用户名: 密码: 验证码:
基于Lamb波的机翼蒙皮结构损伤检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构损伤检测技术广泛地应用在飞行器、桥梁和海洋等大型复杂结构中,基于Lamb波的无损检测技术是结构无损检测系统中重要的检测方法。
     本文根据Lamb波传播理论,采用主动Lamb损伤检测技术,通过粘贴在结构表面的压电传感器,加载合适的激励信号。激励信号在结构中传播,通过对采集到的响应信号进行分析及模式处理,初步实现了二维结构的损伤判断。采用对称加载和计算损伤百分比的方法,判断了加筋板结构中的多损伤位置和损伤程度。
     论文主要工作如下:
     首先,本文探讨了Lamb波在复合材料结构中的传播特性,绘制出了Lamb波相速度和群速度的频散曲线图,根据频厚积的关系,研究了实验所选频率范围内适于复合材料损伤检测的最优中心频率。
     其次,本文分析了Lamb波在复合材料板中损伤前后的传播速度,根据损伤前后动态响应信号的差信号中损伤反射波包延迟时间,采用椭圆定位方法判断损伤位置。文中分别对细长板、正方形板、曲面板和加筋板进行了损伤定位。其中对等效简化后的加筋板结构进行了多损伤位置和损伤程度判断。
     最后,计算并判断了蒙皮和筋板结构上不同损伤位置;对比判断加筋板结构上不同程度损伤的损伤反射比,建立损伤程度和损伤反射百分比的对应关系。
     通过对比采集到的结构损伤前后动态响应信号,消除掉损伤前后动态响应信号中的公共信息,得到只包含损伤信息的差信号,根据差信号中损伤波包飞行时间和波包峰值衰减系数判断损伤位置和损伤程度。分析结果表明,基于Lamb波的全局损伤检测技术,能够快速检测大面积复杂结构。
In modern society, structural health monitoring system is widely used in aircraft, bridge,offshore platforms and large and complex structures. The Lamb wave based structural damageddetection technology plays a very important role in structural health monitoring system.
     This study adopts active detection technique based on Lamb Wave to monitor damage incomposite materials. The suitable excitation signal be loaded by the sensors pasted on thestructure surface. The excitation signal propagation in structure, by comparative analysis andpattern processing response signals collected before and after damage happens, the damagelocation can be determined. Through symmetrical load and calculate percentage of damage tojudge the stiffened damage locations and degree.
     The main works are showed as follows:
     Firstly, the propagation characteristics of Lamb wave in composite structure are discussed.According to the phase velocity and group velocity dispersion curve, the optimal centralfrequency is studied in the range of selective frequency.
     Secondly, judge and analysis the propagation velocity of composite before and after damagehappens, according to the arrival time of the Lamb wave group velocity. The damage locationswere judged by the elliptical location method. In this paper, the damage location is judged fornarrow plate, square plate, curved plate and stiffened plate respectively.
     Finally, the damage degree of stiffened plate was judged by different damage reflectance;the corresponding relationship between damage degree and damage reflectance be establish bycalculation results.
     The difference signals were calculated by eliminating common information of pre and postdynamic response signals. Damage location and degree be judged by time of fly and attenuationcoefficient of wave packet peak according to difference signals. The results show that large andcomplex structure can be rapidly detected by the technical research on global damage detecttechnology based on Lamb wave.
引文
[1]陶宝祺,智能材料结构[M].北京:国防工业出版社,1997:86-123.
    [2]周智,欧进萍.土木工程智能健康监测与诊断系统[J].传感器技术,2001,20(11):1~4.
    [3] Staszew ski W J, Boller C, Tomlinson G R.Health Monitoring of Aero-space Structures: Smart SensorTechnologies and Signal Processing[M].England: John Wiley&Sons Ltd,2004:1~3.
    [4] BollerC. Next generation structural health monitoring and its integration into aircraft design[J].International Journal of Systems Science,2000,31(11):1333-1349.
    [5] W.J. Staszewski, S. Mahzan, R. Traynor. Health monitoring of aerospace composite structures-Active andpassive approach[J]. Composites Science and Technology,2009,69(6):1678–1685.
    [6] Wang S.S, Ren Q.W., Qiao P.Z. Structural Damage Detection Using Local Damage Factor[J]. Journal ofVibration and Control,2006,12(9):955-973.
    [7]王强.无主动参考Lamb波结构损伤时反成像检测方法[J].航空学报,2010,31(1):178-183.
    [8]陈长征,罗跃纲.结构损伤检测与智能诊断[M].北京:科学出版社,2001:154-206.
    [9]孙狭生.飞机结构健康监测技术进展及发展趋势[J].结构强度研究,2009,1(1):1-9.
    [10] H.Speckmann,J.-P.Daniel,Structural Health Monitoring For Airline,From Research to UserRequirement[J],European Veiw,2004,23(6):742-750.
    [11]孙亚飞,陈仁文,周勇等.测试仪器发展概述[J].仪器仪表学报,2003,24(5):480-489.
    [12] Giurgiutiu.V, Zagrai.A and Bao.Jing Jing Piezoelectric wafer embedded active sensors for aging aircraftstructural health monitoring[J]. Structural Health Monitoring,2002,1(1):41-61.
    [13]郭洪波,宫声凯,徐惠彬等.先进航空发动机热障涂层技术研究进展中国材料进展[J].2009,15(2):23-28.
    [14]袁梅.飞机结构健康监测技术及传感器网络[J].航空制造技术,2008,22(2):44–48.
    [15]尚柏林,宋笔锋,万方义.飞行器结构健康监控系统研究进展及关键技术[J].测控技术,2008,27(7):1–3.
    [16]肖迎春.飞机结构健康检测研究[J].结构强度研究,2009,1(1):45-51.
    [17] S.Takeda, Y. Aoki, T. Ishikawa. Structural health monitoring of composite wing structure during durabilitytest[J]. Composite Structures,2007,79(1):133–139.
    [18] S.T. Quek, P.S. Tua, Q. Wang. Detecting Anomalies in Beams and Plate based on the Hilbert–HuangTransform of Real Signals[J]. Smart Materials and Structures2003,12(5):447~460.
    [19] Hunt S R, Hebden I G. Validation of the Eurofighter Typhoon structural health and usage monitoringsystem[J].Smart Materials and Structures,2001,10(3):497-503.
    [20] Fu-Kuo, Chang.A Summary Report on the First Stanford Workshop on Structural Health Monitoring [J].Structural Health Monitoring,1997,26(8):18-20.
    [21] Fritzen Claus-Peter and Bohle Karsten. Application of Model-based Damage Identification to aSeismically Loaded Structure[J]. Smart Materials and Structures,2001,10:452~458.
    [22]袁慎芳.结构健康监控[M].北京:国防工业出版社,2007:236-267.
    [23]陈换过,闫云聚.改进HHT在复合材料盒段损伤检测中的应用[J].机械强度,2007,29(2):175-179.
    [24]张磊涛.HHT在结构健康监测中的应用研究[D].杭州:浙江理工大学机械与控制学院,2010.
    [25]陈换过,张磊涛.解决EMD端点效应问题的方法研究[J].仪器仪表学报,2009,19(2):283-288.
    [26]徐明秀,徐敏强,赵帅.高载旋转弯曲损伤的磁记忆检测[J].哈尔滨工业大学学报,2010,42(3):348-351.
    [27]石荣等.采用压电片阵列传感进行损伤监测的研究[J].压电与声光,2000,22(4):53-57.
    [28]胡桥,何正嘉.一种新的混合智能预测模型及其在故障诊断中的应用[J].西安交通大学学报,2005,39(9):928-932.
    [29]杜彦良.构件裂纹的探测和主动控制的一种新方法[J].航空学报,1993,14(7):337-341.
    [30] H.G. Chen, Y.J. Yan, J.S. Jiang. Vibration-based Damage Detection in Composite Wingbox Structures byHHT[J]. Mechanical Systems and Signal Processing,2007,21:307~321.
    [31] Y. K. Wen, Ping Gu. HHT-Based Simulation of Uniform Hazard Ground Motions[J].Advances inAdaptive Data Analysis,2009,1(1):71~87.
    [32] K. Worden and G. Manson. Experimental validation of a structural health monitoring methodology: part1.novelty detection on a laboratory structure [J]. Journal of Sound and Vibration,2003,59(2):323-343.
    [33] D. E. Newland, Wavelet Analysis of Vibration Theory[J].Journal of Vibration and Acoustics,2004,23(6):409-416.
    [34] KhalidyA et.A study of health monitoring systems of linear structures using waveletanalysis[J].ASMEPVP,2007:49-58.
    [35] AI一Khalidy A., Noori M., Hou, Z., Yamamoto.S., Masuda A. and Sone, A.. Health Monitoring systemsof Iinear structures using wavelet analysis[J]. Proceedings International Workshop in Structural healthMonitoring:Currnet Status and Perspectives,2007,33(1):164-175.
    [36] Kazys R, Mazeika L, Barauskas R,etal.3D Analysisof interaction of Lamb waves with defect s inloadedsteel plates[J].Ult rasonics,2006,44(1):1127–1130.
    [37] Giurgiutiu.V, Zagrai.A and Bao.Jing Jing Piezoelectric wafer embedded active sensors for aging aircraftstructural health monitoring[J].Structural Health Monitoring,2002,1(1):41-61.
    [38] M.Takeda, Y. Aoki, T. Ishikawa. Structural health monitoring of composite plate structure duringdurability test[J].Composite Structures,2007,79(1):133-139.
    [39] BollerC. Next generation structural health monitoring and its integration into aircraft design[J].International Journal of Systems Science,2000,31(11):1333-1349.
    [40] Fu-Kuo, Chang.A Summary Report on the First Stanford Workshop on Structural HealthMonitoring[J].Structural Health Monitoring,1997,12(8):12-18.
    [41]赫振华,李丽,王少辉等.飞机蒙皮裂纹的数学形态学识别方法[J].中国民航大学学报,2009,27(6):5-8.
    [42]李野,刘国强,肖迎春.复合材料共固化T加筋失效和破坏过程的压电传感器监测技术研究[J].机械强度,2008,23(5),68-74.
    [43] Z.K.Peng, Peter W. Tse, F.L. Chu. An Improved Hilbert–Huang Transform and its Application inVibration Signal Analysis[J]. Journal of Sound and Vibration,2005,25(8):187~205.
    [44] D. Pines, L. Salvino. Structural Health Monitoring using Empirical Mode Decomposition and the HilbertPhase [J]. Journal of Sound and Vibration,2006,29(4):97~124.
    [45]刘镇清.超声无损检测中的导波技术[J].无损检测,1999,21(8):367-375.
    [46]刘镇清.无损检测中的超声Lamb波[J].无损检测,1999,21(9):409-413.
    [47]张海燕,周全,吕东辉等.各向同性薄板中横穿孔缺陷的超声Lamb波层析成像[J].声学学报,2007,32(1):83-90.
    [48]李刚,石立华,袁慎芳等.基于预置压电阵列的Lamb波检测技术研究[J].压电与声光,2008,30(3),363-366.
    [49]王军,王寅观.金属薄板中Lamb波波速与静应力关系的理论研究[J].声学学报,2006,31(6):527-531.
    [50]邓明晰.层状固体结构表面性质的非线性Lamb波定征方法[J].航空学报,2006,27(4):713-719.
    [51]邓明晰.分层结构中Lamb波二次谐波发生的模式展开分析[J].声学学报,2005,30(2):132-142.
    [52]邓明晰.一种定征固体板表面性质的Lamb波方法[J].应用声学,2006,31(6):527-531.
    [53]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J].力学进展,2004,34(2):215-223.
    [54]王强,袁慎芳.主动Lamb波监测技术中的传感器元件优化布置研究[J].航空学报,2006,27(5):957-962.
    [55] Wu Z.,N. E. Huang, Ensemble Empirical Mode Decomposition: A Noise-assisted Data AnalysisMethod[J]. Adv. Adapt. Data Anal, in press.2009,1(1):1~41.
    [56]王强,袁慎芳.主动lamb波损伤成像监测中的波包重建方法[J].宇航学报,2009,30(3):1207-1211.
    [57]邓明晰,裴俊峰.无损评价固体板材疲劳损伤的非线性超声兰姆波方法[J].声学学报,2007,4(33):360-369.
    [58]解维华,汤珺,张博明等.基于lamb波的金属薄板损伤主动监测技术研究[J].压电与声光,2008,30(3):349-352.
    [59]孙凯,孟光,李富才等.基于弹性导波的厚钢梁结构的损伤检测[J].振动与冲击,2009,28(12):110-114.
    [60] Norden E. Huang and Zhaohua Wu. A Review on Hilbert-Huang Transform: Method and its Applicationsto Geophysical Studies Gabriel[J]. Sreviews of Geophysics.2008,36(9):1~23
    [61] L.Yu, L.Cheng,L.H.Yam. Online damage detection for laminated composite shells partially filled withfluid[J]. Journal of Composite Structures,2007,80(2):334-342.
    [62]樊仕轩,张海燕,吕东辉.基于HHT方法的多模式Lamb波走时提取[J].声学技术,2007,26(3):628-631.
    [63]刘镇清,他得安.用二维傅里叶变换识别Lamb波模式的研究[J].声学技术,2000,19(4):212-214.
    [64]张海燕,他得安.层状各向异性复合板中的兰姆波[M].北京:科学出版社,2008:86-134.
    [65]何友,王国宏.多传感器信息融合及应用[M].北京:电子工业出版社,2007:41-58.
    [66] S.T.Quek,P.S.Tua, Q.Wang. Detecting Anomalies in Beams and Plate based on the Hilbert–HuangTransform of Real Signals[J]. Smart Materials and Structures,2003,12(3):447-460.
    [67]崔飞,高岩.结构损伤识别的传感器优化布设方法[J].铁道建筑,2003,23(3):51-54.
    [68]沈功田,耿荣生,刘时风.声发射源定位技术[J].NDT,2002,24(3):114-125.
    [69]徐颖娣,袁慎芳等.二维结构损伤的主动Lamb波定位技术研究[J].航空学报,2004,25(5):476-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700