用户名: 密码: 验证码:
序批式生物反应器处理农村生活垃圾中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以浙江省富阳市新登镇施村农村生活垃圾为对象,构建了两套生物反应器系统R1(序批式生物反应器)和R2(渗滤液直接回灌型生物反应器),进行了70天左右的农村生活垃圾生物处理中试研究以及后续渗滤液土壤吸附、解吸和净化小试研究,结果表明:
     (1)系统R1和R2新鲜垃圾在运行进程中的减容率趋势总体一致,试验结束时系统R1和R2新鲜垃圾减容率分别高达57%和53%。
     (2)系统R1和R2新鲜垃圾生物反应器上、下层有机质含量以及BDM都经历逐渐减小,最后趋于稳定的类似变化过程。在整个运行期间,系统R1新鲜垃圾生物反应器中垃圾体有机质和BDM下降的速度明显比R2要快,试验结束时系统R1新鲜垃圾生物反应器中垃圾体上、下层有机质含量分别稳定在221.2g/kg和223.5g/kg,BDM分别稳定在19.1%和18.3%。而系统R2新鲜垃圾生物反应器中垃圾体上、下层有机质含量分别稳定在250.2g/kg和264.4g/kg,BDM分别稳定在20.2%和21.1%。
     (3)系统R1和R2经过70天左右的运行,填埋垃圾基本不再产生新的渗滤液。试验结束时系统R1和R2新鲜垃圾渗滤液累积水量各自在440L左右,系统问渗滤液量相差很小。
     (4)系统R1渗滤液pH值从第3天的4.78开始缓慢上升,基本恒定在6.00~8.00的中性范围内。系统R2渗滤液pH值从中试开始到结束为止一直呈酸性,基本上在5.20左右。
     (5)系统R1和R2新鲜垃圾渗滤液COD、VFA浓度变化相差甚远。系统R1渗滤液COD、VFA浓度分别从最初的14800.2mg/L和5689.3mg/L上升到最高点的24770.5mg/L和17932.4mg/L,而后较之系统R2快速下降。试验结束时,COD、VFA浓度分别为10113.1mg/L和1502.3mg/L。而系统R2渗滤液COD、VFA浓度分别从最初的15098.0mg/L和6510.3mg/L快速上升到最高点的41328.4mg/L和34688.0mg/L。但随着时间的延长,渗滤液COD和VFA浓度下降缓慢,始终处于较高状态。试验结束时,系统R2渗滤液COD浓度高居35300.9mg/L,sr~(2+)VFA浓度为23723.4mg/L,分别是系统R1的3.49倍和15.79倍。
     (6)系统R1和R2渗滤液TN和NH_4~+-N浓度的变化趋势基本相同,都经历了由低到高、逐渐累积稳定的过程,但两者上升速度和最终累计值不一样。系统R1渗滤液TN和NH_4~+-N浓度分别从开始的502.9mg/L和410.2mg/L不断累积,最终稳定在822.3mg/L和765.5mg/L。而系统R2渗滤液TN和NH_4~+-N浓度分别从开始的567.1mg/L和432.6mg/L不断累积,最终稳定在2790.6mg/L和2309.1mg/L,分别是系统R1的3.39倍和3.02倍。
     (7)陈垃圾在运行进程中的减容率很小,排除试验开始因不压实引起的减容率外,试验结束时陈垃圾减容率只有2%,陈垃圾基本稳定化。
     (8)陈垃圾生物反应器对渗滤液具有一定的缓冲能力和有机物降解性能,渗滤液出水基本呈中性,COD去除率由一开始的7.4%逐渐上升到最高值的39.2%,然后下降,基本稳定在10.O%左右。
     (9)土壤对渗滤液COD和NH_4~+-N的吸附方程符合Langmuir等温吸附方程,吸附量都是随着平衡溶液中各自浓度的增加而增加。由于吸附是放热反应,所以土壤对渗滤液COD和NH_4~+-N的吸附量均随温度的升高而下降,饱和吸附量的大小依次是10℃、20℃和30℃。渗滤液COD和NH_4~+-N的解吸量都是随土壤中各自吸附量的增加而增加,但从土壤中解吸的比例较低。
     (10)温度对渗滤液COD在土壤中的净化效果影响较大。20℃和30℃状况下,随着培养时间的延长,渗滤液COD在土壤中的溶出量呈大幅度下降趋势。经过3天的时间,渗滤液A中COD溶出量分别从第0天的1984.8mg/kg迅速下降到第3天的52.0mg/kg和54.2mg/kg。渗滤液B中COD溶出量分别从第O天的768.0mg/kg迅速下降到第3天的54.18mg/kg和50.98mg/kg。3天以后,两种渗滤液COD溶出量均变化很小,浓度很低。而在低温10℃状况下,渗滤液随着培养时间的延长,COD下降缓慢,经过一周的时间,渗滤液A在土壤中COD溶出量仍高达714.0mg/kg。渗滤液B由于本身所含污染物较低,故与20℃、30℃相比净化效果不是特别明显,且随着时间的延长慢慢缩小,一周后渗滤液B在土壤中COD溶出量为98.0mg/kg。
     (11)温度对渗滤液NH_4~+-N在土壤中的净化效果影响较大。20℃和30℃状况下,随着培养时间的延长,渗滤液NH_4~+-N在土壤中的溶出量呈大幅度下降趋势。经过5天的时间,渗滤液A中NH_4~+-N溶出量分别从第0天的105.32mg/kg迅速下降到第5天的4.36mg/kg和4.34mg/kg。渗滤液B中NH_4~+-N溶出量分别从第0天的106.38mg/kg迅速下降到第5天的4.38mg/kg和4.34mg/kg。5天以后,两种渗滤液NH_4~+-N溶出量均变化很小,浓度很低。而在低温10℃状况下,渗滤液随着培养时间的延长,NH_4~+-N下降缓慢,经过一周的时间,渗滤液A和B在土壤中NH_4~+-N溶出量分别为33.44mg/kg和33.58mg/kg。
     (12)该村生活垃圾经过序批式生物反应器处理后,渗滤液年产生量为10000L,需要396.8m~2土壤经过5天处理后,渗滤液COD和NH_4~+-N溶出量均变化很小,浓度很低。又因为每套生物反应器装置70天左右才排放渗滤液1次,即396.8m~2土壤每年仅处理渗滤液1次,则被土壤吸附的COD和NH_4~+-N,经过1年的时间,势必能得到很好降解。
     (13)序批式生物反应器经过70天左右运行后产生的渗滤液经过土壤1次净化后,土壤中Cu增量为0.2mg/kg,Zn增量为0.5mg/kg,再由于这块土壤每年仅净化处理渗滤液1次,则重金属对土壤污染较低。
In this paper,rural domestic refuse in Shi village of Fu Yang city was investigated,and two sets of bioreactor systems named R1(sequencing batch bioreactor)and R2(leachate recirculated directly bioreactor)were designed.A study of biological treatment of rural domestic refuse at pilot scale was conducted for about 70 days,and a follow-up experiment of leachate absorption,desorption and purification by soil was carried out in laboratory.The main results of this research were summarized as follows:
     (1)On the whole,the trends of fresh refuse reduction in R1 and R2 were similar during operation.In the end,reduction rate of R1 and R2 were up to 57%and 53%, respectively.
     (2)Fresh refuse organic matter content and BDM in upper and lower layers of R1 and R2 decreased throughout the pilot process,and finally became stable.During operation,refuse organic matter content and BDM in R1 declined significantly faster than R2.In the end,refuse organic matter content in upper and lower layers of R1 dropped to 221.2 g/kg and 223.5 g/kg,and R2 for the corresponding 250.2 g/kg and 264.4 g/kg,respectively.BDM in upper and lower layers of R1 dropped to 19.1%and 18.3%,and R2 for the corresponding 20.2%and 21.1%.
     (3)After running for about 70 days,refuse almost didn't produce leachate any longer.In the end,leachate amount of R1 and R2 was almost the same,each of which accumulating to a total of 440L,respectively.
     (4)Leachate pH value of R1 rised slowly from the third day of 4.78,and then was basically neutral,ranged from 6.00 to 8.00.During the whole pilot,the leachate pH value of R2 had been acid,basically around 5.20.
     (5)The change of leachate COD and VFA concentration of R1 and R2 was greatly different.Leachate COD and VFA concentration of R1 rised slowly from 14800.2 mg/L and 5689.3 mg/L to the peak of 24770.5 mg/L and 17932.4 mg/L,then decreased rapidly compared with R2.In the end,leachate COD and VFA concentrations were 10113.1 mg/L and 1502.3 mg/L.On the contrary,leachate COD and VFA concentration of R2 rised rapidly from the third day of 15098.0 mg/L and 6510.3 mg/L to the peak of 41328.4.mg/L and 34688.0 mg/L.Then,leachate COD and VFA concentration of R2 decreased slowly,maintaining at a high level.In the end, leachate COD and VFA concentrations of R2 were 35300.9 mg/L and 23723.4 mg/L, which were 3.49 and 15.79 times R1,respectively.
     (6)Leachate TN and NH_4~+-N concentration of R1 and R2 changed same,firstly increased and then gradually stabilized,but the increased speed and the final accumulated value were different.Leachate TN and NH_4~+-N concentration of R1 rised slowly from 502.9 mg/L and 410.2 mg/L to the end of 822.3 mg/L and 765.5 mg/L. On the contrary,leachate TN and NH_4~+-N concentration of R2 rised rapidly from 567.1 mg/L and 432.6 mg/L to the end of 2790.6 mg/L and 2309.1 mg/L,which was 3.39 and 3.02 times R1,respectively.
     (7)During operation,there was little reduction of aged refuse.Ruling out the reduction caused by no compaction,reduction rate of aged refuse was only 2%in the end,indicated that aged refuse was basically stable.
     (8)Aged-refuse-based bioreactor had a buffer capacity and degradation performance of organic matter for leachate.Leachate effluent was basically neutral, and COD removal efficiency increased from the start of 7.4%gradually to a maximum value of 39.2%,and then dropped,basically stable at around 10.0%.
     (9)The adsorption equation of leachate COD and NH_4~+-N in the soil was consistent with Langmuir isothermal adsorption equation,and the adsorption of leachate COD and NH_4~+-N by the soil increased by their concentration.Because adsorption was a exothermic reaction,adsorption of COD and NH_4~+-N decreased by temperature,saturated adsorption of the order was in 10℃、20℃and 30℃.The desorption of leachate COD and NH_4~+-N increased by their adsorption amount,but desorbed little from the soil.
     (10)Temperature had a great impact on the purifying effect of leachate COD by the soil.At 20℃and 30℃,with the extension of culture time,the exudation of leachate COD was on a significant downward trend.For three days,the COD exudation of leachate(A)decreased rapidly from the beginning of 1984.8 mg/kg to the third day of 52.0 mg/kg and 54.2 mg/kg.The COD exudation of leachate(B) decreased rapidly from the beginning of 768.0 mg/kg to the third day of 54.18 mg/kg and 50.98 mg/kg.And then,the COD exudation of both leachate changed very little. At low temperature of 10℃,the exudation of leachate COD declined slowly.After a week,the COD exudation of leachate(A)was still up to 714.0 mg/kg.As leachate(B) contained little pollutants,the purifying effect was not particularly evident compared with 20℃,30℃,and gradually narrow with the extension of time.The COD exudation of leachate(B)was 98.0 mg/kg after a week.
     (11)Temperature had a great impact on the purifying effect of leachate NH_4~+-N by the soil..At 20℃and 30℃,With the extension of culture time,the exudation of leachate NH_4~+-N was on a significant downward trend.For 5 days,the NH_4~+-N exudation of leachate(A)decreased rapidly from the beginning of 105.32 mg/kg to the fifth day of 4.36 mg/kg and 4.34 mg/kg.The NH_4~+-N exudation of leachate(B) decreased rapidly from the beginning of 106.38 mg/kg to the fifth day of 4.38 mg/kg and 4.34 mg/kg.And then,the NH_4~+-N exudation of both leachate changed very little, and the NH_4~+-N concentration was very low.At low temperature of 10℃,the exudation of leachate NH_4~+-N declined slowly.After a week,the NH_4~+-N exudation of leachate(A)and leachate(B)were 33.44 mg/kg and 33.58 mg/kg,respectively.
     (12)When the rural domestic refuse in Shi village was disposed by sequencing batch bioreactor,total leachate amount was 10000L one year.Therefore,it need a soil of 396.8m~2 and five days treatment to reach a low COD and NH_4~+-N exudation.As each set of bioreactor apparatus discharged leachate once in 70 days,that is,the 396.8m~2 soil treated leachate only once in a year,leachate COD and NH_4~+-N adsorbed by the soil could be degradated well.
     (13)After leachate running in sequencing batch bioreactor for 70 days was purified by the soil once,Cu incremental content in soil was 0.2 mg/kg,Zn incremental content was 0.5 mg/kg.As the soil treated leachate only once in a year,so heavy metal had little pollution to the soil.
引文
[1]殷丽萍.农村生活垃圾问题及对策.云南环境科学,2006,25(B06):130-131.
    [2]何若,沈东升,朱荫湄.生物反应器填埋场处理生活垃圾的研究进展.浙江大学学报(农业与生命科学版),2004,30(3):252-258.
    [3]Ding A.Z.,Zhang Z.H.,Fu J.M.,et al.Biological control of leachate from municipal landfills.Chemosphere,2001,44(2):1-8.
    [4]沈东升主编.生活垃圾填埋生物处理技术.北京:化学工业出版社,2003。
    [5]Parker A..Behaviour of wastes in landfill leachate.Practical Waste Management,1983:205-217.
    [6]Pohland F.G...Critical review and summary of leachate and gas production from landfill.U.S.Environmental Protection Agency:Cincinnati,OH.1986.
    [7]Pohland F.G...Sanitary landfill stabilization with leachate recycle and residual treatment.U.S.Environmental Protection Agency,Cincinnati,Ohio,1975,EPA2600/2275043.
    [8]Barlaz M.A.,Ham R.K.,Schaefer D.M..Microbial chemical and methane production characteristics of anaerobically decomposed refuse with and without leachate recycling.Waste Management & Research,1992,I0(3):257-267.
    [9]Robioson H.D..The treatment of leachate from domestic wastes in landfill-leaerobic biological treatment of a medium strength leachate.Water Research,1983,17(12):1537-1548.
    [10]杨军,黄涛,张西华.温度对填埋垃圾渗滤液特征的影响.生态环境,2007,16(2):799-801.
    [11]朱青山,赵由才,赵爱华.添加物对填埋场稳定化的影响.城市环境与生态,1996,9(2):19-21.
    [12]董路,王琪,李姮,等.填埋场场址加速稳定技术的初步研究.中国环境科学,2000,4:461-464.
    [13]Pacey J.G..Landfill gas enhancement management.Seminar Publication: Landfill bioreactor design and operation.1995,175-183.
    [14]Warith M..Bioreactor landfills:experimental and field results.Waste Management,2002,22(1):7-17.
    [15]杨国栋,蒋建国,黄云峰,等.渗滤液回灌负荷对填埋场垃圾产气效能的影响.环境科学,2006,27(10):2129-2134.
    [16]邓舟,蒋建国,杨国栋,等.渗滤液回灌量对其特性及填埋场稳定化的影响.环境科学,2006,27(1):184.188.
    [17]Aziz H.A.,Alias S.,Adlan M.N.,et al.Colour removal from landfill leachate by coagulation and flocculation processes.Bioresource Technology,2007,98(1):218-220.
    [18]Dorota K.,Ewa K..The effect of landfill age on municipal leachate composition.Bioresource Technology,2008,99(13):5981-5985.
    [19]O'Keefe D.M.,Chynoweth D.P.Influence of phase separation leachate recycle and aeration on treatment of municipal solid waste in simulated landfill cells.Bioresource Technology,2000,72(1):55-56.
    [20]何若,沈东升,方程冉.生物反应器填埋场系统的特性研究.环境科学学报,2001,21(6):703-710.
    [21]何若,沈东升.生物反应器-填埋场处理渗滤液的试验研究.环境科学,2001,22(6):99-107.
    [22]王君琴,徐炎华,贺永华,等.生物反应器填埋场臭气中微量氨气和挥发性脂肪酸的特征研究.农业环境科学学报,2005,24(6):1212-1216.
    [23]Raynal J.,Delgenes J.P.,Moletta R..Two-phase anaerobic digestion of solid wastes by a municipal liquefaction reactors process.Bioresource Technology,1998,65(1):97-103.
    [24]Chynoweth D.P.,Owens J.,O'keefe D.M.,et al.Sequential batch anaerobic composting of the organic fraction of municipal solid waste.Water Science and Technology,1992,25(7):327-329.
    [25]Chugh S.,Clarke W.,Nopharstana A.,et al.Degradation of unsorted MSW by sequential batch anaerobic reactor.In Sardinia 95,Fifth International Landfill Symposium,Cagliari,Italy,1995:67-77.
    [26]杨茂,程水源.序批式生物反应器填埋场特性的研究.贵州环保科技,2006,12(2):41-48.
    [27]Onay T.T.,Pohland F.G...In situ nitrogen management in controlled bioreactor landfills.Water Research,1998,32(5):1383-1392.
    [28]Hanashima M..Pollution control and stabilization process by semi-areobic landfill type:The Fukuoka method.Waste Management and Landfill Symposium,1999.
    [29]Berge N.D.,Reinhart D.R.,Dietz J.,et al.In situ ammonia removal in bioreactor landfill leachate.Waste Management,2006,26(4):334-343.
    [30]何若,沈东升,龙焰,等.脱氮型生物反应器填埋场中生活垃圾的稳定化研究.浙江大学学报(农业与生命科学版),2006,32(01):21-26.
    [31]张文静,赵勇胜,孙景刚,等.顶部通风在渗滤液循环中的作用研究.环境科学学报,2006,26(01):70-75.
    [32]李青松,金春姬,乔志香,等.垃圾填埋场渗滤液的产生及处理现状.青岛大学学报,2003,18(4):82-85.
    [33]Calli B.,Mertoglu B.,Inanc B..Landfill leachate management in Istanbul:applications and alternatives.Chemosphere,2005,59(6):819-829.
    [34]王宗平,陶涛,袁居新,等.垃圾渗滤液预处理——氨吹脱.给水排水,2001,27(6):15-19.
    [35]Rodriguez J.,Castrillon L.,Maranon E.,et al.Removal of non-biodegradable organic matter from landfill leachates by adsorption.Water Research,2004,38(6):3297-3303.
    [36]朱启红.活化粉煤灰对垃圾渗滤液的COD吸附作用研究.农机化研究,2007,(9):210-216.
    [37]Piatkiewicz W..A polish study:Treating landfill leachate with membranes.Filtration & Separation,2001,38(7-8):22-26.
    [38]Kenichi U.,Tetsuo K.,Kazuya U.,et al.Leachate treatment by the reverse osmosis system.Desalination,2002,150(2):121-129.
    [39]Gilbert Y.S.,Chang J.,Kumiawan T.A.,et al.Removal of non-biodegradable compounds from stabilized leachate using VSEPRO membrane filtration. Desalination,2007,202(1-3):310-317.
    [40]Hard S.,Kennedy K.,Droste J..Low pressure reverse osmosis treatment of landfill leachate.Journal of Solid Waste Technology and Management,2001,27(1):1-14.
    [41]Birchler D.R..Landfill leachate treatment by evaporation.Environment Engineering,1994,120(5):109-131.
    [42]陈经涛,李克斌,王建军,等.利用Fenton氧化法对垃圾渗滤液的预处理试验研究.陕西师范大学学报(自然科学版),2007,35(4):58-61.
    [43]Antonio L.,Michele P.,Angela V.,et al.Fenton's pre-treatment of mature landfill leachate.Chemosphere,2004,54(7):1005-1010.
    [44]Tsai C.T.,Lin S.T.,Shue Y.C.,et al.Electrolysis of Soluble Organic Matter in Leachate from Landfill.Water Research,1997,31(12):3073-3081.
    [45]杨继东,赵勇胜,董军,等.电化学氧化预处理垃圾渗滤液的可行性研究.环境科学与技术,2006,29(12):7-8,25.
    [46]潘终胜,汤金辉,赵文玉,等.化学沉淀法去除垃圾渗滤液中氨氮的试验研究.桂林工学院学报,2003,23(1):89-92.
    [47]Ozturk I.,Altinbas M.,Koyuncu I.,et al.Advanced physico-chemical treatment experiences on young municipal landfill leachates.Waste Management,2003,23(5):441-446.
    [48]Zouboulis A.I.,Chai X.L.,Katsoyiarmis I.A..The application of bioflocculant for the removal of humic acids from stabilized landfill leachates.Journal of Environmental Management,2004,70(1):35-41.
    [49]Tatsi A.A.,Zouboulis A.I.,Matis K.A..Coagulation-flocculation pretreatment of sanitary landfill leachates.Chemosphere,2003,53(7):737-744.
    [50]李泗清,胡勇有,程建华.壳聚糖三元接枝高分子絮凝剂对垃圾渗滤液生化处理出水的絮凝研究.环境污染与防治,2006,28(10):744-747.
    [51]Zhu W.P.,Bin Y.J.,Li Z.H.,et al.Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater.Water Research,2002,36(8):1947-1954.
    [52]孙佩石,杨英,陈嵩,等.垃圾渗沥液的湿式催化氧化技术处理试验研究.环境保护,2003,22(9):16-18.
    [53]杨运平,唐金晶,方芳,等.UV/TiO_2/Fenton光催化氧化垃圾渗滤液的研究.中国给水排水,2006,22(7):34-37,41.
    [54]Wiszniowski J.,Robert D.,Joanna S.G.,et al.Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments:Influence of inorganic salts.Applied Catalysis B:Environmental,2004,53(2):127-137.
    [55]黄继国,黄国鑫,聂广正,等.中温UBF与UASB两相厌氧系统处理垃圾渗滤液的实验研究.吉林大学学报(地球科学版),2007,37(1):144-147.
    [56]Bohdziewicz J.,Kwarciak A..The application of hybrid system UASB reactor-RO in landfill leachate treatment.Desalination,2008,222(1-3):128-134.
    [57]沈耀良,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤混合废水.中国给水排水,1999,15(5):10-12.
    [58]Neczaj E.,Kacprzak M.,Lach J.,et al.Effect of sonication on combined treatment of landfill leachate and domestic sewage in SBR reactor.Desalination,2007,204(1-3):227-233.
    [59]Timur H.,Ozturk I..Anaerobic sequencing batch reactor treatment of landfill leachate.Water Research,1999,33(15):3225-3230.
    [60]Keenan P.J.,Iza J.,Switzen M.S..Inorganic solids development in a pilot scale anaerobic reactor treating municipal solid waste landfill leachate.Water Environmental Research,1993,65(2):181-188.
    [61]Henry J.G.,Prasad D.,Young H..Removal of Organics from Leachates by Anaerobic Filter.Water Research,1987,21(11):1395-1399.
    [62]Aghamohammadi N.,Aziz H.B.A.,Isa M.H.,et al.Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology.Bioresource Technology,2007,98(18):3570-3578.
    [63]Frascari D.,Bronzini F.,Giordano G.,et al.Long-term characterization,lagoon treatment and migration potential of landfill leachate:a case study in an active Italian landfill.Chemosphere,2004,54(3):335-343.
    [64]Orupold K.,Termo T.,Henrysson T..Biological lagooning of phenols-contaning oil shale ash heaps leachate.Water Research,2000,34(18):4389-4396.
    [65]Loulddou M.X.,Zouboulis A.I..Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment.Environmental Pollution,2001,11(2):273-281.
    [66]Kazuaki H.,Aldhiko T.,Satoshi T.,et al.Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor.Journal of Biotechnology,2003,100(1):23-32.
    [67]Akihiko T.,Kazuaki H.,et al.Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment.Journal of Bioscience and Bioengineering,2003,95(2):170-178.
    [68]Imai A.,Onuma K.,Inamori Y.,et al.Effects of pre-ozonation in refractory leachate treatment by the biological activated carbon fluidized bed process,Environmental Technology,1998,19(2):221-273.
    [69]Chert S.,Sun D.,Chung J.S..Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system.Waste Management,2008,28(2):339-346.
    [70]Neczaj E.,Kacprzak M.,Karnizela T.,et al.Sequencing batch reactor system for the co-treatment of landfill leachate and dairy wastewater.Desalination,2008,222(1-3):404-409.
    [71]曹占峰,何晶晶,邵立明,等.SBR法处理垃圾填埋场新鲜渗滤液的实验研究.环境污染治理技术与设备,2005,6(2):33-35.
    [72]楼紫阳,赵由才,张全.渗滤液处理处置技术及工程实例.北京:化学工业出版社,2007.
    [73]魏云梅,赵由才.垃圾渗滤液处理技术研究进展.有色冶金设计与研究,2007.28(2-3):176-186.
    [74]褚衍洋,徐迪民.矿化垃圾床+SBR 工艺处理渗滤液的论证及研究.污染防治技术,2003,16(3):33-35.
    [75]钱小青,牛东杰,楼紫阳,等.填埋场矿化垃圾资源综合利用研究进展.环境卫生工程,2006,14(2):62-64.
    [76]潘终胜,赵由才.矿化垃圾反应床处理渗滤液的工程应用.中国给水排水,2006,22(6):58-61.
    [77]Lei Y.M.,Shen Z.M.,Huang R.H.,et al.Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation.Water Research,2007,41(11):2417-2426.
    [78]胡袅,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素.环境科学进展,1998,7(5):14-22.
    [79]Yong R.N.,Rao S.M..Mechanistic evaluation of mitigation of petroleum hydrocarbon contamination by soil medium.Canadian Geotechnical Journal,1991,28(6):84-91.
    [80]Oman C.,Rosqvist H..Transport fate of organic compounds with water through landfills.Water Research,1999,33(10):2247-2254.
    [81]党志,于虹,黄伟林,等.土壤/沉积物吸附有机污染物机理研究的进展.化学通报,2001,(2):81-85.
    [82]Lee D.Y.,Farmer W.J..Dissolved organic matter interaction with napropamide and four other nonionic pesticides.Journal of Environment Quality,1989,18(3):468-474.
    [83]McCarthy J.F.,Roberson L.E.,Burrus L.W..Association of benzo(a)pyrene with dissolved organic matter:Prediction of dome from structural and chemical properties of the organic matter.Chemosphere,1989,19(12):1911-1920.
    [84]Maxin C.R.,Kegel-Knaber I..Partitioning of polycyclic aromatic hydrocarbons(PAH)to water-soluble soil organic matter.European Journal of Soil Science,1995,46(3):193-204.
    [85]Klaus U.,Mohamed S.,Volk M.,et al.Interaction of aquatic humic substances with anliazine and its derivatives:The nature of the bound residue.Chemosphere,1998,37(2):341-361.
    [86]凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响.应用生态学报,2004,15(2):326-330.
    [87]王子健,黄圣彪,马梅,等.水体中溶解有机物对多氯联苯在淮河水体沉积物上的吸附和生物富集作用的影响.环境科学学报,2005,25(1):39-44.
    [88]Jardine P.M.,Weber N.L.,McCarthy J.F..Mechanism of dissolved organic carbon adsorption on soil.Soil Sci.Soc.Am.J.,1989,53:1378-1385.
    [89]刘凌,崔广柏.吸附对土壤水环境中有机污染物生物降解过程的影响研究.水科学进展,2000,11(4):401-408.
    [90]罗雪梅,刘昌明,何孟常.土壤与沉积物对多环芳烃类有机物的吸附作用.生态环境,2004,13(3):394-398.
    [91]Johnson W.P.,Amy G.L..Facilitated transport and enhanced desorption of PAHs by natural organic in aquifer sediments.Environmental Science and Technology,1995,29:807-817.
    [92]Arthur M.A.,Fahey T.J..Controls on soil solution chemistry in subalpine forest in north central Colorado.Soil Sci.Soc.Am.J.,1993,57:1122-1130.
    [93]Moore T.R..Dynamics of dissolved organic carbon in forest and disturbed catchments Maimai Westland,New Zealand.Water Resources Research,1989,25(6):1321-1333.
    [94]Liang B.C.,Gregorich E.G.,Schnitzer M.,et al.Characterization of water extracts of two manures and their adsorption on soils.Soil Sci.Soc.Am.J,1996,60:1758-1763.
    [95]姜必亮,王伯荪,蓝崇钰,等.不同质地土壤对填埋场渗滤液的吸收净化效能.环境科学,2000,(5):32-37.
    [96]Bagchi A..Natural attenuation mechanisms of landfill leachate and effects of various factors on the mechanism.Waste Management and Research,1987,5(4):453-464.
    [97]张甲珅,曹军,陶澎.土壤水溶性有机物吸着系数及其影响因素研究.地理科学,2001,21(5):423-427.
    [98]Xia G.,Ball W.P..Adsorption-partition uptake of nine low polarity organic chemicals on a natural sorbent.Environmental Science and Technology, 1999,33(1):262-269.
    [99]Xia G.,Ball W.P..Polanyi-based models for the competitive sorption of low-polarity organic contaminants on a natural sorbent.Environmental Science and Technology,2000,34(5):1246-1253.
    [100]Chiou C.T.,Peters L.J.,Fried V.H..A physical concept of soil-water equilibria for nonionic organic compounds.Science,1979,206(7):831-832.
    [101]Hamaker J.W.,Thomson J.M..Adsorption of organic chemicals in the soil environment.New York:Dedder,1972.
    [102]张自杰主编.废水处理理论与设计.北京:中国建筑工业出版社,2002.
    [103]Xing B.,Pignatello J.J.,Gigliotti B..Competitive sorption between atrazine and other organic compounds in soils and model sorbents.Environmental Science and Technology,1996,30(4):2432-2440.
    [104]Schirmer M.,Butler B.J..Transport behaviour and natural attenuation of organic contaminants at spill sites.Toxicology,2004,205(3):173-179.
    [105]李建萍,李绪谦,王存政,等.垃圾渗滤液有机污染组分在包气带中衰减规律的模拟研究.吉林大学学报(地球科学版),2004,34(4):607-611.
    [106]焦胜,曾光明,王敏,等.垃圾填埋场渗滤液有机物质量浓度的预测.中南大学学报(自然科学版),2004,35(2):206-210.
    [107]刘疆鹰,徐迪民,赵由才,等.大型垃圾填埋场渗滤水氨氮衰减规律.环境科学学报,2001,21(3):323-327.
    [108]赵由才,黄仁华,赵爱华,等.大型填埋场垃圾降解规律研究.环境科学学报,2000,20(6):736-740.
    [109]朱青山,赵由才,徐迪民.垃圾填埋场中垃圾降解与稳定化模拟试验.同济大学学报(自然科学版),1996,24(5):596-600.
    [110]Chang F.H.,Alexander M..Effect of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils.Soil Science,1984(138):543-550.
    [111]Mihelcic J.R.,Lueking D.R.,Mitzell R..Bioavailablitity of sorbed and separate-phase chemical.Biodegradation,1993(3):141-154.
    [112]Steinren S.M.,Pignatello J.J.,Sawhney B.L..Persistence of 1,2-dibromoethane in soils:entrapment in intraparticle micopores.Environmental Science and Technology,1987,(21):1201-1208.
    [113]Ruegge.K.,Bjerg P.L.,Mosbak H.,et al.Fate of MCPP and atrazine in an anaerobic landfill leachate plume(Grindsted,Denmark).Water Research,1999,33(10):2455-2458.
    [114]付美云.垃圾渗滤液中水溶性有机物在土壤中的行为及其环境影响(博士论文),南京农业大学,2005.
    [115]Christensen J.B.,Jensen D.L.,Christensen T.H..Effect of dissolved organic carbon on the mobility of Cadmium,Nickel and Zinc in leachate polluted groundwater.Water Research,1996,30(12):3037-3049.
    [116]Ehrig H.J..Quality and quantity of sanitary landfill leachate.Waste Management and Research,1983,1(1):53-68.
    [117]Johnson C.A.,Kaeppeli M.,Brandenberger S.,et al.Hydrological and geochemical factors affecting leachate composition in municipal solid waste cinerator bottom ash.Journal of Contaminant Hydrology,1999,40(3):239-259.
    [118]Jensen D.L.,Christensen T.H..Colloidal and dissolved metals in leachates from four Danish landfills.Water Research,1999,33(9):2139-2147.
    [119]潘建民.湖州市杨家埠垃圾填埋场环境污染调查及评价.环境污染与防治,1996,18(2):34-38.
    [120]张辉,马东升.城市生活垃圾向土层释放重金属研究.环境化学,2001,20(1):43-47.
    [121]肖正,何品晶,邵立明,等.填埋场内重金属总量及其形态分布对迁移性的影响.环境化学,2005,24(3):265-269.
    [122]Christensen T.H.,Kjeldsen P.,Bjerg P.L.,et al.Biogeochemistry of landfill leachate plumes.Applied Geochemistry,2001,16(7-8):659-718.
    [123]Bozkurt S.,Moreno L.,Neretsson I..Long-term fate of organics in waste deposits and its effect on metal release.Science of the Total Environment,1999,228(2-3):135-152.
    [124]姜必亮,王伯荪,蓝崇钰.垃圾填埋场渗滤液灌溉地土壤和植物中重金属 积累.应用与环境生物学报,2000,6(4):374-378.
    [125]魏复盛.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [126]鲍士旦主编.土壤农化分析.北京:中国农业出版社,2000.
    [127]奚旦立,孙裕生,刘秀英.环境监测.北京:高等教育出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700