用户名: 密码: 验证码:
泰沂山区苹果属植物系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果属植物具有重要的经济意义,已经成为植物学、园艺学以及其他相关领域的研究热点。但本属植物难于鉴定,尤其栽培种没有模式植物,在一些研究文献中经常出现名不副实的现象,严重影响本属植物的深入研究和利用。因此,急需建立科学规范的分类体系。泰沂山区是我国苹果属植物资源较为丰富的地区之一,除特有的湖北海棠种下茶山海棠、泰山海棠2个类型外,其他种均为栽培类型,变异丰富,杂交现象严重,存在大量的种间过渡类型,因此同名异物、同物异名现象严重。20世纪50年代至70年代末,研究人员对该地区的苹果属植物资源进行过较大规模的收集保存及优良砧木选育工作,为《山东果树志》苹果砧木资源的编写工作奠定了坚实基础。现有关于泰沂山区苹果属植物资源的介绍多局限于简单资源归类,性状描述不够详细,使该区苹果属资源开发利用受到限制。本研究针对泰沂山区苹果属植物资源较为丰富的特点,进行了较大范围收集保存工作,在借鉴国内现有苹果属植物分类体系的基础上,引进数量分类方法,建立简化的中国苹果属植物数量化分类体系,对泰沂山区苹果属植物进行鉴定,明确其归属。结合应用不同来源的DNA序列及cpSSR分子标记技术,从分子系统学角度阐述泰沂山区苹果属植物资源系统学关系,主要研究结果如下。
     1.运用数量分类方法对27种中国苹果属植物进行表型系统分类,通过R型聚类明确了中国苹果属植物种间鉴定的49个独立性状,通过Q型聚类将中国苹果属植物分为2大组,即花楸苹果组和真苹果组,真苹果组中又将苹果系与山荆子系明确区分。主成分分析表明,新疆野苹果与所有栽培种聚在一起,花楸苹果组与真苹果组的野生种聚在一起。
     运用该数量分类体系对泰沂山区102份资源进行了有效鉴定。鉴定结果表明,泰沂山区苹果属植物主要存在西府海棠、楸子、沙果、苹果、湖北海棠、三叶海棠6个种,每个种均存在2个种下类型。西府海棠2个代表类型分别为难咽和林檎,楸子的代表类型为烟台沙果和茶果子,三叶海棠分黄三叶和红三叶,湖北海棠主要代表类型为平邑甜茶和泰山海棠,沙果主要分黄色品种群和红色品种群。难咽与林檎的主要区分性状为花蕾颜色、果梗长度、果实直径;楸子两大类型区分的关键性状是果实直径、花冠大小、叶片长度;平邑甜茶与泰山海棠区分的主要性状是果实直径、花梗着毛、花蕾颜色、花瓣颜色、花冠大小、叶片宽度;三叶海棠两个类型区分的主要性状是果面盖色、花冠大小、叶片大小;沙果黄色品种群与红色品种群的区别性状主要为果面盖色、花冠大小、叶片长度。
     2.泰沂山区苹果属植物ITS序列(含5.8S)全长为593-665bp,各样品种间的碱基组成有一定差异,4种核苷酸量平均为A=17.95%,G=32.36%,T=17.59%,C=32.26%。ITS序列的G+C含量较高,都在50%以上,平均含量为64.46%。当空位(gap)作缺失处理时,ITS全序列的长度为629位点,其中301个变异位点,234个为系统发育的信息位点,变异位点和信息位点分别占47.85%和37.20%。ITS序列在苹果属植物内进化速率较快,提供的变异位点较多,在种间的系统发育重建研究中可以提供较丰富的信息,NJ树与MP树分支结构基本一致,主要有4大分支,野生种山荆子与湖北海棠2个种下类型泰山海棠、平邑甜茶处于同一分支,位于系统树较低部位,第二分支包括少部分沙果和西府海棠,第三分支主要为新疆野苹果和沙果,第四分支包括苹果、沙果、楸子、西府海棠,位于系统树的最顶端,各分支支持率均在60%以上。聚类结果也表明野生种与栽培种可以明确分开,同时也证明栽培种亲缘关系复杂,并且形成途径复杂。沙果、西府海棠、楸子中可能均存在一些进化类型。
     泰沂山区苹果属植物trnL-trnF序列,不同试材之间长度差异较大,最长为1064bp,最短为945bp,平均长度为996bp。G+C含量较低,变化范围在31.11%~32.89%之间,材料间几乎无差异。所测样品碱基组成A=33.52%,G=16.02%,T=34.35%,C=16.11%。当空位(gap)作缺失处理时,trnL-trnF全序列的长度为1004位点,其中29个变异位点,12个为系统发育的信息位点,变异位点、信息位点分别占2.89%和1.20%,序列相当保守,无法为泰沂山系苹果属植物的系统学关系提供足够证据。
     以trnL-trnF序列与ITS序列构建的系统发育树存在较大差异,但都证明泰沂山区苹果属植物栽培种形成过程及遗传背景复杂,很多资源虽为同一个种但其杂交亲本可能来自不同种,甚至多次杂交。
     3.12对供试cpSSR引物中仅有4对适合泰沂山区苹果属植物遗传多样性分析,这些引物分别是ccmp2、ccmp4、ccmp5、cicp9,这4对引物均检测出泰沂山区苹果属植物遗传多样性。4对引物从36份资源中共扩增出177个DNA位点,多态性比率为76.27%;UPGMA聚类结果显示,cpSSR标记能将36份泰沂山区苹果属植物资源完全分开,在距离系数1.82处将其分为2大类,山荆子与湖北海棠的2个种下类型泰山海棠、平邑甜茶处于同一分支,西府海棠、楸子、沙果、苹果位于另一分支,呈交互聚类状,与核基因组ITS序列构建的系统树结果基本一致,同样支持栽培种与野生种分开的观点,也表明栽培种之间亲缘关系复杂。
     本研究结果初步表明,数量分类方法可以有效解决中国苹果属植物分类鉴定问题,栽培种和野生种可以独立分开,栽培种的祖先应为新疆野苹果,栽培种形成过程复杂,遗传背景复杂,亲本来源多样。泰沂山区苹果属植物主要包括5个种,10个类型。基于核基因组ITS构建的系统树与基于cpSSR标记构建的系统树结果基本一致,在一定程度上可以支持表型分类结果。基于叶绿体基因组trnL-trnF序列构建的系统树无法有效解决泰沂山区苹果属植物系统学关系。
Malus Mill.has become the hot topic of botany, horticulture and other related fields of research due to its important economic significance. However, there are some difficulties in the identification of this species, even to some experts in this field. For example, some mistakes in the rename of some species often appeared even in research literatures, thus affecting its research. Therefore, a more scientific, standardized and simple classification system needs to be built.'TaiYi'mountain is one of the areas in China that many Malus species originated, including two Malus hupehensis (var'Pingyitiancha'and'Taishanhaitang') and many cultivated varieties (including some homonyms and synonyms) due to long-term sexual reproduction. From1950s to late1970s in this area, some Malus Mill.species were collected and investigated, mainly for purpose of breeding apple rootstocks. Although Malus species in the'TaiYi'mountain area have received extensive attention, further systematic research should be needed. Some Malus Mill, species in this area were described in the book 'Tree fruit in Shandong", but this description was insufficient and the classification of different species is too simple due to lack of more detailed investigation and systematic research, thus limiting the utilization of the rich Malus resource in this area. In this study, the rich Malus Mill, species in'TaiYi'mountain area were collected, preserved and more importantly classified, base on a more simplified, quantitative classification system for China Malus species which was developed based on the theory of quantitative classification, as well as the former classification system. On this basis, the phylogenetic relationship between different Malus Mill, species in'TaiYi'mountain area was suggested from the molecular perspective, based on DNA sequence and cpSSR marker. The main results are as follows.
     1. A quantitative classification system was adopted for phynotypic system classification of27kinds of Malus Mill, species in china.49independent traits of Malus Mill, species were explicated by R cluster, and the Chinese Malus Mill, species were indentified into two large groups by Q cluster, which were Sect.Sorbomalus-ser. and Section Eumalus., even more the wild and cultivated type of Section Eumalus. were also clearly distinct. The principal component analysis indicated that Malus sieversii and all cultivated species were together, while the Sect.Sorbomalus-ser. and the wild type of Section Eumalus were together.
     A quantitative classification system was applied for the identification of102samples germplasm in'taiyi'mountain. The results showed that Malus resources in'TaiYi'mountain area belong to6species which is Malus micromalus Makino, Malus prunifolia (Wild.) Borth., Malus asiatica Nakai., Malus domestica subsp. chinensis Li Y.N. Malus hupehensis (Pamp.) Rehd. and Malus sieboldii (Reg.) Rend., with each species having2subspecies. Malus micromalus has tow subspecies which was Malus micromalus Mak. and Malus asiatica Nakai. characterized by different flower color, pedicel length and fruit diameter. M.prunifoli (Willd.) Borkh and chaguozi belong to Malus prunifolia, characterized by different fruit diameter, corolla size and leaf length. Pingyitiancha and taishanhaitang are Malus hupehensis, which is different in fruit diameter, hair in flower pedicel, flower color, petal color, corolla size and leaf wide. Malus sieboldii has huangsanye and hongsanye with different leaf size, corolla size and petal length. Malus asiatica posses yellow variety groups and red variety groups, with different fruit color, corolla size, and leaf length.
     2. Systematic relationships between different Malus Mill, species in'TaiYi'mountain area were studied using ITS nuclear sequence and chloroplasts trrL-trnF's. It was found that the full length of the ITS sequence (including5.8S) for Malus Mill, species in this area was from593bp to665bp, with nucleotides A, G, T and C averaging17.95%,32.36%,17.59%and32.26%, respectively. Nucleotides G+C of the ITS sequence was much higher than A+T, with each species exceeding50%and the mean content being64.46%. If the gap was considered as missing, the full length of the ITS sequence was629bp, with301variation sites and234sites for systematic development, accounting for47.85%and37.20%, respectively. As ITS sequence of Malus Mill, species is much more evolved with plenty of variation sites, it can provide much information in the reconstruction of systematic development of Malus Mill, species. The branch structure of NJ tree and MP tree were basically the same, there were four main large branches, Malus baccata of the wild species and2subspecies of Malus hupehensis were in the same branch in the lower part of the system tree; the second branch including a little part of Malus asitica and Malus micromalus; the third branch mainly including Malus sieversii and Malus asitica; the forth branch including Malus domestica, Malus prinifolia and Malus asiatica located in the top of the system tree, each branch support more than60%. The clustering results also showed that the wild species and cultivated species can be clearly seprated, but also proved that the genetic relationship of the cultivated species and the formation ways were complex. And there might be some evolutionary type in Malus micromalus, Malus asitica and Malus prunifolia.
     The trnL-trnF sequences of Malus in'taiyi'mountain area differ greatly among different species from945bp to1064bp, averaging996bp. The ratio of G+C of diffrent Malus Mill, species in this area is relatively low (each below40%) and there is no significant difference among species, ranging from31.11%to32.89%. The ratio of alkaline base for A, G, T and C is33.52%,16.02%,34.35%and16.11%, respectively. If the gap was considered as missing, the full length of trnL-trnF sequence was1004sites, including29variation sites and12phylogenetic information sites, consisting2.89%and1.20%of the total length, respectively. The trnL-trnF sequence was much conserved and it was not expected to solve the systematic relationships among different Malus Mill, species in'taiyi'mountains area.
     Although there was obvious difference between the two phylogenetic trees based on ITS and trnL-trnF sequences, It could be both proved that the formation and genetic background of taiyi'mountains malus was complicated, a lot of germplasms belong to the same species, but their hybrid parents may come from different species, even experienced many hybrids.
     3. Four cpSSR primers ccmp2, ccmp4, ccmp5and cicp9were proved to be suitable for genetic diversity analysis of Malus Mill, species in'TaiYi'mountain area, with each primer pairs having good results. Totally177DNA loci was amplified from36samples for these4primer pairs, with a polymorphism ratio of76.27%. UPGMA analysis showed that36Malus Mill,species sampled in this research can be totally distinguished using the method of cpSSR mark. With these36samples, two categories can be obtained at similarity coefficient level of1.82,Malus baccata and2subspecies of Malus hupehensis, Malus hupehensis var. pinyiensis and Malus hupehensis var. taishanesis were in the same branch. Malus micromalus, Malus prunifolia, Malus asitica and Malus domestica were in another branch, showing the interaction cluster-like, they were basically the same with the result of the system tree constructed by ITS sequences of nuclear genome, also supported the view that cultivated species and wild species separated with each other, it also showed that the genetic relationship among cultivars were complex.
     The results of this study preliminary showed that the quantitative classification system can effectively solve the Chinese Malus Mill,classification and identification problem, cultivated species and wild species can be separated, the ancestor of cultivated species should be Malus seversii, the formation and genetic background of cultivated species were complex, and their parents were various. Malus Mill, of taiyi"mountain mainly including5species,10types. The results of the system tree construted by ITS sequences of nuclear genome and the system tree by cpSSR were basically same, could support the phenotypic classification results. The system tree constructed by trhL-trnF sequence can not slove the systematic relationship of tai yi'mountain.
引文
1. 艾呈祥,李国田,张力思,苑克俊,孙山,刘庆忠.2011.高效检测板栗群体基因频率方法的建立.果树学报,28(1):176-181.
    2. 巴巧瑞,赵政阳,高华,王艳丽,孙彪.2011.基于SSR和SRAP标记的苹果品种亲缘关系分析.西北农林科技大学学报(自然科学版),39(9):123-128.
    3. 陈秀萍,黄爱苹,蒋标谋,郑少泉,邓朝军,魏秀清,胡文舜,姜帆.2011.枇杷种质资源数量分类研究.园艺学报,38(4):644-656.
    4. 陈景新,杨文衡.1986.河北省苹果志.北京:农业出版社,146-175.
    5. 成明吴,李晓林,梁国鲁,金强,刘杨青,谢晓黎.1996.苹果属一新变种--陇东海棠南坪变种.西南农业大学学报,18(4):308-310.
    6. 成明吴,梁国鲁,李晓林,吴福寿,袁必贤,曾维光,金强,艾德仁.1992.苹果属一新种--马尔康海棠.西南农业大学学报,14:317.
    7. 成明吴.1983.苹果属一新种—小金海棠.西南农学院学报,4:53-55.
    8. 程运江.2003.柑橘体细胞胞质遗传及叶绿体SSR引物开发研究.[博士学位论文].武汉:华中农业大学.
    9. 楚爱香,杨英军,汤庚国,童丽丽.2009.河南垂丝海棠品种数量分类研究.园艺学报,36(3):377-384.
    10.楚爱香.2009.河南观赏海棠分类研究.[博士学位论文].南京:南京林业大学.
    11.戴思兰,钟杨,晓艳.1995.中国菊属植物部分种的数量分类研究.北京林业大学学报,17(4):9-14.
    12.丁守超,丰震,赵兰勇.2005.平阴玫瑰品种数量分类研究的探讨.园艺学报,32(2):327-330.
    13.董晓莉.2009.西南地区悬钩子属植物分子系统学研究及其与栽培品种的遗传差异分析.[博十学位论文].雅安:四川农业大学.
    14.高华,樊红科,万怡震,王雷存,赵政阳,王西平.2011.苹果栽培品种的SSR鉴定及遗传多样性分析.西北农业学报,20(2):153-158.
    15.高进红,邢世岩,姜岳忠,李士美.2005.银杏观赏品种染色体核型分析.山东农业大学学报(自然科学版),36(1):19-24.
    16.管志涛,刘艺平,孔德政.2007.碗莲品种形态学性状聚类分析的研究.安徽农业科学,35(28):8858-8899.
    17.过国南,王力荣,阎振立,朱更瑞,方伟超.2006.利用花粉粒形态分析法研究桃种质资源的进化关系.果树学报,23(5):664-669.
    18.胡春云,郑小燕,滕元文.2011.梨属叶绿体非编码区trnL-trnF和accD-psaI特征及其在系统发育研究中的应用价值.园艺学报,38(12):2261-2272.
    19.胡仁勇,丁炳扬.2001.国产菱属植物数量分类学研究.浙江大学学报(农业与生命科学版),27(4):419-423
    20.季春峰,向其柏,徐柏森.2004.中国木樨属叶部微形态特征及其在系统分类中的应用.南京林业大学学报(自然科学版),28(4):54-58.
    21.雷红灵,张光华.1999.同工酶在园艺植物中的应用研究.湖北民族学院学报(自然科学版),17(4):19-23.
    22.李晓磊,沈向,孙凡雅,束怀瑞,郭翎,曹颖.2008.苹果属观赏海棠品种花粉形态及分类研究.园艺学报,35(8):1175-1182.
    23.李育农a.1996.世界苹果属植物种类和分类研究进展述评.果树科学,13(增刊):63-81.
    24.李育农b.1996.现代世界苹果属植物分类新体系刍议.果树科学,13(增刊):82-92.
    25.李育农.2001.苹果属植物种质资源研究.北京:中国农业出版社.
    26.梁国鲁.2002.苹果属植物野生种的AFLP分析及亲缘关系探讨.国际苹果学术研讨会论文集,(1):51-56.
    27.林夏珍.2003.浙江润楠属系统学研究.[博士学位论文].北京:北京林业大学.
    28.刘孟军.1998.苹果属植物RAPD分析的影响因素及其稳定性研究.河北农业大学学报,21(4):48-54.
    29.刘有春,陈伟之,刘威生,刘宁,张玉萍,刘硕.2010.仁用杏起源演化的孢粉学研究.园艺学报,37(9):1377-1387.
    30.刘春迎,王莲英a.1995.芍药品种的数量分类研究.武汉植物学研究,13(2):116-126.
    31.刘春迎,王莲英b.1995.菊花品种的数量分类研究.北京林业大学学报,17(2):79-89.
    32.陆秋农.1996.山东果树志.济南:山东科学技术出版社,53-64.
    33.毛汉书,马燕.1992.中国梅花品种的数量分类研究.北京林业大学学报,14(4):56-65.
    34.孟淑春,郑晓鹰,刘玉梅,何伟明,刘庞沅.2005.大白菜种质资源形态性状的多样性分析.华北农学报,20(4):57-61.
    35.聂继云,吕德国,李静,刘凤之,李海飞,王昆.2010.22种苹果种质资源果实类黄酮分析.中国农业科学,43(21):4455-4462.
    36.蒲富慎,林盛华.1985.苹果属植物核型研究.武汉植物学研究,3(4):451-457.
    37.钱关铎.2005.苹果属(Malus. Mill)植物分类学研究.[博士学位论文].南京:南京林业大学.
    38.秦伟,刘立强,廖康,耿文娟,唐芳.2011.新疆苹果种质资源亲缘关系的SSR分析.新疆农业科学,48(1):48-52.
    39.任裙,陶玲.2003.甘肃省白刺属植物的数量分类研究.西北植物学报,23(4):572-576.
    40.沈玉英,丁夏君,高志红,王飞,房伟民,佟兆国,章镇.2011.基于表型性状数量分类的梅品种遗传多样性分析.果树学报,28(5):802-807.
    41.汪小飞,周耘峰,黄埔,向其柏,尤传楷,孙龙.2010.石榴品种数量分类研究.中国农业科学,43(5):1093-1098.
    42.汪小全,宏德元.1997.植物分子系统学近五年的研究进展概况.植物分类学报,35(5):465-480.
    43.王爱德,李天忠,许雪峰,韩振海.2005.苹果品种SSR分析.园艺学报,32(5):875-877.
    44.王宏,申晓辉,郭瑛.2007.野鸢尾染色体的核型分析及其分类地位探讨.上海交通大学学报(农业科学版),25(3):289-292.
    45.王昆,刘凤之,曹玉芬.2005.苹果种质资源描述规范和数据标准.北京:中国农业出版社.
    46.王明明,王建华,宋振巧,李圣波,曲燕,刘静.2009.木瓜属品种资源的数量分类研究.园艺学报,36(5):701-710.
    47.王莹,赵华斌,郝家胜.2005.分子系统学的理论、方法及展望.安徽师范大学学报(自然科学版), 28:84-88.
    48.吴菲菲.2009.山楂属植物叶绿体DNA遗传多样性研究.[硕士学位论文].沈阳:沈阳农业大学.
    49.吴高岭,宋德凤,徐尚忠.2000.数值分类法在玉米品种资源上的应用.玉米科学,8(1):23.
    50.徐克学.1994.数量分类学.北京:科学出版社,94-110.
    51.徐兴兴.2006.苹果SSR反应体系的建立及品种资源遗传多样性分析.[硕士学位论文].河北保定:河北农业大学.
    52.杨进,章祖涵,司清.1985.山东苹果砧木资源研究报告.果树砧木论文集,西安:陕西科学技术出版社.31-52.
    53.尹燕雷,苑兆和,冯立娟,招雪晴,陶吉寒.2011.山东20个石榴品种花粉亚微形态学比较研究.园艺学报,38(5):955-962.
    54.俞德浚.1982.中国果树分类学.北京:农业出版社,87-121.
    55.俞德浚.1984.落叶果树分类学.上海:上海科学技术出版社,33-34.
    56.张广进,赵兰勇,王芬,张恒亮,邵大伟,招雪晴.2006.蔷微品种的数量分类学研究.山东农业大学学报(自然科学版),37(2):175-181.
    57.张汉尧,刘小珍,孙茂胜,杨宇明.2005.竹子形态标记聚类分析研究.竹子研究汇刊,24(1):25-28.
    58.张今今,王跃进.1998.苹果RAPD反应体系的研究.西南农业大学学报,20(1):34-37.
    59.张田,李作洲,刘亚令,姜正旺,黄宏文.2007.猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑.生物多样性,15(1):1-22.
    60.张小燕,陈学森,彭勇,刘尊春,石俊,王海波.2008.新疆野苹果多酚物质的遗传多样性.园艺学报,35(9):1351-1356.
    61.赵冰,雒新艳,张启翔.2007.蜡梅品种的数量分类研究.园艺学报,34(4):947-954.
    62.郑小艳.2008.基于多种DNA序列和cpSSR的梨属(Pyrus L.)植物分子系统关系研究.[博十学位论文].杭州:浙江大学.
    63.周志钦,成明吴,宋宏元,李晓林,杨天秀.2001.苹果属小金海棠的遗传多样性初步研究.生物多样性,9(2):145-150.
    64. Adachi J, Hasegawa M.1996. MOLPHY version 2.3:programs for molecular phylogenetics based on maximum likelihood. Institute of statistical Mathematics, Tokyo. Computer Science Monographs, 28:1-150.
    65. Agrama H A, Tuinstra M R.2003. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African Journal of Biotechnology,2:334-340.
    66. Alice L A, Campbell C S.1999. Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. American Journal of Botany,86:81-97.
    67. Bailey C D, Carr T G, Harris S A, Hughes C E.2003. Characterization of angiosperm nrDNA Polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution,29:435-455.
    68. Baldwin B G, Sanderson M J, Poter J M, Wojciechowski M F, Campbell C S, Donoghue M J.1995. The ITS region of nuclear ribosomal DNA, a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden,82:247-277.
    69. Bayly M J, Ladiges P Y.2007. Divergent paralogues of ribosomal DNA in eucalypts(Myrtaceae). Molecular Phylogenetics and Evolution,44(1):346-356.
    70. Borba E L, Shepherd G J.2002. Floral and vegetative morphometrics of five pleurothallis (orchidaceae) species:Correlation with taxonomy, Phylogeny, GenetieVariability and Pollination Systems. Annals of Botany,90(2):219-230.
    71. Brubaker C L, Wendel J F.1994. Reevaluating the oringin of domesticated cotton (Gossypium hirsutum; Malvaceace) using nuclear restriction-fagment-length-polymorphisms(RFLPs). American Journal of Bptany,81(10):1309-1326.
    72. Bryan G J, McNicoll J, Ramsay G, Meyer R C, Jong W S D.1999. Polymorphic simple sequence repeats markers in chloroplast genomes of Solanaceous plants. Theoretical and Applied Genetics, 99(5):859-867.
    73. Buckler E S, Ippolito A, Holtsford T P.1997. The evolution of ribosomal DNA:divergent paralogues and phylogenetic implications. Genetics,145(3):821-832.
    74. Buckler E S, Holtsford T P.1996. Zea ribosomal repeat evolution and substitution patterns. Molecular Phylogenetics and Evolution,13:623-632.
    75. Campbell C S, Donoghue M J, Baldwin B G, Wojciechowski M F.1995. Phylogenetic relationships in Maloideae (Rosaceae):Evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and ITS congruence with morphology. American Journal of Botany,82(7):903-918.
    76. Campbell C S, Wojciechowski M F, Baldwin L A, Donoghue M J.1997. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier Mgamic complex(Rosaceae). Molecular Phylogenetics and Evolution,14:81-90.
    77. Cavalli-Sforza L L, Edwards A W F.1967. Phylogenetic analysis:models and estimation procedures. Evolution,21 (3):550-570.
    78. Clegg M T, Gaut B S, Learn G H, Morton B R.1994. Rates and patterns of chloroplast DNA evolution. Proceedings of the National Academy of Sciences of the United States of America,91(15): 6795-6801.
    79. Corriveau J L, Coleman A W.1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany, 75(10):1443-1458.
    80. Curtis S E, Clegg M T.1984. Molecular evolution of chloroplast DNA sequence. Molecular Biological and Evolution,1(2):291-301.
    81. Debener T, Salamini F, Gebhardt C.1990. Phylogeny of wild and cultivated solanum species based on nuclear restriction fragment length polymorphism(RFLPs). Tag Theoretical and Applied Genetics.79(3):360-368.
    82. Donoghue M J, Baldwin B G. Li J, Winkorth R C.2004. Viburnum phylogeny based on chloroplast trnK intron and nuclear ribosomal ITS DNA sequences. Systematic Botany,29:188-198.
    83. Dunemann F, Kahnau R, Schmidt H.1994. Genetic relationships in Malus evaluated by RAPD 'Fingerprinting'of cultivars and wild species. Plant Breeding,113(4):150-159.
    84. Eck R V, Dayhoff M O.1966. Atlas of protein sequence and structure. Silver Spring, Maryland.
    85. Egan A N, Crandall K A.2008. Incorporating gaps as phylogenetic characters across eight DNA regions:Ramifications for North American Psoraleeae(Leguminosae). Molecular Phylogenetics and Evolution,46:532-546.
    86. Eriksson T, Hibbs M S, Yoder A D, Delwiche C F, Donoghue M J.2003. The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacer(ITS) of nuclear ribosomal DNA and the trnL-F region of chloroplast DNA. International Journal of Plant Sciences,164(2):197-211.
    87. Felsenstein J.1979. Altermative methods of phylogenetic inference and their interrelationship. Systematic Zoology,28:49-62.
    88. Felsenstein J.1981. Evolutionary trees from DNA sequences:a maximum likelihood approzch. Journal of Molecular,17:368-376.
    89. Fitch W M, Margoliash E.1967.Construction of phylogenetic trees. Science,155:279-284.
    90. Friar E A, Prince L M, Cruse-Sanders J M, McGlaughlin M E, Butterworth C A, Baldwin B G. 2008. Hybid origin and genomic mosaicism of Dubautia scabra (Hawaiian silversword alliance; Asteraceace, Madiinae). Systematic Botany 33:589-597.
    91. Funk V, Cracraft J J.1985. The implications of phylogenetic analysis of the comparative biology:the thirtieth annual systematic symposium.Annals of the Missouri Botanical Garden,72:591-595.
    92. Geps P.1993. The use of molecular and biochemical markers in crop evolution studies. Evolution Biology,27:51-94.
    93. Gernandt D S, Liston A, Pinero D.2001. Variation in the nrDNA ITS of pinus subsection cembroides, implications for molecular systematic studies of pine species complexes. Molecular Phylogenetics and Evolution,21:449-467.
    94. Grivet D, Heinze B, Vendramin G G, Petit R J.2001. Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Molecular Ecology Notes,1(4): 345-349.
    95. Guilford P, Prakash S, Zhu J M, Rikkerink E. Gardiner S, Bassett H, Forrster R.1997. Microsatellites in Malusxdomestica (apple):abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics,94(2):249-254.
    96. Hall T A.1999. Bio Edit:a user friendly biological sequence alignmeng editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium Series,41:95-98.
    97. Hamilton M B.1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology,8(3):521-523.
    98. Harpke D, Peterson A.2006. Non-concerted ITS evolution in Mammillaris(Cactaceae). Molecular Phylogenetics and Evolution,41:579-593.
    99. Hennig W.1996. Phylogenitic systematic. University of Illinois Press, Urbana.
    100. Hershkovitz M A, Zimmer E A.1994. Ribosomal DNA Phylogeneties of Portulacaceae and allied families. American Journal of Botany,81(2):160-161.
    101. Horejsi T, Staub J E.1999. Genetic variation in cucumber(Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genetic Resources and Crop Evolution.46:337-350.
    102. Hosaka K.1995. Successive domestication and evolution of the Andean potatoes as revealed by chloroplast DNA restriction endonuclease analysis. Tag Theoretical and Applied Genetics,90(3): 356-363.
    103. Hoshikawa Y, Iida Y, Iwabuchi M.1983. Nucleotide sequence of the transcriptional initiation region of Dictyastelium discoideum Rrna gene and comparison of the genes. Nucleic Acids Research,11: 1725-1734.
    104. Hsiao C N, Chatterton N J, Asay K H, Jensen K B.1995. Phylogenetic relationships of the monogenomic of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA(internal transcribed spacer) sequences. Genome,38(2):211-223.
    105. Ishii T, McCouch S R.2000. Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species. Theoratical and Applied Genetics,100(8):1257-1266.
    106. Iwata H, Kato T, Ohno S.2000. Triparental origin of Damask roses. Gene,259(1):53-59.
    107. Janick J. Cummins J N, Brown S K, Hemmat M.1996. Apples. In:Janick J., Moor J.N.(eds.) Fruit breeding:tree and tropical fruits. John Wiley and Sons, London, pp:1-77.
    108. Judd W S, Campbell C S, Kellogg E A, Stevens P F.1999. Plant systemtics:a phylogenetic approach. Sinauer Associates, Massachusetts, USA.
    109. Kellog E A, Appels R, Mason-Gamer R J.1996. When genes tell different stories:the diploid genes tell different stories:the diploid genera of Triticaceae(Gramineae). Systematic Botany,21(3):321-347.
    110. Kim C S, Lee C H, Park K W, Kang S J, Shin I S, Lee G P.2005. Phylogenetic relationships among Pyrus pyrifolia and P.communis detected randomly amplified polymorphic DNA(RAPD) and conserved rDNA sequences. Scientia Horticulturae,106(4):491-501.
    111. Koller B, Lehmann A, Mcdermott J M, Gessler C.1993. Identification of apple cultivars using RAPD markers. Theoretical and Applied Genetics.85:901-904.
    112. Laura L, Warren F.2001. Molecular Identification of Malus hupehensis (Tea Crabpple) accessions using simple sequence repeats. Horscience,36(5):961-966.
    113. Likhonos A.1974. A survey of the species in the genus Malus Mill. Trudy Prikl Botany Genetic Selek, 52(3):16-34.
    114. Linder R C, Goertzen L R, Heuvel B V, Francisco-ortega, Jansen R K.2000. The complete external transcribed spacer of 18S-26S rDNA:amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Molecular Phylogenetics and Evolution,14:285-302.
    115. Markos S, Baldwin B G.2001. Higher-level relationships and major lineages of Lessinggia(Composite, Astereae) base on nucear rDNA internal and external transcribed spacer (ITS and ETS) sequences. Systematic Botany,26:168-183.
    116. Mayol M, Rossello J A.2001. Why nuclear ribosomal DNA spacers(ITS) tell different stories in Quercus. Molecular Phylogenetics and Evolution,19(2):167-176.
    117. Miyata T, Yasunaga T.1980. Molecular evolution of Mrna:a method for estimating evolutionary rates of synonymous and amino acids substitution from homologous nucleotide suquences and its application. Journal of Molecular Evolution,16:23-36.
    118. Morgan D R, Solits D E, Robertson K R.1994. Systematics and evolutionary implications of rbcL sequence variation in Rosaceae. American Journal of Botany,81(7):890-903.
    119. Muir G, Fleming C C, Schlotterer C.2001. Three divergent rDNA clusters predate the species divergence in Quercus petrace(Matt.) Liebl. and Quercus robur L. Molecular Biology and Evolution, 18(2):112-119.
    120. Muller K F, Borsch T, Hilu K W.2006. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels:Contrasting matK, trnT-F, and rbcL in basal angiosperms. Molecular Phylogenetics and Evolution,41(1):99-117.
    121.Ochieng J W, Henry R J, Baverstock P R, Steane D A, Shepherd M.2007. Nulear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution,44(2):752-764.
    122. Paik-Ro O G, Smith R L, Knauft D A.1992. Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Tag Theoretical and Applied Genetics,84(2):201-208.
    123. Phipps J B, Roberston K R, Rohrer J R, Smith P G.1991. Oringins and evolution of subfam. Maloideae(Rosaceae). Systematic Botany,16(2):303-332.
    124. Ponomarenko V V.1986. Review of the species comprised in the genus Malus Mill Sbornick Nauchikh Tyrudov po prinkladnoi Botanike, Genetike i selectii 106:3-27. [In Russian, with English summry].
    125. Posada D, Crandall K A.1998. Modeltest:testing the model of DNA substitution. Bioinformatics, 14(9):817-818.
    126. Potter D, Eriksson T, Evans R C, Oh S, Smedmark J E E, Morgan D R, Kerr M, Roberson K R, Arsenault M, Dickinson T A, Campbell C S.2007. Phylogeny and classification of Rosacae. Plant Systematics and Evolution,266:5-43.
    127. Potter D, Gao F, Bortiri E, Oh S, Baggett S.2002. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Systematics and Evolution,231: 77-89.
    128. Provan J, Powell W, Holliingsworth P M.2001. Chloroplast microsatllites:new tools for studies in plant ecology and evolution. Trends in Ecology and Evolution,16(3):142-147.
    129. Razafimandimbison S G, Kellogg E A, Bremer B.2004. Recent origin and phylogenetic utility of divergent ITS putative pseudogenes, a case study from Naucleeae(Rubiaceae). Systematic Biology, 53(2):177-192.
    130. Ritz C M, Schmuths H, Wissemann V.2005. Evolution by reticulation:European dogroses originated by multiple hybridization across the genus Rosa. Journal of Heredity,96(1):4-14.
    131. Robinson J P, Harris S A, Junipe B E.2001. Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, M. domestica Borkh. Plant Systematics and Evolution,226:35-58.
    132. Rohrer J R, Ahmad R, Southwiick S M, Potter D.2004. Microsatellite analysis of relationships among North American Plums(Prunus sect, prunocerasus, Rosaceae). Plant systematics and Evolution,244(1): 69-75.
    133. Schaal B A, Hayworth D A, Olsen K M, Rauscher J T, Smith W A.1998. Phylogeographic studies in plants:problems and prospects. Molecular Ecology,7(4):465-474.
    134. Schaal B A, Olsen K M.2000. Gene genealogies and population variation in plants. The National Academy of Sciences,97(13):7024-7029.
    135. Shaw J, Lickey E B, Beck J T, Farmer S B, Liu W, Miller J, Siripum K C, Winder C T, Schilling E E, Small R L.2005. The tortoise and the hare Ⅱ:relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany,92(1):142-166.
    136. Shaw J, Lickey E B, Schilling E E, Small R L.2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms:the tortoise and the hare III. American Journal of Botany,94(3):275-288.
    137. Small R L, Ryburn J A, Cronn R C, Seelanan T, Wendel J F.1998. The tortoise and the hare:Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany,85(9):1301-1315.
    138. Sneath P H A, Sokal R R.1973. Numerical taxonomy. The principles and practice of numerical classification. San Francisco, W.H. Freeman and Company. USA.
    139. Sober E.1988. Reconstructing the past:parsimony, evolution and inference. The MIT press, Cambridge, Massachusetts London, England.
    140. Soltis D E, Soltis P S.1998. Choosing an approach and an appropriate gene for phylogenetic analysis//Sotis DE(eds). Molecular Systematics of Plants II. DNA Sequencing. Kluwer Academic Publishers:1-42.
    141. Stebbins G L, Ledyard E.1938. Cypoqenetic studies in Paeonia II. The cytology of diploid speaies and hybrids. Genetics,23(1):83-110.
    142. Studier J A, Keppler K J.1988. A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution,5:729-731.
    143. Su Y C, Smith G J, Saunders R M.2008. Phylogeny of the basal angiosperm genus Pseuduvaria (Annonaceae) inferred from five chloroplast DNA regions,with interpretation of morphological character evolution. Molecular Phylogenetics and Evolution,48(1):188-206.
    144. Swofford D L.1998. PAUP:phylogenetic analysis using parsimony (*and Other Methods).Version 4. 0 sunderland massachusetts MA:Sinauer Associates.
    145.Taberlet P, Gielly L, Pautou G, Bouvet J.1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology,17(5):1105-1109.
    146. Takezaki N, Nei M.1996. Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA. Genetics,144(1):389-399.
    147. Tang D C, Sang T.2001. Phylogenetic Utility of the Glycerol -3-Phosphate Acyltransferase Gene: Evolution and implications in Paeonia(Paeoniaceae). Molecular Phylogenetics and Evolution,19: 421-429.
    148. Thompson J D, Gibson T J, Plewniak F. Jeanmougin F, Higgins D G.1997. The CLUSTAL-X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucletic Acids Research,25(24):4876-4882.
    149. Vogel M, Banter G, Moog V, Weising K.2003. Development and characterization of chloroplast microsatellite markers in Macaranga(Euphorbiaceae). Genome,46(5):845-857.
    150. Watkins R.1995. Apples and pears. In:Smartt J., Simmonds N.W.(eds.) Evolution of Crop Plants. Longman, London, pp.418-422.
    151. Weising K, Gardner R C.1999. A set of conserved PCR prmiers for the analysis of simple sequence repeat pilymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome,42(1):9-19.
    152. Wendel J F, Albert A V.1992. Phylogenetics of the cotton genus(Gossypium L.):character-state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications. Systematic Botany,17(1):115-143.
    153. Wissemann V, Ritz C M.2005. The genus Rosa(Rosoideae, Rosaceae) revisited:molecular analysis of nrlTS-1 and atpB-rbcL intergenic spacer(lGS) versus conventional taxonomy. Botanical Journal of Linnean Society,147(3):275-290.
    154. Won H, Renner S S.2005. The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Molecular Phylogenetics and Evolution,36:581-597.
    155. Yang Y W, Lai K N, Tai P Y, Ma D P, Li W H.1999. Molecular phylogenetic studies of Brassica, Rorippa, arabidopsis and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. Molecular Phylogenetics and Evolution,13(3):455-462.
    156. Zwickl D J.2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Doctor of Philosophy. The University of Texas at Austin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700