用户名: 密码: 验证码:
生活垃圾焚烧厂渗滤液处理工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以温州市临江垃圾发电厂储坑渗滤液(COD=39400~59150mg/L,NH_3-N=380~656mg/L,pH=3.92~5.81),利用生物处理+物化处理(UASB+WSBR+混凝+电解)的工艺,针对生活垃圾焚烧厂渗滤液有机污染物浓度高,氨氮浓度高,重金属含量高和氯离子浓度高的水质特点,进行了集成工艺处理渗滤液的实验研究。
     水力停留时间(HRT)和容积负荷(VLR)对UASB的处理效果影响明显,产气量可以反映UASB处理效能,容积产气率过高不利于反应器内污泥的稳定存在。UASB处理单元在运行温度为30℃、HRT为8d和平均VLR为5.61kgCOD/(m~3·d)的条件下,平均容积COD去除率为5.13kgCOD/(m~3·d),平均容积产气率为2.75L/(L·d),平均COD去除率达到90.1%。
     水力停留时间(HRT)、操作温度和曝气比率对WSBR的脱氮效果影响明显。WSBR处理单元在运行温度为30℃、HRT为4d、曝气比率为0.33用UASB出水作为反应器进水、平均容积总氮负荷0.25kgN/(m~3·d)和平均容积氨氮负荷为0.23kgNH_3-N/(m~3·d)的条件下,平均容积总氮去除率为0.23kgNH_3-N/(m~3·d),平均容积氨氮去除率为0.22kgNH_3-N/(m~3·d),平均总氮去除率为91.2%,平均氨氮去除率为97.9%。
     混凝处理中,混凝剂的组合及投加量、进水pH、水力条件和进水COD浓度对混凝处理效果影响明显。选用聚合氯化铝铁(PAFC)和硫酸铝(AS)为混凝剂,在投加量为200mg/L PAFC和500mg/LAS,同时投加于pH为6的WSBR出水中,在混合转速为300rpm、混合时间为60s、反应转速为50rpm和反应时间为10min的条件下,静置沉淀30min,COD去除率可以达到46.6%,色度去除率可以达到84.3%,浊度去除率可以达到76.4%,出水COD可以降到500mg/L以下。
     电解处理渗滤液混凝出水的研究表明,电流强度、电解时间、进水pH、极间距、氯离子浓度、操作温度、极水比和进水COD浓度对于电解处理的效果影响明显。选用RuO_2-IrO_2-TiO_2/Ti电极(三元电极SPR)为阳极电极,将混凝出水pH调至4,在电流强度为0.75A,电解时间为90min,极间距为5mm,极水比为100cm~2/L,氯离子浓度在5000mg/L和温度为20℃的条件下,COD去除率可
In the research paper, the auther use four-combined integrated biological and physi-chemical treatment technology including Upflow Araerobic Sludge Blanket (UASB), Without Biomass Retention Sequential Batch Reactor (WSBR), Coagulation-flocculation and Electrolytic Oxidation to treaat the leachate from the retention basin of Linjiang municipal solid waste incineration power plant, Wenzhou. The research is in process to treat high-strength organic pollutant, ammonia, heavy metal and Cl~- (COD=39400~59150mg/L, NH_(3-)N=380~656 mg/L, pH=3.92~5.81) by the integrated treatment technology.Hydraulic retention time (HRT) and volumetric loading (VLD) have an obvious effect on the treatment by UASB. Gas production may reflect the result of the treatment and high volumetric gas production rate trends to effect the stabilization of the sludge in the reactor. The average volumetric COD removal efficiency, average volumetric gas production rate and average COD removal efficiency may respectively reach 5.13kgCOD/(m~3·d), 2.75L/(L·d) and 90.1% in the condition that temperature, HRT and average VLR is respectively 30℃, 8d and 5.61kgCOD/(m~3·d).HRT, temperature and aerobic time ratio have an obvious effect on the treatment by WSBR. The average volumetric TN removal efficiency, average volumetric NH3-N removal efficiency, average TN removal efficiency and average NH3-N removal efficiency may respectively reach 0.23kgNH3-N/(m~3·d), 0.22kgNH_(3-)N/(m~3·d), 91.2% and 97.9 % in the condition that temperature, HRT, aerobic time ratio, average volumetric TN loading and average volumetric NH3-N loading is respectively 30℃, 4d, 0.33,0.25kgN/(m~3·d) and 0.23kgNH_(3-)N/(m~3·d).In the coagulation-flocculation process, the combination of coagulants, coagulant dosage, pH, hydraulic condition and COD concentration in the influent have an obvious effect on the treatment by coagulation-flocculation. COD removal efficiency, color removal efficiency and turbidity may respectively reach 46.6%, 84.3% and 76.4% and COD concentration in the effluent may be reduced under
    500mg/L in the condition that the two-combined coagulant including 200mg/L PAFC and 500mg/L AS is at the same time put into the leachate adjusted pH to 6 with the rapid mix velocity of 300rpm, rapid mix time of 60s, reaction velocity of 50rpm, reaction time of 1 Omin and deposited at 30min.The study on electrolytic oxidation for leachate treatment shows that current density, electrolysis time, pH, distance between electrodes, Cl* concentration, temperature, ratio of electrode area to fiowrate and COD concentration in the influent have an obvious effect on the treatment by electrolytic oxidation. COD removal efficiency, NH3-N removal efficiency and color removal efficiency may respectively reach above 40%, near 100% and above 95% and COD concentration in the effluent may be reduced under 200mg/L in the condition that current density, electrolysis time, pH, distance between electrodes, Cl" concentration, temperature and ratio of electrode area to fiowrate is respectively 0.75A, 90min, 4, 5mm, 5000mg/L, 20 °C and 100cm2/L with the use of RuO2-IrO2-TiO2 / Ti electrode (SPR) as the anode.After treated by the four-combined treatment technology, COD may be reduced to under 300mg/L from above 50000mg/L, BOD5 may be reduced to near Omg/L from about 37000mg/L, NH3-N may be reduced to under 5mg/L from above 600mg/L, color may be reduced to under 10 times from above 8000 times, SS may be reduced to near Omg/L from above 8000mg/L and the heavy metal such as Zn, Cr, Cu and Pb may be almost removed completely. The effluent may meet Integrated Wastewater Discharge Standard II (GB8978-1996).The content of the paper is a part of the research of the Control Technology and Integrated Measurement for Treatment of leachate from Municipal Solid Waste Treated by MSWI, which is a secondary program of the Control Technology and Integrated Measurement for Treatment of Secondary Pollution from Municipal Solid Waste Incineration which is a predominant program in the environmental field of the National High Technology Research and Develop Program (863 Program).
引文
[1] 科技部建设要求加快发展城市生活垃圾科学化处理.人民日报,1999.1.13
    [2] 张国英,查轩,刘常青.我国城市生活垃圾现状及处理对策.福建水土保持,2003,15(3):13-16,36
    [3] 武飞,胡晨燕.SBR工艺处理城市垃圾渗滤液的可行性分析.环境和开发,2001,6(4):35-37
    [4] 曹占峰,何品晶,邵立明,等.SBR法处理垃圾填埋场新鲜渗滤液的实验研究.环境 污染治理技术与设备,2005,6(2):33-35,48
    [5] 王小虎,胡春莲,杨铁庚,等.SBR法处理垃圾渗滤液实验研究.环境卫生工程,2000,8(4):147-150
    [6] 孙召强,杨宏毅,武泽平,等.CASS工艺处理垃圾渗滤液工程设计实例.给水排水,2002,28(1):20-21
    [7] 蒋彬,吴浩汀,徐亚明.浅谈城市垃圾填埋场渗滤液的处理技术.江苏环境科技,2002,15(1):32-34
    [8] 王里奥,顾恒岳.垃圾掺滤液处理的实验研究.重庆大学学报(自然科学版),2002,25(2):99-102
    [9] Robinson H D, Grantham G. The treatment of landfill leachates in on-site Aerated Lagoon Plants: Experience in Britain and Ireland. Water Research, 1988, 22 (6): 733-747
    [10] 吴荻,熊向阳,孙蔚曼,等.三级稳定塘在垃圾渗滤液处理系统后续处理中的应用.信阳农业高等专科学校学报,2005,15(1):33-35
    [11] Maehlum T. Treatment of landfill leachate in on-site lagoons and constructed wetlands. Water Science and Technology, 1995, 32(3): 129-135
    [12] Loukidou M X, Zouboulis A I. Comparison of two biologicaltreatment processes using attached-growth biomass for sanitary landfill leachate treatment. Environmental Pollution, 2001, 111(2): 273-281
    [13] 黄群贤,张月红,董文庚,等.厌氧—好氧生物法处理垃圾场渗滤液的研究.河北工业科技,1999,16(4):1-3
    [14] Boyle W C, Ham R K. Chemical treatment of leachate from sanitary landfills. Journal of Water Pollution Control Federation, 1974, 46(7): 1776-1791
    [15] Timur H, Ozturk I. Anaerobic treatment of leachate using sequencing batch reactor and hybrid bed filter. Water Science and Technology, 1997, 36(6-7): 501-508
    [16] Timur H, Ozturk I. Anaerobic sequencing batch reactor treatment of landfill leachate. Water Research, 1999, 33(15): 3225-3230
    [17] Kettunen R H, Hoilijoki T H, Rintala J A. Anaerobic and sequential anaerobic-aerobic treatments of municipal landfill leachate at low temperatures. Bioresource Technology, 1996, 58(1): 31-40
    [18] 胡焰宁.垃圾焚烧发电厂垃圾渗滤液处理工艺的研究.环境工程,2004,22(5):30-32
    [19] 徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究.中国沼气,2002,20(2):12-15,33
    [20] Keenan P J, Iza J, Switzenbaum M S. Inorganic solids development in a pilot scale anaerobic reactor treating municipal solid wastelandfill leachate. Water Environmental Research, 1993, 65(2): 181-188
    [21] 李军,王宝贞,王淑莹,等.生活垃圾渗滤液处理中试研究.中国给水排水,2002,18(3):1-6
    [22] 沈耀良,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤混合废水:中国给水排水,1999,15(5):10-12
    [23] 闫志明,普红平,阳立平.UASCB-SMBR处理垃圾渗滤液的试验研究.环境科学与技术,2004,27(6):21-22,88
    [24] Osman N A, Delia T S. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems. Process Biochemistry, 2005, 40 (2): 895-902
    [25] 李平,韦朝海,吴超飞,等.厌氧/好氧生物流化床耦合处理垃圾渗滤液的新工艺研究.高校化学工程学报,2002,16(3):345-350
    [26] 郑金伟,武剑,马国伟.UASBF—SBR工艺处理垃圾渗滤液。中国给水排水,2003,19(4):59-60
    [27] 沈耀良,赵丹,杨铨大,等.厌氧—好氧法处理渗滤液与城市污水混合废水的可行性.污染防治技术,2000,13(2):63-67
    [28] ImJ H, Woo H J, Choi M W, et al. Simutaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Research, 2001, 35(10): 2403-2410
    [29] Heavey M. Low-cost treatment of landfill leachate using peat. Waste Management, 2003, 23(5): 447-454
    [30] 郭蕴苹.城市生活垃圾渗滤液回灌处理技术研究Ⅰ.云南民族学院学报(自然科学版),2002,11(4):228-230
    [31] 赵庆良,刘雷雁,刘志刚,等.寒冷地区垃圾渗滤液的回灌处理.中国给水排水,2004,20(10):6-9
    [32] 孙玥,李国建.回灌条件下的土壤蒸发处理研究.环境科学研究,2000,13(2):58-61
    [33] Reinhart D R. Full-scale experiences with leachate recirculating landfills: case studies. Waste Management and Research, 1996, 14 (4): 347-365
    [34] Chugh S. Effect of recirculated leachate volumn on MSW degradation. Water Management and Research, 1998, 16(6): 564-573
    [35] Diamadopoulos E. Characterization and treatment of recirculation stabilized leachate. Water Research, 1994, 28(12): 2439-2445
    [36] 薛俊峰,何品晶,邵立明,等.渗滤液循环回灌出水在混凝处理中的去除特性.环境污染与防治,2005,27(3):164-167
    [37] Bulc T, Vrhovsek D, Kukanja V. The use of constructed wetland for landfill leachate treatment. Water Science and Technology, 1997, 35(5): 301-306
    [38] 夏汉平,王庆礼,孔国辉.垃圾污水的植物毒性及植物净化效果之研究.植物生态学报,1997,23(4):289-301
    [39] 夏汉平,敖惠修,刘世忠,等.应用香根草对垃圾场进行植被恢复及净化垃圾污水的研究.广州环境科学,2002,17(1):34-37
    [40] 陈玉成,陈小龙,皮广洁.城市生活垃圾渗滤液土地处理的模拟研究.城市环境与城市生态,2001,14(2):19-21
    [41] Martin C D, Moshiri G A. Nutrient reduction in an In-series constructed wetland system treating landfill leachate. Water Science and Technology, 1992, 29(4): 267-272
    [42] Robinson H D. On-site treatment of leachates from landfill wastes. Journal of The Institution of Water and Environmental Management, 1990, 4(1): 78-89
    [43] 王敏,阳小敏.垃圾渗滤液深度处理技术及其分析.江苏环境科技,2002,15(2):32-34
    [44] Wang Z P, Zhang Z, Lin Y J, et al. Landfill leachate treatment by a coagulation-photooxidation process. Journal of Hazardous Materials, 2002, 95(1-2): 153-159
    [45] Zouboulis A I, Chai X L, Katsoyiannis I A. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management, 2004, 70(1): 35-41
    [46] 尚爱安,赵庆祥,徐美燕,等.混凝在垃圾渗滤液处理中的作用研究.中国给水排水,2004,20(1):50-52
    [47] Tatsi A A, Zouboulis A I, Matis K A. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 2003, 53(7): 737-744
    [48] 邓国志,何宗健.絮凝法强化处理垃圾渗滤液的试验研究.中国资源综合利用,2003(3):32-34
    [49] 柴晓利,赵由才.混凝絮凝法去除腐质酸的研究.环境污染与防治,2003,25(5):268-270
    [50] 李旭东,李毅军,陈忠余,等.垃圾填埋场渗滤液处理工艺研究.应用与环境生物学报,1999,5(Suppl):143-146
    [51] 陈立杰,苏永渤,王恩德,等.化学混凝-SBR法处理垃圾渗滤液的研究.工业水处理,2003,23(8):43-45
    [52] Amokrane A. Landfill leachates pretreatment by coagulation-flocculation. Water Research, 1997, 31(11): 2775-2782
    [53] Li X Z, Zhao Q L, Hao X D. Ammonium removal from landfill leachate by chemical precipitation. Waste Management, 1999, 19(6): 409-415
    [54] 潘终胜,汤金辉,赵文玉,等.化学沉淀法去除垃圾渗滤液中氨氮的试验研究.桂林工学院学报,2003,23(1):89-92
    [55] Kabdasli I, Ozturk I, Tunay O, et al. Ammonia removal from young landfill leachate by magnesium ammonium phosphate precipitation and air striping. Water Science and Technology, 2000, 41 (1): 1237-1240
    [56] 方建章,黄少斌.化学沉淀法去除水中氨氮的试验研究.环境科学与技术,2002,25(5):34-35
    [57] 祝万鹏,蒋展鹏,杨志华,等.有害废物填埋场渗滤液处理.给水排水,1997,23(11):12-14
    [58] Rodriguez J, Castrillon L, Maranon E, et al. Removal of non-biodegradable organic matter from landfill leachates by adsorption. Water Research, 2004, 38(14-15): 3297-3303
    [59] 于瑞莲,胡恭任.用天然膨润土预处理垃圾渗滤液的实验研究.福建化工,2002(3):7-9
    [60] 于瑞莲,胡恭任,王琼.用复合改性膨润土处理垃圾渗滤液的实验.环境卫生工程,2003,12(2):73-75
    [61] 郑红,鲁安怀,张佥,等.富含Na~+、Ca~(2+)、Al~(3+)、Cr~(3+)蒙脱石对垃圾渗滤波中有机物的吸附.岩石矿物学杂志,2001,20(4):528-532
    [62] 程丽华,黎明,倪福祥.高级氧化技术在水处理中的应用.青岛建筑工程学院学报,2003,24(1):22-25
    [63] 张晖,Huang C P. Fenton法处理垃圾渗滤液.中国给水排水,2001,17(3):1-3
    [64] 张晖,Huang C P. Fenton法处理卫生填埋渗滤液—从模型放大到中试的问题初探.重庆环境科学,2002,24(1):26-29
    [65] 张晖,Huang C P.填埋场渗滤液水质特性在Fenton处理过程中的变化.环境科学研究,2002,15(2):48-53
    [66] 张晖,Huang C P. Fenton法处理垃圾渗滤液的影响因素分析.中国给水排水,2002,18(3):14-17
    [67] 宫磊,徐晓军.Fenton试剂和化学沉淀法联合处理垃圾渗滤液.净水技术,2004,23(1):13-15
    [68] 孟玢,李静,王蕾,等.Fenton氧化处理垃圾渗滤液生化工艺出水的影响因素研究.天津城市建设学院学报,2004,10(1):41-45
    [69] 程洁红,李尔炀.城市垃圾渗滤液的Fenton氧化法预处理试验.城市环境与城市生态,2003,16(3):6-30
    [70] 程洁红,李尔炀,李定龙.Fenton—混凝法在垃圾渗滤液预处理中的试验研究.江苏石油化工学院学报,2002,14(2):27-29
    [71] Antonio L, Michele P, Angela V, et al. Fenton's pre-treatment of mature landfill leachate. Chemosphere, 2004, 54(7): 1005-1010
    [72] Scott J P, Quis D F. Integration of chemical and biological oxidation processes for water treatment: review and recommendation. Environmental Progress, 1995, 14(2): 88-103
    [73] 吴少林,李明俊,万诗贵,等.UV/H_2O_2/草酸铁处理垃圾渗滤液的研究.环境科学研究,2003,16(3):41-44
    [74] 张跃升,张子昭,松全元,等.活性炭—H_2O_2催化氧化处理垃圾渗滤液的试验研究.西安科技学院学报,2002,22(2):182-185
    [75] 张跃升,栾智慧,卫潘明.活性炭—H_2O_2催化氧化处理垃圾渗滤液.中国给水排水,2003,19(1):50-51
    [76] 弓晓峰,樊华,孔新红.紫外光氧化法深度处理垃圾渗滤液的研究.环境保护,2003(3):15-17
    [77] 邹长伟,江艳,万金保.光化学氧化深度处理垃圾渗滤液的研究.南昌大学学报(工科版),2003,25(2):35-38
    [78] 裴华,曾庆福,章北平,等.UV/Fe~(3+)光催化氧化处理垃圾渗滤液.中国给水排水,2003,19(13):103-105
    [79] Lin S H, Chang C C. Treatment of Landfill Leachate by Combined Electro-fenton Oxidation and Sequencing Batch Reacter Method. Water Research, 2000, 34(17): 4243-4249
    [80] 江举辉,虞继舜,李武,等.臭氧协同产生·OH的高级氧化过程研究进展及影响因素的探讨.工业安全与环保,2001,21(12):16-20
    [81] Huang S S, Diyamandoglu V, Fillos J. Ozonation of leachates from aged domestic landfills. Ozone: Science and Engineering, 1993, 15(5): 433-444
    [82] Imai A, Onuma K, Inamori Y, et al. Effects of pre-ozonation in refractory leachate treatment by the biological activated carbon fluidized bed process. Environmental Technology, 1998, 19(2): 221-273
    [83] Welander U, Hertrysson T. Physical and chemical treatment of a nitrified leachate from a municipal landfill. Environmental Technology, 1998, 19(6): 591-599
    [84] Steensen M. Chemical oxidation for the treatment of leachates-process comparison and results from full-scale plants. Water Science and Technology, 1997, 35(4): 249-256
    [85] Monje-Ramirez I, Orta De Velasquez M T. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes. Water Research, 2004, 38(9): 2358-2366
    [86] Wu J J, Wu C C, Ma H W, et al. Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 2004, 54(7): 997-1003
    [87] 刘春芳.臭氧高级氧化技术在废水处理中的研究进展.石化技术与应用,2002,20(4): 278-280
    [88] Tsai C T, Lin S T, Shue Y C, et al. Electrolysis of Soluble Organic Matter in Leachate from Landfill. Water Research, 1997, 31(12): 3073-3081
    [89] 李庭刚,陈坚.电化学氧化法处理高浓度垃圾渗滤液的研究.上海环境科学,2003,22(12):892-897
    [90] 杨云军,李庭刚,堵国成.电解氧化法预处理垃圾渗滤液.环境科学研究,2003,16(6):53-58
    [91] Chiang L C, Wen T C. Indirect Oxidation Effect in Electrochemical Oxidation treatment of Landfill Leachate. Water Research, 1995, 29(2): 671-678
    [92] 王敏,阳小敏.SBR法处理垃圾渗滤液出水的电解氧化实验.环境卫生工程,2002,10(2):68-73
    [93] 王敏,李小明.催化电解法处理垃圾渗滤液的研究.环境科学与技术,2002,25(2):17-19
    [94] 王敏,阳小敏,陈昭宜.催化电解法去除渗滤液中COD、NH_3-N的动力学研究.环境污染与防治,2003,25(4):211-214
    [95] 王敏,阳小敏.催化电解法去除渗滤液中COD和NH_3-N的电耗研究.给水排水,2003,29(3):13-17
    [96] 李小明,王敏,矫志奎,等.电解氧化处理垃圾渗滤液研究.中国给水排水,2001,17(8):14-17
    [97] 陈卫国.电催化系统-电生物炭接触氧化床处理垃圾渗滤液.中国环境科学,2002,22(2):2146-2149
    [98] 王锋.电解氧化法处理难降解工业废水工艺比较研究:[硕士学位论文].上海:同济大学,2004
    [99] 赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展.能源环境保护,2004,18(3):6-8,13
    [100] 李胜利,李劲,王泽文,等.用高压脉冲放电等离子体处理印染废水的研究.中国环境科学,1996,16(1):73-76
    [101] 周爱娇,陶涛,李胜利,等.等离子体技术用于垃圾渗滤液预处理.中国给水排水,2003,19(11):56-61
    [102] 周爱娇,陶涛.高压脉冲放电等离子体处理垃圾渗滤液.武汉城市建设学院学报,2001,18(3):44-47
    [103] 潘玲,邹长伟,孙艳军.光催化氧化处理垃圾渗滤液研究.湖南工程学院学报(自然科学版),2003,13(2):92-94
    [104] 张立德.纳米材料和纳米结构.北京:科学出版社,2001
    [105] 王里奥,黄本生,吕红,等.光催化氧化处理生活垃圾渗滤液.中国给水排水,2003,19(6):56-58
    [106] 罗建中,齐水冰,操洲杏,等.光催化氧化法处理垃圾填埋场渗滤液的研究.环境污染与防治,2001,23(2):63-65
    [107] 邹长伟,黄虹,万金保.光催化氧化处理垃圾渗滤液的研究.贵州环保科技,2003,9(4):44-46,48
    [108] 邓华健,喻红.光催化氧化拉圾填埋渗滤液的主要因素.天津化工,2003,17(5):16-17,59
    [109] 谭小萍,王国生,汤克敏.光催化法深度处理垃圾渗滤液的影响因素.中国给水排水,1999,15(5):52-54
    [110] 潭小萍,王国生,汤克敏.光催化氧化法用于垃圾渗滤液深度处理主要影响因素的试验研究.环境科学动态,1999(1):28-30
    [111] 滕业方,刘德启,江飞,等.吖啶橙均相光敏氧化法处理垃圾渗滤液的研究.苏州大学学报(工科版),2003,24(4):34-37
    [112] 滕业方,张猛,殷新叶.吖啶橙均相光敏氧化法处理垃圾渗滤液的探试.工业用水与废水,2003,34(6):46-48
    [113] Choa S P, Hong S C, Hong S I. Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter. Chemical Engineering Journal, 2004, 98(3): 245-253
    [114] Jaroslaw W, Didier R, Joanna S G, et al. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill ieachate in pilot-plant experiments: Influence of inorganic salts. Applied Catalysis B: Environmental, 2004, 53(2): 127-137
    [115] Abdullah M, Low G K C, Matthews R W. Effects of common inorganic anoins on rates of photocatalytic oxidation of organic carbon over illuminated. Journal of Physical Chemistry, 1990, 94(17): 6820-6825
    [116] Hoffmann M R, Hua I, Hochemer R. Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonics Sonochemistry, 1996, 3(3): 163-172
    [117] Evelyne G, Nadine C, Yves G, et al. High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment. Chemical Engineering Journal, 2003, 92(1-3): 215-225
    [118] 马慧,马荣建,姜云.FBZ+SBR处理小城镇垃圾场渗滤液.污染防治技术,2000,15(2):42-43
    [119] 扬新萍,王世和.超声辐照对水中化学污染物的降解.环境污染与防治,2002,24(4):252-256
    [120] 田扬捷,晏乃强,李道棠.核辐射技术在环境污染治理中的应用.上海环境科学,2002,21(9):557-561
    [121] Nickelsen M G, Cooper W J, Lin K, et al. High energy electron beam generation of oxidants for the treatment of benzene and toluene in the presence of radical scavengers. Water Research, 1994, 28(5): 1227-1237
    [122] Bea B U, Jung E S, Kim Y R, et al. Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Research, 1999, 33(11): 2669-2673
    [123] Yamazaki M, Sawai T, Sawai T, et al. Combined γ-ray irradiation-activated sludge treatment of humic acid solution from landfill ieachate. Water Research, 1983, 17(12): 1811-1814
    [124] Yamazaki M, Sawai T. The effect of γ-irradiation on the nitrogen compounds in landfill leachate. Radiation Physics and Chemistry, 1982, 20(5-6): 329-332
    [125] 张艳君.辐照技术在环境保护中的应用.太原科技,2002(3):30-31
    [126] Zhu W P, Bin Y J, Li Z H, et al. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater. Water Research, 2002, 36(8): 1947-1954
    [127] 李海生,刘亮,李鱼,等.pH值对催化湿法氧化降解垃圾渗滤液的影响.吉林大学学报(理学版),2004,42(1):147-149
    [128] 李海生,刘亮,李鱼,等.温度对WAO/CWAO处理垃圾渗滤液的影响.环境科学,2004,25(4):134-138
    [129] 孙珮石,杨英,陈嵩,等.垃圾渗沥液的湿式催化氧化技术处理试验研究.环境保护,2003(9):16-18
    [130] Luck F. Wet air oxidation: Past, present and future. Catalysis Today, 1999, 53(1): 81-91
    [131] 蔡建国,李爱民,张全兴.湿式催化氧化技术的研究进展.河北大学学报(自然科学版),2004,24(3):326-331
    [132] Piatkiewicz W. A polish study: Treating landfill leachate with membranes. Filtration and Seperation, 2001, 22(7-8): 22-26
    [133] 袁维芳,王国生,汤克敏.反渗透法处理城市垃圾填埋场渗滤液.水处理技术,1997,23(6):333-336
    [134] Peters T A. Purification of landfill leachate with reverse osmosis and nanofiltration. Desalination, 1998, 119(1-3): 289-293
    [135] 吴方同,苏秋霞,孟了,等.吹脱法去除城市垃圾填埋场渗滤液中的氨氮.给水排水,2001,27(6):20-24
    [136] 王宗平,陶涛,袁居新,等.垃圾渗滤液预处理——氨吹脱.给水排水,2001,27(6):15-19
    [137] 廖琳琳,孟了,陈石,等.影响吹脱塔对垃圾渗滤液氨吹脱效率因素研究.工业安全与环保,2005,31(6):29-31
    [138] 倪佩兰,郑学娟,徐月恩,等.垃圾填埋渗滤液氨氮的吹脱处理工艺技术研究.环境卫生工程,2001,9(3):133-135
    [139] 许玉东,聂永丰,岳东北.垃圾填埋场渗滤液的蒸发处理工艺.环境污染治理技术与设备,2005,6(1):68-72
    [140] Birchler D R, Milke M W, Marks A L, et al. Landfill leachate treatment by evaporation. Environment Engineering, 1994, 120(5): 1109-131
    [141] 岳东北,刘建国,聂永丰,等.蒸发法深度处理浓缩渗滤液的实验研究.环境科学动态,2005(1):44-45
    [142] 陈立杰,苏永渤,王恩德,等.化学混凝-SBR法处理垃圾渗滤液的研究.工业水处理,2003,23(8):43-45
    [143] 李亚峰,邢永大,薛军.混凝-SBR工艺处理垃圾渗滤液的研究.工业用水与废水,2002,33(2):25-27
    [144] 颜军,苏永渤,张志刚.混凝-SBR法处理城市垃圾填埋场渗滤液方法的研究.环境保护科学,2001,27(6):6-8
    [145] 钱伯兔.混凝沉淀-SBR-活性炭过滤处理垃圾渗滤液.环境污染治理技术与设备,2005,6(6):66-68
    [146] 熊忠,林衍.混凝-Fenton-SBR处理垃圾渗滤液的影响因素研究.城市环境,2002,16(4):19-20,48
    [147] 邓正栋,李红新,杨成智.脱氮—混凝气浮—UASB—接触氧化法处理垃圾填埋渗滤液.城市环境与城市生态,2003,16(6):149-150
    [148] 王显胜,黄继国,邹东雷,等.ABR-接触氧化-化学氧化组合工艺处理垃圾渗滤液方法研究.环境污染与防治,2005,27(1):53-55,69
    [149] 程洁红,马鲁铭.厌氧/SBR/混凝沉淀耦合工艺处理垃圾渗滤液的研究.水处理技术,2004,30(3):176-178
    [150] 方士,卢航,蓝雪春.两级SBR—PAC吸附混凝法处理垃圾渗滤液的研究.浙江大学学报(农业与生命科学版),2002,28(4):435-439
    [151] 刘东,江丁酉,朱志怀,等.曝气—絮凝处理垃圾渗滤液研究.环境污染治理技术与设备,2001,2(2):21-24
    [152] 赵宗升,刘鸿亮,袁光钰,等.A~2/O与混凝沉淀法处理垃圾渗滤液研究.中国给水排水,2001,17(11):13-16
    [153] Pitter P, Chudoba J. Biodegradability of organic substances in the aquatic environment. New York: CRC Press, 1990
    [154] Owen W F, Stuckey D C, Healy J B, et al. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 1979, 13:485-492
    [155] Heo N H, Park S C, Lee J S, t al. Solubilization of waste activated sludge by alkaline pretreatment and biochemical methane potential(BMP) tests for anaerobic co-digestion of municipal organic waste. Water Science and Technology, 2003, 48(8): 211-219
    [156] Lettinga G, van Velsen A F M, de Zeeuw W, et al. Feasibility of the upflow anaerobic sludge blanket(UASB) process. SAE Preprints, 1979:35-45
    [157] 王绍文等编著.高浓度有机废水处理技术与工程应用.北京:冶金工业出版社,2003
    [158] 钱易,米样友主编.现代废水处理技术.北京:中国科学出版社,1993
    [159] 贺延龄编著.废水厌氧生物处理.北京:中国轻工业出版社,1998
    [160] Lettinga G, van Velsen A F M, Hobma S W, et at. Use of the upflow sludge blanket(USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 1980, 22(4): 699-734
    [161] 王凯军等著.UASB工艺的理论与工艺实践.北京:中国环境科学出版社,2000
    [162] Osman N A, Delia T S. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems. Process Biochemistry, 2005, 40:895-902
    [163] R E 斯皮思著.李亚新译.工业废水的厌氧生物技术.北京:中国建筑工业出版社,2001
    [164] 姚刚,秦麒源.上流式厌氧污泥床的性能研究.中国给水排水,1994,10(1):7-11
    [165] Kennedy K J, Lentz E M. Treament of landfill leachate using sequencing batch and continuous flow upfiow anarobic sludge blanket (UASB) reactors. Water Research, 2000, 34(14):3640-3656
    [166] 胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术.北京:中国建筑物工业出版社,2003
    [167] Mulder J M, Van Kempen R. N-removal by Sharon. Water Quality International, 1997, 2: 30-31
    [168] Van Kempen R, Mulder J W, Uijtedinde C A, et al. Overview: full scale experience of the SHARON process for treatment of rejection water of digested dewatering. Water Science and Technology, 2001, 44(1): 145-152
    [169] 张小玲,彭党聪.短程硝化—反硝化技术经济特性分析.西安建筑科技大学学报,2002,34(9):239-242
    [170] 王涛,熊艾玲,邓荣森.SHARON工艺和SHARON—ANAMMOX组合工艺的节能特征.重庆建筑大学学报,2003,25(4):59-63,113
    [171] Hayes E, Upton J, Batts R, et al. On-line nitrification inhibition monitoring using immobilised bacteria. Water Science and Technology, 1998, 37(12): 193-196
    [172] Daigger G T, Sadick T E. Evaluation of methods to detect and control nitrification inhibition with specific application to incinerator flue-gas scrubber water. Water Environment Research, 1998, 70(7): 1248-1257
    [173] Kong Z, Vanrolleghem P, Verstraete W. Automated respiration inhibition kinetics analysis(ARIKA) with a respirographic biosensor. Water Science and Technology, 1994, 30(4): 275-284
    [174] 蓝雪春.垃圾渗滤液亚硝化/反亚硝化生物脱氮研究:[硕士学位论文].杭州:浙江大学,2001
    [175] Fdz-polaneo F, Villaverde S, Garcia P A. Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Water Science and Technology, 1994, 30(11): 121-130
    [176] Groeneweg J B, Sellner B, Tappe W. Ammonia oxidation in nitrosomonas at NH_3 concentrations near km: effects ofpH and temperature. Water Research, 1994, 28(12): 2561-2566
    [177] Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammonia and nitrous acid. Journal Water Pollution Control Federation, 1976, 48(5): 835-852
    [178] Ford D L, Churchwell R L, Kachtick J W. Comprehensive analysis of nitrification of chemical processing wastewater. Journal Water Pollution Control Federation, 1980, 52(11): 2726-2746
    [179] Joanna S G, Cichon A, Miksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via Shorter nitrification and denitrification. Water Science and Technology, 1997, 36(10): 73-78
    [180] 俞勇梅.高氨氮废水亚硝化的研究:[硕士论文].上海:上海师范大学,2003
    [181] Keeney D R, Fillery I R, Marx O P. Effect of temperature on the gaseous nitrogen products of denitrification in a silt loam soil. Journal Soil Science Society of America, 1979, 43:1124-1128
    [182] Bae J H, Kim S K, Chang H S. Treatment of landfill leachates: ammonia removal via nitrification and denitrification and further COD reduction via Fenton's treatment followed by activated sludge. Water Science and Technology, 1997, 36(12): 341-348
    [183] Kornaros M, Lyberatos G. Kinetic modeling of pseudomonas denitrificans growth and denitdfication under aerobic, anoxic and transient operating conditions. Water Research, 1998, 32(6): 1912-1922
    [184] 郑平,徐向阳,胡宝兰编著.新型生物脱氮理论与技术.北京:科学出版社,2004
    [185] Shammas N K. Interactions of temperature, pH and biomass on the nitrification process. Journal Water Pollution Control Federation, 1986, 58(1): 52-59
    [186] 郑怀礼主编.生物絮凝剂与絮凝技术.北京:化学工业出版社,2003
    [187] Ives K J, Ed. Rate theories, the scientific basis of flocculation. Netherlands: Silthoff and Noordhoff, 1978
    [188] Hahn H, Stumm W. Kinetics of coagulation with hydrolyzed aluminum. Journal of Colloid and Interface Science, 1968, 28: 133-142
    [189] 李涛.聚合氯化铝与有机高分子的复合絮凝剂特性研究:[硕士学位论文].西安:西安建筑科技大学,2004
    [190] 汤鸿霄,栾兆坤.聚合氯化铝与传统絮凝剂的凝聚-絮凝行为差异.环境化学,1997,16(6):497-505
    [191] 汤鸿霄主编.水体颗粒物和难降解有机物的特性与控制技术原理:上卷.北京:中国环境科学出版社,2000
    [192] Packham R F. Some studies of the coagulation of dispersed clays with hydrolyzed salts. Journal of Colloid and Interface Science, 1965, 20: 81-92
    [193] 高宝玉,王秀芬,于慧,等.聚合氯化铝铁絮凝剂的性能研究.环境化学,1994,13(5):415-420
    [194] 姚重华编著.混凝剂与絮凝剂.北京:中国环境科学出版社,1991
    [195] Jiang J Q, Graham N J D. Enhanced Coagulation Using Al/Fe(Ⅲ) Coagulants: Effect of Coagulant Chemistry on the Removal of Colour-Causing NOM. Environmental Technology, 1996, 17(9): 937-950
    [196] 卢建杭,刘维屏.印染废水混凝脱色与染料结构及混凝剂种类间的关系.工业水处理,1999,19(4):28-30
    [197] 沈耀良,杨铨大,王宝贞.垃圾渗滤液的混凝—吸附预处理研究.中国给水排水,1999,15(11):10-14
    [198] O'Melia C R, Becker W C, Au K K. Removal ofhumic substances by coagulation. Water Science and Technology, 1999, 40(9): 47-54
    [199] 蒋展鹏,尤作亮.混凝形态学的研究进展.给水排水,1998,24(10):70-75
    [200] 胡勇有,宁寻安.聚合氯化铝铁的混凝性能.环境科学与技术,2001,24(2):9-11
    [201] Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system. Water Research, 2002, 36(16): 4137-4143
    [202] Dempsey B A, Dauho R M, O'Melia C R. Coagu.lation of humic substances by means of aluminium salts. American Water Works Association, 1984, 76(4): 141-150
    [203] 胡万里编著.混凝·混凝剂·混凝设备.北京:化学工业出版社,2001
    [204] 常青编著.水处理絮凝学.北京:化学工业出版社,2003
    [205] 郑忠编著.分子力与胶体的稳定与聚沉.北京:高等教育出版社,1995
    [206] 栾兆坤.无机高分子絮凝剂聚合氯化铝的基础理论与应用研究:[博士学位论文].北京:中国科学院生态环境研究中心,1997
    [207] 范瑾初编著.混凝技术.北京:中国环境科学出版社,1992
    [208] 冯玉杰主编.电化学技术在环境工程中的应用.北京:化学工业出版社,2002
    [209] Naumczyk J, Szpyrkowicz L, Zilio-Grandi F. Electrochemical treatment of textile Wastewater. Water Science and Technology, 1996, 34 (11): 17-24
    [210] Brillas E, Bastida R M, Llosa E. Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a Carbon-PTFE O2-Fed cathode. Journal of Electrochemistry Society, 1995, 142(6): 1733-173
    [211] 赵国华.氧化物修饰电极电催化氧化降解有机废水:[博士学位论文].上海:同济大学,2000
    [212] 宋卫锋.DSA类电极电降解苯胺、苯酚和硝基苯过程的研究:[博士学位论文].上海:同济大学,2000
    [213] 张招贤编著.钛电极工学.北京:冶金工业出版社,2003
    [214] 张祖康主编.电化学原理与方法.北京:科学出版社,2000
    [215] 查全性主编.电极过程动力学导论.北京:科学出版社,2002
    [216] 朱晓君,高廷耀,宋洁,等.垃圾渗滤液催化电解氧化深度处理的研究.净水技术,2005,24(3):7-11
    [217] 陈延禧编著.电解工程.天津:天津科学技术出版社,1993
    [218] 陶映初编著.环境电化学.北京:化学工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700