用户名: 密码: 验证码:
催化湿法氧化法对垃圾渗滤液的脱氮作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的发展,人们生活水平的提高,处理城市生活垃圾已经成为城市建设中的迫切问题。卫生填埋由于运输管理方便、处理费用低、技术成熟,因而成为我国垃圾的主要处理方式。其中垃圾渗滤液是一种危害较大的高浓度有机废水,对周边环境及填埋场场底土层污染严重,且污染持续时间长,容易造成严重的二次污染问题,因而对渗滤液进行有效的收集和处理已成为城市环境中急待解决的问题。
    垃圾渗滤液中不仅含有大量的有机污染物,还含有高浓度的氨氮(NH3-N)和多种重金属,其中NH3-N主要来自填埋垃圾中蛋白质等含氮物质的生物降解,浓度变化范围大(可以从低于100mg/L到几千mg/L)。高浓度的 NH3-N会加重受纳水体的污染程度,并且过高的N/C比会造成营养比例的严重失调,抑制微生物活性,从而影响生化处理系统稳定有效的运行,同样会加重后续处理的负荷。因此,对垃圾渗滤液中高浓度的氨氮,进行有效的处理已引起国内外环保领域的广泛重视。
    近二十年来,国内外对氨氮废水处理方面开展了较多的研究,传统方法分为:生物法和物理化学法,如生物硝化、活性炭吸附、臭氧氧化和离子交换法,但只是实现了形态的转化,还存在着活性污泥和吸附剂等二次污染源,因而都存在着一定的局限性。本论文将催化湿法氧化技术应用于垃圾渗滤液中高浓度氨氮的降解。催化湿法氧化
    
    
    (CWAO)是用于处理工业废水十分有效的物理化学方法,是指在高温(180℃~315℃)高压(2MPa~15 MPa)有催化剂存在的条件下,在液相中使用氧气或空气作为氧化剂,将水中溶解态或者悬浮态的有机物或还原型无机物氧化分解为二氧化碳、水、氮气等无毒无害的物质的方法[24-26]。采用催化湿法氧化技术降解高浓度有机废水具有降解效率高、反应时间短、对于高浓度、高毒性、对生物法有抑止作用废水尤其效果独到,且创造了较少的空气污染问题,因而不会产生NOx、SO2、HCl、二氧芑、呋喃、飞灰等二次污染物。
    常用的催化剂包括均相催化剂(homogeneous catalyst)和多相催化剂(heterogeneous catalyst)。反应物和催化剂处于同一相中,称为均相催化反应,反应物和催化剂不是同一相,称为多相催化反应。其中铜盐是十分有效的均相催化剂,例如Cu(NO3)2、CuSO4等催化剂。但均相催化剂与反应液处于同一相中,因而反应结束后需要进一步将催化剂从反应液中分离出来,否则会造成潜在的二次污染和催化剂的流失浪费。与之相比,多相催化剂则更容易从反应介质中分离出来,因而更加适应连续处理废水的过程,有更高的实用价值。适用于催化湿法氧化反应的多相催化剂大多为过渡金属、氧化物及其复合氧化物,已有多种过渡金属经研制被认为具有湿法氧化的催化活性,其中贵金属系列催化剂活性高、寿命长、适应性强,但是由于价格昂贵,其应用受到了较大的限制;目前较多的研究都投向
    
    
    非贵金属类过渡金属如Cu、Fe、Ni、Co、Mn等以及稀土金属Ce,Bi等金属。
    采用催化湿法氧化(CWAO)技术,以Co/Bi的复合氧化物为催化剂,对垃圾渗滤液中氨氮(NH3-N)进行降解处理,并利用GC-MS检测了垃圾渗滤液中含氮有机物的相对含量。结果表明,随着反应温度的升高,相同取样时间的样品中NH3-N浓度呈逐渐下降趋势,即升高温度可以提高CWAO对NH3-N的降解能力。随着反应温度的增加,各温度零点时间样品中NH3-N浓度逐渐下降,分别为23.66、22.69、19.29、12.55和2.79mg/L,说明在达到设定温度之前,NH3-N就已经部分降解,并且温度越高,升温过程中被降解的NH3-N量就越大。对各温度下NH3-N降解规律按照一级、二级、三级动力学反应进行拟合。通过拟合参数可以看到,220、240、260、280℃下NH3-N的降解规律符合一级动力学反应,相关
    系数r均在0.93以上(p≤0.01,n=6)。一级动力学反应参数k与反应的速率常数直接相关,k值越大,反应速率越快;k值越小,反应速率越慢。由拟合结果可知,随着温度的升高,k值逐渐增大,即随着温度的增加,反应速率增大,温度的升高加快了反应的进行。
    升温全过程(20℃-300℃) 中,NH3-N浓度变化经历了先升后降两个阶段:20-220℃,NH3-N浓度逐渐升高,在220℃时达到最大值23.95mg/L;220-300℃之间,NH3-N浓度迅速下降,在300℃时降到最小。结合本实验所用的垃圾渗
    
    
    滤液原液GC-MS检测结果,推测在20-220℃阶段,一种或是几种含氮有机物被分解生成NH3-N,NH3-N的浓度逐渐升高,并在220℃时含氮有机物被分解完全;在220-300℃阶段,垃圾渗滤液中原有NH3-N和由含氮有机物分解生成的NH3-N一同被降解,生成N2、NO3-等物质,因此NH3-N浓度又迅速降低。选取垃圾渗滤液中一种含氮有机物2-巯基苯并噻唑进行降解的验证实验。对其升温全过程(20-300℃)的降解进行研究。采用GC-MS对其降解的中间产物的种类和相对含量进行测定,给出该种含氮有机物降解的机理。
    本文采用催化湿法氧化技术,对垃圾渗滤液中氨氮进行了降解,取得了良好的效果。并对垃圾渗滤液中的有机氮降解的机理进行了分析,且给出了反应的具体路径。根据对反应机理的探讨,进一步改进催化剂的活性和稳定性成为我们下一步研究的主要目标。
With the development of city construction and the improvement of people’s life, it is an urgent problem to treat the domestic refuse of the city. Because of the low cost, advanced technologies, and convenience in management and transportation, the landfill was now one of the most recommendable technologies for the garbage treatment home and abroad. Landfill leachates is a kind of harmful wastewater containing high concentration organic compounds. Because of its serious pollution to the circumjacent environment and substrate of the landfill, the long-term maintenance of pollution, and the secondary pollution, it is an urgent problem to collect and treat the landfill leachates effectively in city environments.
    There are not only a lot of organic pollutants, but also highly concentrated ammonia and many kinds of heavy metals in landfill leachates. Ammonia, which has a large
    
    
    range of variation from 100 mg/L to over 1000 mg/L, was produced in the bio-degradation of nitrogenous compounds like protein. Highly concentrated ammonia could aggravate the pollution of receiving water. And the high ration of N/C could bring the maladjustment of nutrition and restrain the biodegradability, which could affect the stabilization and efficiency of the biological treatment system and could aggravate the load of the following treatment. So, treatment of high concentrated ammonia in the landfill leachates effectively causes worldwide attention in the field of environmental protection.
    In the past twenty years, many investigations were carried out about the wastewater treatment of ammonia domestic and abroad. Traditional techniques for the treatment include biochemical methods and physicochemistry method, such as biological nitrification, active carbon adsorption, ozone oxidation and ion exchange. But only transformation of form was achieved, and the potential sources of activated sludge and sorbents were still
    
    
    remained. So all of them have their own limitation. Catalytic wet air oxidation was very effective physicochemistry method for treatment of industrial wastewater. In this research paper, catalytic wet air oxidation (CWAO) over Co/Bi catalyst was employed to remove high ammonia nitrogen (NH3-N) with oxygen as the oxidant and to build the technical condition of disposal landfill leachates using CWAO. Catalytic wet air oxidation (CWAO) was a method of oxidizing dissolvable or suspended organic compounds as well as reducible inorganic compounds with oxygen or air under the circumstances of high temperature and high pressure in liquid phase. CWAO is an available technology for treating wastewaters that are too concentrated or toxic to biologically degrade. The process needs short operating period and high removal rate without producing NOX, SO2, HCl, dioxins, furans and fly ash.
    Common catalysts include homogeneous catalysts and heterogeneous catalysts. While the reactants and the catalysts are the same phase, the reaction is called
    
    
    homogeneous catalytic reaction, or the reaction is called heterogeneous catalytic reaction. Copper ion, such as Cu(NO3)2、CuSO4, is the most effective homogeneous catalysts. But the homogeneous catalysts were in the same phase with the reactants, which need to be recovered by an additional separation process. Otherwise, it will cause potential pollution and the loss of catalysts. Compared with soluble catalysts, heterogeneous catalysts that can be easily separated form the reaction medium are better suited for continuous processes. Supported noble metals catalysts such as ruthenium platinum and rhodium is effective heterogeneous catalysts in many fields. Most of the heterogeneous catalysts suitable to CWAO are transition metals, oxide and composite oxides catalysts. Lots of transition metals were considered to have the catalytic activation through investigation. Noble metals have high catalytic activity, long life-span and good adaptability, but because of high cost, which severely affects the economy of noble catalysts. Now more and more attention is paid to
    
    
    n
引文
[1] 张懿,城市垃圾填埋场渗滤液的处理技术综述,重庆环境科学,2000,22(5),63~65。
    [2] Davoli E., Gangai M. L., Morselli L., Tonelli D., Characterization of odorants emissions from landfills by SPME and GC/MS. Chemosphere, 2003, 51, 357~368.
    [3] Butt T. E., Oduyemi K. O. K., A holistic approach to concentration assessment of hazards in the risk assessment of landfill leachate, Environment International, 2003, 28, 597~608.
    [4] 黄立南,蓝崇钰,姜比亮,卫生填埋场渗滤液及其处理研究,生命科学,1999,18(1),39~41。
    [5] 孙英杰,徐迪民,张隽超,生活垃圾填埋场渗滤液中氨氮的脱除,给水排水,2002,28(7),35~37。
    [6] 李平,韦朝海,吴超飞,梁世中,厌氧/好氧生物流化床耦合处理垃圾渗滤液的新工艺研究,高校化学工程学报,2002,16(3),345~350。
    [7] 韦朝海,吴锦华,慎义勇,盛国英,傅家谟, 优势菌种与三重环流三相流化床耦合处理油制气厂废水,环
    
    
    境科学学报,2002,22(2),171-176。
    [8] 胡孙林,钟理,氨氮废水处理技术,现代化工,2001,21(6),47-50。
    [9] Hung C. M., Lou J. C., Lin C. H., Removal of ammonia solutions used in catalytic wet oxidation processes. Chemosphere, 2003, 52, 989-995.
    [10] 陈石,王克虹,孟了,陈永,城市生活垃圾填埋场渗滤液处理中试研究,给水排水,2000,26(10),15~18。
    [11] Im J., Woo H., Choi M., Han K., Kim C., Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system, Water Research, 2001, 35(10), 2403~2410.
    [12] Barbier J. Jr., Oliviero L., Renard B., Duprez D., Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants, Catalysis Today, 2002, 75, 29-34.
    [13] Mantzavinos D., Sahibzada M., Livingston A. G., Metcalfe I. S., Hellgardt K. Wastewater treatment: wet
    
    
    air oxidation as a precursor to biological treatment. Catalysis Today, 1999, 53, 93~106.
    [14] 刘光辉,李海生,李鱼,刘亮,王健,刘鸿亮,氧分压对CWAO去除垃圾渗滤液TOC的影响,环境污染与防治(网络版),2004,2( 1)。
    [15] 潘终胜,汤金辉,赵文玉,杨国清,刘康怀,化学沉淀法去除垃圾渗滤液中氨氮的试验研究,桂林工学院学报,2003,23(1),89~92。
    [16] Amokrane A., Comel C., Veron J., Landfill leachate pretreatment by coagulation-flocculation, Water Research, 1997, 31(11), 2775-2782.
    [17] 唐家富,李国建,垃圾填埋场渗滤液回灌处理的影响因素研究,环境卫生工程,1997,1,14~20。
    [18] Tyrrel S F, Leeds-Harrison P B, Harrison K S, Removal of ammoniac nitrogen from landfill leachate by irrigation onto vegetated treatment planes, Water Research, 2002, 36, 291~299.
    [19] Kazuhide Okuda, Kazumichi Yanagisawa, Shun-ichi Moritaka, Solubilization of dechlorinated poly in water
    
    
    by wet oxidation, Polymer Degradation and Stability, 2003, 79, 105~110
    [20] Dhale A.D., Mahajani V.V., Studies in treatment of disperse dye waste membrane—wet oxidation process, Waste Management, 2000, 20, 85~92.
     [21] Helene B.Klinke, Birgitte K. Ahring, Characterization of degradation products from alkaline wet oxidation of wheat straw, Bioresource Technology, 2002, 82, 15~26.
    [22] Toshifumi Igarashi, Ryuta Hataya. Estimation of pyrite oxidation rate by sulfate ion discharged from a catchment, Journal of Geochemical Exploration, 2003, 77, 151~165.
    [23] Zhu Wanpeng, Bin Yuejing, Li Zhonghe, Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater. Water Research, 2002, 36, 1947~1954.
    [24] Hu Xijun, Lei Lecheng, Chen Guohua, On the degradability of printing and dyeing wastewater by wet air oxidation, Water Research, 2001, 35(8), 2078~2080.
    
    [25] Lei Lecheng, Hu Xijun, Po-Lock, Improved wet oxidation for the treatment of dyeing wastewater concentrate from membrane separation process. Water Research, 1998, 32 (9), 2753-2759.
    [26] Raphael Robert, Stephare Barbati, Natacha Ricq, Intermediates in wet oxidation of cellulose: identification of hydroxyl radical and characterization of hydrogen peroxide, Water Research, 2002, 36, 4821~4829.
    [27] 孙培石,原田吉明,催化湿法氧化法处理高浓度有机废水的动力学模型,环境科学,1999,5,42~45。
    [28] 杨琦,赵建夫,汪立忠,催化湿法氧化处理香料废水,中国环境科学,1998,18(2),170~172。
    [29] 张世鸿,涂学炎,模拟废水丁二酸的催化湿法氧化处理,环境科学,2003,24(1),107~112。
    [30] 蒋展鹏,付宏祥,Ti-Ce系列催化剂上乙酸的催化湿法氧化反应,环境科学,2002,23(1),54~57。
    [31] Chen Guohua, Lei Lecheng. Kinetic study into the wet air oxidation of printing and dying wastewater,
    
    
    Separation and Purification Technology, 2003, 31, 71~76.
    [32] Luck F., Wet air oxidation: past, present and future. Catalysis Today, 1999, 53, 81-91.
    [33] Kacar Y., Ailay E., Pretreatment of Afyon alcaloide factory’s wastewater by wet air oxidation (WAO), Water Research, 2003, 37, 1170~1176.
    [34] 邓景发,催化作用原理导论,第一版,吉林科学技术出版社,1984,30~35。
    [35] 谭亚军,蒋展鹏,废水处理催化湿法氧化法及其催化剂的研究进展,环境工程,1999,17,4,14~18。
    [36] Zhu Wanpeng, Bin Yuejing, Li Zhonghe. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater. Water Research, 2002, 36, 1947~1954.
    [37] Gomes Helder T., Jose L. Figueiredo, Catalytic wet air oxidation of low molecular weight carboxylic acids using a carbon supported platinum catalyst. Applied Catalysis, 2000, 27, 217~223.
    
    [38] Gomes H.T., Figueiredo J. L., Faria J. L., Catalytic wet air oxidation of butyric acid solutions using carbon-supported iridium catalysts, Catalysis Today, 2002,75, 23~28.
    [39] Shiow Shyung Lin, Dong Jang Chang. Catalytic wet air oxidation of phenol by CeO2 catalyst—effect of reaction conditions, Water Research, 2003, 37, 793~800.
    [40] Stanko Hocevar, Jurka Batista. Wet oxidation of phenol on Ce1-xCuxO2-δ catalyst. Journal of Catalysis, 1999, 184, 39~48.
    [41] Albin Pintar, Michèle Besson, Pierre Gallezot. Catalytic wet air oxidation of Kraft bleach plant effluents in a trickle-bed reactor over a Ru/TiO2 catalyst. Applied Catalysis B, 2001, 31, 275~290.
    [42] Verenich S., Laari A., Kallas J., Wet oxidation of concentrated wastewaters of paper mills for water cycle closing. Waste Management, 2000, 20, 287~293.
    [43] Koh A., Kestle A., Wright C., Comparative surface studies on wet and dry sacrificial thermal oxidation on
    
    
    silicon carbide, Applied Surface Science, 2001, 174, 210~216.
    [44] Wu Qiang, Hu Xijun, Kinetics study on catalytic wet air oxidation of phenol, Chemical Engineering Science, 2003, 58, 923~928.
    [45] Gold catalysts supported on titanium oxide for catalytic wet air oxidation of succinct acid. Catalysis Communications, 2003, 4, 471~476.
    [46] Gomes Helder T, Figueiredo Jose L., Catalytic wet air oxidation of low molecular weight carboxylic acids using a carbon supported platinum catalyst. Applied Catalysis, 2000, 27, 217~223.)
    [47] Dong-Keun Lee, Dul-Sun Kim, Catalytic wet air oxidation of carboxylic acids at atmospheric pressure, Catalysis Today, 2000, 63, 49~255.)
    [48] Jacques Barbier Jr, Laetitia Oliviero, Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants, Catalysis Today, 2002, 75(1-4), 29~34.
    
    [49] Qin Jiangyan, Aika Ken-ichi. Catalytic wet air oxidation of ammonia over alumina-supported metals, Applied Catalysis B: Environmental, 1998, 16, 261~268.
     [50] 杜鸿章,房廉清,难降解高浓度有机废水催化湿法氧化净化技术,水处理技术,1997,23(2),83~87。
    [51] 陈拥军,窦和瑞,杨民,高希彦,吴鸣,崔桂林,孙承林,催化湿法氧化法在苯酚废水预处理中的应用研究。工业水处理,2002,22(6),19~22。
    [52] Hamoudi S., Belkacemi K., Sayari A., Catalytic oxidation of 4-chloroguaiacol reaction kinetics and catalytic studies, Chemical Engineering Science, 2001, 56(4), 1275~1283.
    [53] Nasr-Allah M. Deraz, Effect of Ag2O doping on surface and catalytic properties of cobalt-magnesia catalysts, Materials Letters, 2001, 51, 470~477.
    [54] Eftaxias A., J. Font, Fortuny A., Giralt J., Fabregat A., Stüber F. Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing. Applied Catalysis B, 2001, 33, 175~190.
    
    [55] 谭亚军,蒋展鹏,祝万鹏,有机污染物湿法氧化降解中Cu系列催化剂的稳定性,环境科学,2000,7,82~85。
    [56] Lin Shiow Shyung, Chang Dong Jang. Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions, Water Research, 2003, 37, 793~800.
    [57] Lin Shiow Shyung, Chen Chun Liang, Catalytic wet air oxidation of phenol by various CeO2 catalysis, Water Research, 2002, 36, 3009~3014.
     [58] Chang Dong-Jang, Chen I-Pin, Wet air oxidation of a reactive dye solution using CoAlPO4-5 and CeO2 catalysts, Chemosphere, 2003, 52, 943~949.
     [59] 芮玉兰,韩利华,梁英华,稀土系列催化剂对焦化废水的催化湿法氧化,环境科学与技术,2002,25(3),40~41,48。
    [60] Adrian M.T. Silva, Isabel M. Castelo-Branco, Catalytic studies in wet oxidation of effluents from formaldehyde industry, Chemical Engineering Science, 2003, 58(3-6), 963~970.
    
    [61] Syed Tajammul Hussain, Abdelhamid Sayari, Fa¨y?cal Larachi1, Research note novel K-doped Mn-Ce-O wet oxidation catalysts with enhanced stability, Journal of Catalysis, 2001, 201, 153~157.
    [62] Qin Jiangyan, Zhang Qinglin, Chuang Karl. T.,Catalytic wet oxidation of p-chlorophenol oversupported noble metal catalysts, Applied Catalysis B: Environmental, 2001, (29), 115~123.
    [63] Chien, S.H., Clayton W.R., Application of Elovich Equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J, 1980, 44(2), 264-268.
    [64] 李海生,刘亮,李鱼,刘光辉,王健,王月,刘鸿亮,陈复。pH值对催化湿法氧化降解垃圾渗滤液的影响。吉林大学学报(理学版),2004,42(1),147~149。
    [65] Andreozzi R., Caprio V., Insola A.. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53: 51–59.
    
    [66] Xu X., Wang D.. Catalytic wet air oxidation of o-Chloroprene in Wastewater. Chinese J. Chem. Eng., 2003, 11(3): 352-354.
    [67] Imanura S., Hirano A., Kawabata N, Wet oxidation of acetic acid catalyzed by Co/Bi complex oxides. Ind. Eng. Chem. Prod. Res. Dev., 1982, 21, 570~575.
    [68] Chien, S.H., Clayton W.R., Application of Elovich Equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J, 1980, 44(2), 264-268.
    [69] Oliviero L., Barbier J. Jr., Duprez D. Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Applied Catalysis B: Environmental, 2003, 40, 163~184.
    [70] Dobrynkin N. M., Batygina M. V., Noskov A. S. Solid catalysts for wet oxidation of nitrogen-containing organic compounds. Catalysis Today, 1998, 45, 257-260.
    [71] Deiber G., Foussard J. N., Debellefontaine H. Removal
    
    
    of nitrogenous compounds by catalytic wet air oxidation: Kinetic study. Environmental Pollution, 1997, 96(3), 311~319.
    [72] Marina V. B., Nikolay M. D., Aleksander S. N. Oxidation of organic substances in aqueous solutions over Ru catalysts by oxygen. Advances in Environmental Research, 2000, 4, 123~132.
    [73] Pifer A., Hogan T., Snedeker R. B. Broad spectrum catalytic system for the deep oxidation of toxic organics in aqueous medium using dioxygen as the oxidant. J. Am. Chem. Soc., 1999, 121, 7485-7492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700