄河沉积物REE地球化学及示踪作用.地球化学,28(4):374-380.
    姚玉来,林春明,高丽坤,等.2010.苏北盆地高邮凹陷深凹带东部古近系戴南组二段沉积相及沉积演化.沉积与特提斯地质,30(2):2-10.
    叶舟,马力,梁兴,等.2006.下扬子独立地块与中生代改造型残留盆地.地质科学,41(1):81-101.
    郑永飞,张少兵.2007.华南前寒武纪大陆地壳的形成和演化.科学通报,52(1):1-10.
    周健,林春明,李艳丽,等.2010.苏北盆地高邮凹陷马家嘴地区古近系戴南组物源分析.沉积学报,28(6):1117-1128.
    张福顺.2005.白音查干凹陷扇三角洲与辫状河三角洲沉积.地球学报,26(6):553-556.
    张建珍,杜建国,张友联.1998.大别山榴辉岩岩石学及地球化学特征.地质论评,44(3):255-263.
    张术根,阳杰华.2008.宁镇中段燕山期中酸性侵入岩的稀土和微量元素地球化学研究.地质与勘探,44(6):43-48.
    张丽娟,马昌前,王连训,等.2011.扬子地台北缘古元古代环斑花岗岩的发现及其意义.科学通报,56(1):44-57.
    张妮,林春明,周健,等.2012a.苏北盆地高邮凹陷始新统戴南组一段稀土元素特征及其物源指示意义,地质论评,58(2):369-378.
    张妮,林春明,周健,等.2012b.苏北盆地高邮凹陷古近系戴南组一段元素地球化学特征及其地质意义,地质学报,86(2):269-279.
    张小兵,郑荣才,张哨楠.2007.高邮凹陷马家嘴-联盟庄地区戴南组构造-沉积体系.大庆石油地质与开发,26(1):13-17.
    张喜林,朱筱敏,杨俊生.2005.苏北盆地高邮凹陷古近系戴南组地震相研究.西安石油大学学报(自然科学版),20(3):44-47.
    张喜林,朱筱敏,郭长敏,等.2006.苏北盆地高邮凹陷古近系戴南组滨浅湖沉积中的遗迹化石.沉积学报,24(1):81-89.
    张渝昌.1997.中国含油气盆地原型分析.南京大学出版社.
    张永鸿.1991.下扬子区构造演化中的黄桥转换事件与中、古生界油气勘探方向.石油与天然气地质,124):439-448.
    赵红格,刘池洋.2003.物源分析方法及研究进展.沉积学报,21(3):409-412.
    赵俊峰,刘池洋,喻林,等.2008.鄂尔多斯盆地中生代沉积和堆积中心迁移及其地质意义.地质学报,82(4):540-552.
    赵澄林,朱筱敏.2001.沉积岩石学.北京:石油工业出版社.
    赵子福,郑永飞.2009.俯冲大陆岩石圈重熔:大别-苏鲁造山带中生代岩浆岩成因.中国科学D辑:地球科学,39(7):888-909.
    赵志根,李宝芳,张惠良.2001.大别山北麓与华北上古生界稀土元素特征的对比研究.地球化学,30(4):368-371.
    周健,林春明,李艳丽,等.2010.苏北盆地高邮凹陷马家嘴地区古近系戴南组物源分析.沉积学报,28(6):1117-1128.
    周健,林春明,张霞,等.2011.江苏高邮凹陷古近系戴南组一段物源体系和沉积相.古地理学报,13(2):161-174.
    周祖翼,毛凤鸣,廖宗廷,等.2001.裂变径迹年龄多成分分离技术及其在沉积盆地物源分析中的应用.沉积学报,19(3):456-473.
    朱光,谢成龙,王勇生,等.2005.郯庐高压走滑韧性剪切带特征及40Ar/39Ar定年.岩石学报,21(6):335-342.
    朱夏,徐旺.1990.中国中新生代沉积盆地.北京:石油工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700